1
|
Araujo NGR, da Silva Junior FC, Santos LVDS, Batistuzzo de Medeiros SR, Felzenszwalb I, Araújo-Lima CF. Molecular docking and in silico analysis of the pharmacokinetics, toxicological profile and differential gene expression of bioactive compounds from Cyrtopodium glutiniferum. Toxicol Rep 2024; 13:101810. [PMID: 39629241 PMCID: PMC11612344 DOI: 10.1016/j.toxrep.2024.101810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 12/07/2024] Open
Abstract
The genus Cyrtopodium, from the Orchidaceae family, is widely used for its therapeutic properties in the treatment of tuberculosis, abscesses, urinary infection, and colds. C. glutiniferum, one of the species of this genus, is endemic in Brazil and largely used in herbal medicine. Thus, it is of great interest to recognize its composition, the properties of the molecules found in it. This study aimed to perform the in silico analysis of the main compounds from C. glutiniferum, on the platforms pKCSM, SwissADME, LAZAR, CLC-pred, ToxTree, DIGEPred, STRING, and Cytoscape. Further than this, the molecular docking was performed. The compounds present in the aqueous extract of C. glutiniferum were identified by UHPLC-MS/MS, finding Arbutin, Caffeic acid 4-O-glucoside, and Dihydroformononetin as the three most abundant molecules. The evaluation of the gastrointestinal absorption of Dihydroformononetin is given as high, also managing to cross the blood-brain barrier, while Arbutin can only be absorbed by the gastrointestinal tract and Caffeic acid 4-O-glucoside had very low absorption. Further analysis showed that Arbutin and Dihydroformononetin are possible leading molecules for drug synthesis, according to the prediction. Toxicological aspects were analysed, and no adverse effects were noted, but there were divergences in the mutagenic prediction of Arbutin and Dihydroformononetin, having different results in the used platforms, demonstrating that a cautious analysis and data insertion is needed in these tools to optimize them. The analysis of the differentially expressed genes predicted that the compounds can regulate several genes, including some genes associated with carcinogenesis and inflammation. The Molecular docking analysis showed high binding affinities of the molecules with different proteins. Therefore, C. glutiniferum demonstrates the potential to be used as a phytotherapeutic. The same was given through the in silico analysis of the three compounds found in the orchid, that show good individual potential.
Collapse
Affiliation(s)
- Natália Gonçalves Ribeiro Araujo
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, IBRAG/UERJ (University of the State of Rio de Janeiro), 87 - Fundos, 4th floor, Vila Isabel, Rio de Janeiro, RJ 20551-030, Brazil
| | | | - Lizandra Vitória de Souza Santos
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, IBRAG/UERJ (University of the State of Rio de Janeiro), 87 - Fundos, 4th floor, Vila Isabel, Rio de Janeiro, RJ 20551-030, Brazil
| | - Silvia Regina Batistuzzo de Medeiros
- Laboratory of Biology and Molecular Mutagenesis, Department of Biology, Center for Biosciences/UFRN (Federal University of Rio Grande do Norte), 3000 Av. Sen. Salgado Filho-Lagoa Nova, Natal, RN 59064-741, Brazil
| | - Israel Felzenszwalb
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, IBRAG/UERJ (University of the State of Rio de Janeiro), 87 - Fundos, 4th floor, Vila Isabel, Rio de Janeiro, RJ 20551-030, Brazil
| | - Carlos Fernando Araújo-Lima
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, IBRAG/UERJ (University of the State of Rio de Janeiro), 87 - Fundos, 4th floor, Vila Isabel, Rio de Janeiro, RJ 20551-030, Brazil
- Integrated Environmental Mutagenesis Laboratory, Federal University of Rio de Janeiro State (UNIRIO), R. Frei Caneca, 94 - Centro, Rio de Janeiro, RJ 20211-010, Brazil
| |
Collapse
|
2
|
Wang QL, Zhang PX, Shen R, Xu M, Han L, Shi X, Zhou ZR, Yang JY, Liu JQ. Determination of arbutin in vitro and in vivo by LC-MS/MS: Pre-clinical evaluation of natural product arbutin for its early medicinal properties. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118232. [PMID: 38670407 DOI: 10.1016/j.jep.2024.118232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Arbutin is a naturally occurring glucoside extracted from plants, known for its antioxidant and tyrosinase inhibiting properties. It is widely used in cosmetic and pharmaceutical industries. With in-depth study of arbutin, its application in disease treatment is expanding, presenting promising development prospects. However, reports on the metabolic stability, plasma protein binding rate, and pharmacokinetic properties of arbutin are scarce. AIM OF THE STUDY The aim of this study is to enrich the data of metabolic stability and pharmacokinetics of arbutin through the early pre-clinical evaluation, thereby providing some experimental basis for advancing arbutin into clinical research. MATERIALS AND METHODS We developed an efficient and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for determining arbutin in plasma. We investigated the metabolic and pharmacokinetic properties of arbutin through in vitro metabolism assay, cytochrome enzymes P450 (CYP450) inhibition studies, plasma protein binding rate analysis, Caco-2 cell permeability tests, and rat pharmacokinetics to understand its in vivo performance. RESULTS In vitro studies show that arbutin is stable, albeit with some species differences. It exhibits low plasma protein binding (35.35 ± 11.03% ∼ 40.25 ± 2.47%), low lipophilicity, low permeability, short half-life (0.42 ± 0.30 h) and high oral bioavailability (65 ± 11.6%). Arbutin is primarily found in the liver and kidneys and is eliminated in the urine. It does not significantly inhibit CYP450 up to 10 μM, suggesting a low potential for drug interactions. Futhermore, preliminary toxicological experiments indicate arbutin's safety, supporting its potential as a therapeutic agent. CONCLUSION This study provides a comprehensive analysis the drug metabolism and pharmacokinetics (DMPK) of arbutin, enriching our understanding of its metabolism stability and pharmacokinetics properties, It establishes a foundation for further structural optimization, pharmacological studies, and the clinical development of arbutin.
Collapse
Affiliation(s)
- Qiao-Lai Wang
- School of Medicine, Huaqiao University, 269 Chenghua North Road, Fengze District, Quanzhou, 362021, China.
| | - Pei-Xi Zhang
- School of Medicine, Huaqiao University, 269 Chenghua North Road, Fengze District, Quanzhou, 362021, China
| | - Rui Shen
- School of Medicine, Huaqiao University, 269 Chenghua North Road, Fengze District, Quanzhou, 362021, China
| | - Meng Xu
- School of Medicine, Huaqiao University, 269 Chenghua North Road, Fengze District, Quanzhou, 362021, China
| | - Liang Han
- Sheng Xia Innovation Pharmaceutical Technology Co., Ltd., Xiamen, 361000, China
| | - Xuan Shi
- Sheng Xia Innovation Pharmaceutical Technology Co., Ltd., Xiamen, 361000, China
| | - Zi-Rui Zhou
- School of Medicine, Huaqiao University, 269 Chenghua North Road, Fengze District, Quanzhou, 362021, China
| | - Jing-Yi Yang
- School of Medicine, Huaqiao University, 269 Chenghua North Road, Fengze District, Quanzhou, 362021, China
| | - Jie-Qing Liu
- School of Medicine, Huaqiao University, 269 Chenghua North Road, Fengze District, Quanzhou, 362021, China; Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, Huaqiao University, Quanzhou, 362021, China.
| |
Collapse
|
3
|
Wang J, Xiao S, Cai Q, Miao J, Li J. Antioxidant Capacity and Protective Effects on H 2O 2-Induced Oxidative Damage in PC12 Cells of the Active Fraction of Brassica rapa L. Foods 2023; 12:2075. [PMID: 37238893 PMCID: PMC10217163 DOI: 10.3390/foods12102075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Brassica rapa L. (BR), a traditional biennial herb belonging to the Brassica species of Brassicaceae, has been widely used for functions of anti-inflammatory, antitumor, antioxidation, antiaging, and regulation of immunity. In this study, antioxidant activity and protective effects on H2O2-induced oxidative damage in PC12 cells of the active fractions of BR were investigated in vitro. Among all active fractions, the ethyl acetate fraction of ethanol extract from BR (BREE-Ea) showed the strongest antioxidant activity. Additionally, it was noted that BREE-Ea and n-butyl alcohol fraction of ethanol extract from BR (BREE-Ba) both have protective effects in oxidatively damaged PC12 cells, while BREE-Ea displayed the best protective effect in all determined experimental doses. Furthermore, flow cytometry (DCFH-DA staining) analysis indicated that BREE-Ea could reduce the H2O2-induced apoptosis in PC12 cells by reducing the production of intracellular reactive oxygen species (ROS) and increasing enzymatic activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Moreover, BREE-Ea could decrease the malondialdehyde (MDA) content and reduce the release of extracellular lactic dehydrogenase (LDH) from H2O2-induced PC12 cells. All these results demonstrate that BREE-Ea has a good antioxidant capacity and protective effect on PC12 cells against apoptosis induced by H2O2 and that it can be used as a good edible antioxidant to improve the body's endogenous antioxidant defense.
Collapse
Affiliation(s)
- Jin Wang
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China; (J.W.); (S.X.); (Q.C.)
| | - Shuang Xiao
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China; (J.W.); (S.X.); (Q.C.)
| | - Qi Cai
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China; (J.W.); (S.X.); (Q.C.)
| | - Jing Miao
- Pharmaceutical Institute, Xinjiang University, Urumqi 830000, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi 830000, China
| | - Jinyao Li
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China; (J.W.); (S.X.); (Q.C.)
- Pharmaceutical Institute, Xinjiang University, Urumqi 830000, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi 830000, China
| |
Collapse
|
4
|
Pratomo AR, Salim E, Hori A, Kuraishi T. Drosophila as an Animal Model for Testing Plant-Based Immunomodulators. Int J Mol Sci 2022; 23:ijms232314801. [PMID: 36499123 PMCID: PMC9735809 DOI: 10.3390/ijms232314801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Allopathic medicines play a key role in the prevention and treatment of diseases. However, long-term consumption of these medicines may cause serious undesirable effects that harm human health. Plant-based medicines have emerged as alternatives to allopathic medicines because of their rare side effects. They contain several compounds that have the potential to improve health and treat diseases in humans, including their function as immunomodulators to treat immune-related diseases. Thus, the discovery of potent and safe immunomodulators from plants is gaining considerable research interest. Recently, Drosophila has gained prominence as a model organism in evaluating the efficacy of plant and plant-derived substances. Drosophila melanogaster "fruit fly" is a well-known, high-throughput model organism that has been used to study different biological aspects of development and diseases for more than 110 years. Most developmental and cell signaling pathways and 75% of human disease-related genes are conserved between humans and Drosophila. Using Drosophila, one can easily examine the pharmacological effects of plants/plant-derived components by employing a variety of tests in flies, such as survival, anti-inflammatory, antioxidant, and cell death tests. This review focused on D. melanogaster's potential for identifying immunomodulatory features associated with plants/plant-derived components.
Collapse
Affiliation(s)
- Andre Rizky Pratomo
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Emil Salim
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia
- Correspondence: (E.S.); (T.K.)
| | - Aki Hori
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takayuki Kuraishi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
- AMED-PRIME, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
- JST-FOREST, Japan Science and Technology Agency, Tokyo 102-0081, Japan
- Correspondence: (E.S.); (T.K.)
| |
Collapse
|
5
|
Boo YC. Arbutin as a Skin Depigmenting Agent with Antimelanogenic and Antioxidant Properties. Antioxidants (Basel) 2021; 10:antiox10071129. [PMID: 34356362 PMCID: PMC8301119 DOI: 10.3390/antiox10071129] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 12/27/2022] Open
Abstract
Arbutin is a compound of hydroquinone and D-glucose, and it has been over 30 years since there have been serious studies on the skin lightening action of this substance. In the meantime, there have been debates and validation studies about the mechanism of action of this substance as well as its skin lightening efficacy and safety. Several analogs or derivatives of arbutin have been developed and studied for their melanin synthesis inhibitory action. Formulations have been developed to improve the stability, transdermal delivery, and release of arbutin, and device usage to promote skin absorption has been developed. Substances that inhibit melanin synthesis synergistically with arbutin have been explored. The skin lightening efficacy of arbutin alone or in combination with other active ingredients has been clinically evaluated. Combined therapy with arbutin and laser could give enhanced depigmenting efficacy. The use of arbutin causes dermatitis rarely, and caution is recommended for the use of arbutin-containing products, especially from the viewpoint that hydroquinone may be generated during product use. Studies on the antioxidant properties of arbutin are emerging, and these antioxidant properties are proposed to contribute to the skin depigmenting action of arbutin. It is hoped that this review will help to understand the pros and cons of arbutin as a cosmetic ingredient, and will lead to future research directions for developing advanced skin lightening and protecting cosmetic products.
Collapse
Affiliation(s)
- Yong Chool Boo
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|