1
|
Lu L, He Y. Dysregulation of miR-335-5p in People with Obesity and its Predictive Value for Metabolic Syndrome. Horm Metab Res 2024; 56:749-755. [PMID: 38447950 DOI: 10.1055/a-2261-8115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The epidemic of obesity and metabolic syndrome has become the most serious global public health problem. The part played by microRNA (miRNA) in the onset and progression of obesity and metabolic syndrome has been increasingly focused upon. The goal of this study was to explore miR-335-5p as a potential predictive biomarker or therapeutic target for obesity and metabolic syndrome. The expression level of miR-335-5p was detected by qRT-PCR. The diagnostic value of miR-335-5p was evaluated by ROC curve. The association between serum miR-335-5p levels and various clinical parameters was assessed using the chi-square test. Logistic regression analysis was used to evaluate the risk factors of metabolic syndrome in obese population. The biological processes and molecular mechanisms are studied through GO and KEGG enrichment analysis. The ROC curve analysis revealed that miR-335-5p could serve as a predictive indicator for the development of obesity accompanied by metabolic syndrome. Logistic regression analysis revealed that BMI, TG, FBG, HOMA-IR, and miR-335-5p expression represent independent risk factors of metabolic syndrome occurrence. Chi-square test analysis revealed that patients with higher values of BMI, SBP, DBP, TG, FBG, and HOMA-IR exhibited a more significantly increased expression of miR-335-5p in their serum. In conclusion, miR-335-5p holds predictive and diagnostic value for obesity and metabolic syndrome and has potential to serve as a biomarker for these conditions.
Collapse
Affiliation(s)
- Liting Lu
- Endocrinology, The People's Hospital of Longhua, Shenzhen, China
| | - Yufeng He
- Minzhi Community Health Service Center, The People's Hospital of Longhua, Shenzhen, China
| |
Collapse
|
2
|
Huang ZM, Kang JQ, Chen PZ, Deng LF, Li JX, He YX, Liang J, Huang N, Luo TY, Lan QW, Chen HK, Guo XG. Identifying the Interaction Between Tuberculosis and SARS-CoV-2 Infections via Bioinformatics Analysis and Machine Learning. Biochem Genet 2024; 62:2606-2630. [PMID: 37991568 DOI: 10.1007/s10528-023-10563-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/25/2023] [Indexed: 11/23/2023]
Abstract
The number of patients with COVID-19 caused by severe acute respiratory syndrome coronavirus 2 is still increasing. In the case of COVID-19 and tuberculosis (TB), the presence of one disease affects the infectious status of the other. Meanwhile, coinfection may result in complications that make treatment more difficult. However, the molecular mechanisms underpinning the interaction between TB and COVID-19 are unclear. Accordingly, transcriptome analysis was used to detect the shared pathways and molecular biomarkers in TB and COVID-19, allowing us to determine the complex relationship between COVID-19 and TB. Two RNA-seq datasets (GSE114192 and GSE163151) from the Gene Expression Omnibus were used to find concerted differentially expressed genes (DEGs) between TB and COVID-19 to identify the common pathogenic mechanisms. A total of 124 common DEGs were detected and used to find shared pathways and drug targets. Several enterprising bioinformatics tools were applied to perform pathway analysis, enrichment analysis and networks analysis. Protein-protein interaction analysis and machine learning was used to identify hub genes (GAS6, OAS3 and PDCD1LG2) and datasets GSE171110, GSE54992 and GSE79362 were used for verification. The mechanism of protein-drug interactions may have reference value in the treatment of coinfection of COVID-19 and TB.
Collapse
Affiliation(s)
- Ze-Min Huang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Jia-Qi Kang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The First Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Pei-Zhen Chen
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Lin-Fen Deng
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Jia-Xin Li
- Department of Clinical Medicine, The First Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Ying-Xin He
- Clinical Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510006, China
| | - Jie Liang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Nan Huang
- Clinical Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510006, China
| | - Tian-Ye Luo
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Qi-Wen Lan
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Hao-Kai Chen
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Xu-Guang Guo
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510000, China.
| |
Collapse
|
3
|
Paim LR, da Silva LM, Antunes-Correa LM, Ribeiro VC, Schreiber R, Minin EO, Bueno LC, Lopes EC, Yamaguti R, Coy-Canguçu A, Dertkigil SSJ, Sposito A, Matos-Souza JR, Quinaglia T, Neilan TG, Velloso LA, Nadruz W, Jerosch-Herold M, Coelho-Filho OR. Profile of serum microRNAs in heart failure with reduced and preserved ejection fraction: Correlation with myocardial remodeling. Heliyon 2024; 10:e27206. [PMID: 38515724 PMCID: PMC10955197 DOI: 10.1016/j.heliyon.2024.e27206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Background and aims Cardiomyocyte hypertrophy and interstitial fibrosis are key components of myocardial remodeling in Heart Failure (HF) with preserved (HFpEF) or reduced ejection fraction (HFrEF). MicroRNAs (miRNAs) are non-coding, evolutionarily conserved RNA molecules that may offer novel insights into myocardial remodeling. This study aimed to characterize miRNA expression in HFpEF (LVEF ≥ 45%) and HFrEF (LVEF < 45%) and its association with myocardial remodeling. Methods Prospectively enrolled symptomatic HF patients (HFpEF:n = 36; HFrEF:n = 31) and controls (n = 23) underwent cardiac magnetic resonance imaging with T1-mapping and circulating miRNA expression (OpenArray system). Results 13 of 188 miRNAs were differentially expressed between HF groups (11 downregulated in HFpEF). Myocardial extracellular volume (ECV) was increased in both HF groups (HFpEF 30 ± 5%; HFrEF 30 ± 3%; controls 26 ± 2%, p < 0.001). miR-128a-3p, linked to cardiac hypertrophy, fibrosis, and dysfunction, correlated positively with ECV in HFpEF (r = 0.60, p = 0.01) and negatively in HFrEF (r = - 0.51, p = 0.04). miR-423-5p overexpression, previously associated HF mortality, was inversely associated with LVEF (r = - 0.29, p = 0.04) and intracellular water lifetime (τ ic) (r = - 0.45, p < 0.05) in both HF groups, and with NT-proBNP in HFpEF (r = - 0.63, p < 0.01). Conclusions miRNA expression profiles differed between HF phenotypes. The differential expression and association of miR-128a-3p with ECV may reflect the distinct vascular, interstitial, and cellular etiologies of HF phenotypes.
Collapse
Affiliation(s)
- Layde Rosane Paim
- Faculdade de Ciências Médicas - Universidade Estadual de Campinas, São Paulo, Brazil
| | - Luis Miguel da Silva
- Faculdade de Ciências Médicas - Universidade Estadual de Campinas, São Paulo, Brazil
| | | | | | - Roberto Schreiber
- Faculdade de Ciências Médicas - Universidade Estadual de Campinas, São Paulo, Brazil
| | - Eduarda O.Z. Minin
- Faculdade de Ciências Médicas - Universidade Estadual de Campinas, São Paulo, Brazil
| | - Larissa C.M. Bueno
- Faculdade de Ciências Médicas - Universidade Estadual de Campinas, São Paulo, Brazil
| | - Elisangela C.P. Lopes
- Faculdade de Ciências Médicas - Universidade Estadual de Campinas, São Paulo, Brazil
| | - Renan Yamaguti
- Faculdade de Engenharia Elétrica e de Computação – Universidade Estadual de Campinas, São Paulo, Brazil
| | - Andréa Coy-Canguçu
- Faculdade de Medicina – Pontifícia Universidade Católica de Campinas, São Paulo, Brazil
| | | | - Andrei Sposito
- Faculdade de Ciências Médicas - Universidade Estadual de Campinas, São Paulo, Brazil
| | | | - Thiago Quinaglia
- Faculdade de Ciências Médicas - Universidade Estadual de Campinas, São Paulo, Brazil
- Cardiovascular Imaging Research Center, Division of Cardiology and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tomas G. Neilan
- Cardiovascular Imaging Research Center, Division of Cardiology and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Licio A. Velloso
- Faculdade de Ciências Médicas - Universidade Estadual de Campinas, São Paulo, Brazil
| | - Wilson Nadruz
- Faculdade de Ciências Médicas - Universidade Estadual de Campinas, São Paulo, Brazil
| | - Michael Jerosch-Herold
- Non-Invasive Cardiovascular Imaging Program, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
4
|
Ju Z, Cui F, Mao Z, Li Z, Yi X, Zhou J, Cao J, Li X, Qian Z. miR-335-3p improves type II diabetes mellitus by IGF-1 regulating macrophage polarization. Open Med (Wars) 2024; 19:20240912. [PMID: 38463527 PMCID: PMC10921448 DOI: 10.1515/med-2024-0912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/21/2023] [Accepted: 01/22/2024] [Indexed: 03/12/2024] Open
Abstract
Previous studies have found that miR-335 is highly expressed in type II diabetes mellitus (T2DM) models and is related to insulin secretion, but there are few studies on the regulatory effects of miR-335-3p on insulin resistance and macrophage polarization in T2DM patients. This study aims to explore the effects of miR-335-3p on insulin resistance and macrophage polarization in T2DM patients. Blood glucose (insulin tolerance tests, glucose tolerance tests) and body weight of the T2DM model were measured; macrophages from adipose tissue were isolated and cultured, and the number of macrophages was detected by F4/80 immunofluorescence assay; the Real-time quantitative polymerase chain reaction (qPCR) assay and Western blot assay were used to detect the miR-335-3p expression levels, insulin-like growth factor 1 (IGF-1), M1-polarizing genes (inducible nitric oxide synthase [iNOS] and TNF-α) as well as M2-polarizing genes (IL-10 and ARG-1). The targeting link between miR-335-3p and IGF-1 was confirmed using bioinformatics and dual luciferase assay. The results showed that miR-335-3p expression level in adipose tissue of the T2DM model was significantly decreased, and the mice's body weight and blood glucose levels dropped considerably, miR-335-3p inhibited the number of macrophages, inhibiting the iNOS and TNF-α relative mRNA expression levels, and up-regulated the IL-10 and ARG-1 relative mRNA expression levels, miR-335-3p negatively regulated target gene IGF-1, IGF-1 significantly increased the iNOS and TNF-α mRNA and protein expression levels, decreasing the IL-10 and ARG-1 mRNA and protein expression levels, indicating that miR-335-3p could affect the T2DM process by regulating macrophage polarization via IGF-1.
Collapse
Affiliation(s)
- Zhengzheng Ju
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People’s Hospital of Wuhu), Wuhu, Anhui, China
| | - Fan Cui
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People’s Hospital of Wuhu), Wuhu, Anhui, China
| | - Zheng Mao
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People’s Hospital of Wuhu), Wuhu, Anhui, China
| | - Zhen Li
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People’s Hospital of Wuhu), Wuhu, Anhui, China
| | - Xiayu Yi
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People’s Hospital of Wuhu), Wuhu, Anhui, China
| | - Jingjing Zhou
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People’s Hospital of Wuhu), Wuhu, Anhui, China
| | - Jinjin Cao
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People’s Hospital of Wuhu), Wuhu, Anhui, China
| | - Xiaoqin Li
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People’s Hospital of Wuhu), Wuhu, Anhui, China
| | - Zengkun Qian
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People’s Hospital of Wuhu), Wuhu, Anhui, China
| |
Collapse
|
5
|
Ustianowski Ł, Udzik J, Szostak J, Gorący A, Ustianowska K, Pawlik A. Genetic and Epigenetic Factors in Gestational Diabetes Mellitus Pathology. Int J Mol Sci 2023; 24:16619. [PMID: 38068941 PMCID: PMC10706782 DOI: 10.3390/ijms242316619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Gestational diabetes (GDM) is the carbohydrate intolerance occurring during pregnancy. The risk factors of GDM include obesity, advanced maternal age, polycystic ovary syndrome, multigravidity, a sedentary lifestyle, and pre-existing hypertension. Additionally, complex genetic and epigenetic processes are also believed to play a crucial role in the development of GDM. In this narrative review, we discuss the role of genetic and epigenetic factors in gestational diabetes mellitus pathogenesis.
Collapse
Affiliation(s)
- Łukasz Ustianowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (Ł.U.); (J.U.); (K.U.)
| | - Jakub Udzik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (Ł.U.); (J.U.); (K.U.)
- Department of Cardiac Surgery, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Joanna Szostak
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Anna Gorący
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Klaudia Ustianowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (Ł.U.); (J.U.); (K.U.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (Ł.U.); (J.U.); (K.U.)
| |
Collapse
|
6
|
Wang Y, Yu F, Zheng X, Li J, Zhang Z, Zhang Q, Chen J, He Y, Yang H, Zhou P. Balancing adipocyte production and lipid metabolism to treat obesity-induced diabetes with a novel proteoglycan from Ganoderma lucidum. Lipids Health Dis 2023; 22:120. [PMID: 37553709 PMCID: PMC10408226 DOI: 10.1186/s12944-023-01880-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/21/2023] [Indexed: 08/10/2023] Open
Abstract
Obesity is often accompanied by metabolic disorder and insulin resistance, resulting in type 2 diabetes. Based on previous findings, FYGL, a natural hyperbranched proteoglycan extracted from the G. lucidum fruiting body, can decrease blood glucose and reduce body weight in diabetic mice. In this article, the underlying mechanism of FYGL in ameliorating obesity-induced diabetes was further investigated both in vivo and in vitro. FYGL upregulated expression of metabolic genes related to fatty acid biosynthesis, fatty acid β-oxidation and thermogenesis; downregulated the expression of insulin resistance-related genes; and significantly increased the number of beige adipocytes in db/db mice. In addition, FYGL inhibited preadipocyte differentiation of 3T3-L1 cells by increasing the expression of FABP-4. FYGL not only promoted fatty acid synthesis but also more significantly promoted triglyceride degradation and metabolism by activating the AMPK signalling pathway, therefore preventing fat accumulation, balancing adipocyte production and lipid metabolism, and regulating metabolic disorders and unhealthy obesity. FYGL could be used as a promising pharmacological agent for the treatment of metabolic disorder-related obesity.
Collapse
Affiliation(s)
- YingXin Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Fanzhen Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Xinru Zheng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Jiaqi Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Zeng Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Qianqian Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Jieying Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Yanming He
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Hongjie Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Ping Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
7
|
Zhang S, Wang X, Chen G, Tong L, Dai T, Wang L, Zhu L, Zhang H, Du D. CircRNA Galntl6 sponges miR-335 to ameliorate stress-induced hypertension through upregulating Lig3 in rostral ventrolateral medulla. Redox Biol 2023; 64:102782. [PMID: 37315345 PMCID: PMC10363431 DOI: 10.1016/j.redox.2023.102782] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023] Open
Abstract
Rostral ventrolateral medulla (RVLM) is thought to serve as a major vasomotor center that participates in controlling the progression of stress-induced hypertension (SIH). Circular RNAs (circRNAs) perform important functions in the regulation of diverse physiological and pathological processes. However, information concerning the functions of RVLM circRNAs on SIH remains limited. RNA sequencing was performed to profile circRNA expression in RVLMs from SIH rats, which were induced by electric foot shocks and noises. The functions of circRNA Galntl6 in reducing blood pressure (BP) and its potential molecular mechanisms on SIH were investigated via various experiments, such as Western blot and intra-RVLM microinjection. A total of 12,242 circRNA transcripts were identified, among which circRNA Galntl6 was dramatically downregulated in SIH rats. The upregulation of circRNA Galntl6 in RVLM effectively decreased the BP, sympathetic outflow, and neuronal excitability in SIH rats. Mechanistically, circRNA Galntl6 directly sponged microRNA-335 (miR-335) and restrained it to reduce oxidative stress. Reintroduction of miR-335 observably reversed the circRNA Galntl6-induced attenuation of oxidative stress. Furthermore, Lig3 can be a direct target of miR-335. MiR-335 inhibition substantially increased the expression of Lig3 and suppressed oxidative stress, and these favorable effects were blocked by Lig3 knockdown. CircRNA Galntl6 is a novel factor that impedes SIH development, and the circRNA Galntl6/miR-335/Lig3 axis represents one of the possible mechanisms. These findings demonstrated circRNA Galntl6 as a possibly useful target for the prevention of SIH.
Collapse
Affiliation(s)
- Shuai Zhang
- International Cooperation Laboratory of Molecular Medicine, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Xueping Wang
- College of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Gaojun Chen
- College of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Lei Tong
- College of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Tengteng Dai
- College of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Linping Wang
- College of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Liucun Zhu
- College of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Haili Zhang
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, 274015, China
| | - Dongshu Du
- College of Life Sciences, Shanghai University, Shanghai, 200444, China; College of Agriculture and Bioengineering, Heze University, Heze, Shandong, 274015, China; Shaoxing Institute of Shanghai University, Shaoxing, Zhejiang, 312000, China.
| |
Collapse
|
8
|
Sugino Y, Uchiyama R, Shibasaki C, Kugawa F. Regulation of Iron-Ion Transporter SLC11A2 by Three Identical miRNAs. Biol Pharm Bull 2022; 45:1291-1299. [DOI: 10.1248/bpb.b22-00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuta Sugino
- Department of Biopharmaceutics, School of Pharmacy, Hyogo University of Health Sciences
| | - Reina Uchiyama
- Department of Biopharmaceutics, School of Pharmacy, Hyogo University of Health Sciences
| | - Chihiro Shibasaki
- Department of Biopharmaceutics, School of Pharmacy, Hyogo University of Health Sciences
| | - Fumihiko Kugawa
- Department of Biopharmaceutics, School of Pharmacy, Hyogo University of Health Sciences
| |
Collapse
|
9
|
Jin J, Li F, Fan C, Wu Y, He C. Elevated mir-145-5p is associated with skeletal muscle dysfunction and triggers apoptotic cell death in C2C12 myotubes. J Muscle Res Cell Motil 2022; 43:135-145. [PMID: 35753017 DOI: 10.1007/s10974-022-09624-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022]
Abstract
Skeletal muscle dysfunction is a common comorbidity of chronic obstructive pulmonary disease (COPD), and the molecular mechanisms regarding to the pathogenesis of this disease have not been elucidated. In this study, a novel miR-145-5p was significantly upregulated in the serum collected from patients with COPD-associated muscle atrophy, in contrast with the normal participants. Then, we evidenced that silencing of miR-145-5p suppressed cell death and elongated cell survival during cell culture process. Consistently, upregulation of miR-145-5p induced cell apoptosis and restrain cell viability in the C2C12 cells, suggesting that miR-145-5p contributes to cell death. Further experiments evidenced that miR-145-5p decreased the expression levels of phosphorylated PI3K (p-PI3K), Akt (p-Akt) and mTOR (p-mTOR) to inactivate the PI3K/Akt/mTOR pathway, and this pathway was also reactivated by miR-145-5p ablation. Finally, we proved that the protective effects of miR-145-5p ablation were abrogated by co-treating cells with PI3K inhibitor LY294002. Taken together, we concluded that miR-145-5p promoted cell death to facilitate muscle dysfunctions via inactivating the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Jing Jin
- Department of TCM, First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan South Road, Xinshi District, Urumqi, 830011, Xinjiang, China
| | - Fanyi Li
- Department of TCM, First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan South Road, Xinshi District, Urumqi, 830011, Xinjiang, China
| | - Caihong Fan
- Department of TCM, First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan South Road, Xinshi District, Urumqi, 830011, Xinjiang, China
| | - Yu Wu
- Department of TCM, First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan South Road, Xinshi District, Urumqi, 830011, Xinjiang, China
| | - Chunhui He
- Department of TCM, First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan South Road, Xinshi District, Urumqi, 830011, Xinjiang, China.
| |
Collapse
|
10
|
Zhang S, Xing M, Chen G, Tong L, Zhang H, Du D. Upregulation of miR‐335 and miR‐674‐3p in the rostral ventrolateral medulla contributes to stress‐induced hypertension. J Neurochem 2022; 161:387-404. [DOI: 10.1111/jnc.15589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Shuai Zhang
- International Cooperation Laboratory of Molecular Medicine, Academy of Chinese Medical Sciences Zhejiang Chinese Medical University Hangzhou Zhejiang China
| | - Mengyu Xing
- Shanghai Key Laboratory of Bio‐Energy Crops, School of Life Sciences Shanghai University Shanghai China
- School of Life Scicences Shanghai University Shanghai China
| | - Gaojun Chen
- Shanghai Key Laboratory of Bio‐Energy Crops, School of Life Sciences Shanghai University Shanghai China
- School of Life Scicences Shanghai University Shanghai China
| | - Lei Tong
- Shanghai Key Laboratory of Bio‐Energy Crops, School of Life Sciences Shanghai University Shanghai China
- School of Life Scicences Shanghai University Shanghai China
| | - Haili Zhang
- School of Life Sciences Heze University Heze Shandong China
| | - Dongshu Du
- Shanghai Key Laboratory of Bio‐Energy Crops, School of Life Sciences Shanghai University Shanghai China
- School of Life Scicences Shanghai University Shanghai China
- Shaoxing institute of technology Zhejiang China
- School of Life Sciences Heze University Heze Shandong China
| |
Collapse
|
11
|
Shu J, Li N, Wei W, Zhang L. Detection of molecular signatures and pathways shared by Alzheimer's disease and type 2 diabetes. Gene 2022; 810:146070. [PMID: 34813915 DOI: 10.1016/j.gene.2021.146070] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/21/2021] [Accepted: 11/16/2021] [Indexed: 01/12/2023]
Abstract
Alzheimer's disease (AD) and type 2 diabetes (T2D) are common in the general elderly population, conferring heavy individual, social, and economic stresses on families and society. Accumulating evidence indicates T2D to be a risk factor for AD. However, the underlying mechanisms for this association are largely unknown. This study aimed to identify the shared molecular signatures between AD and T2D through integrated analysis of temporal cortex gene expression data. Gene Ontology (GO) and pathway enrichment analysis, protein over-representation analysis, protein-protein interaction, DEG-transcription factor interactions, DEG-microRNA interactions, protein-drug interactions, gene-disease association analysis, and protein subcellular localization analysis of the common DEGs were performed. We identified 16 common DEGs between the two datasets, which were mainly enriched in the biological processes of apoptosis, autophagy, inflammation, and hemostasis. We also identified five hub proteins encoded by the DEGs, five central regulatory transcription factors, and six microRNAs. Protein-drug interaction analysis showed C1QB to be associated with different drugs. Gene-disease association analysis revealed that hub genes, SFN and ITGB2, were actively engaged in other diseases. Collectively, these findings provide new insights into shared molecular mechanisms between AD and T2D and provide novel candidate targets for therapeutic intervention.
Collapse
Affiliation(s)
- Jun Shu
- Department of Neurology, Cognitive Disorders Center, Huadong Hospital, Fudan University, No. 221, West Yan An Road, Shanghai, China
| | - Nan Li
- Department of Neurology, Cognitive Disorders Center, Huadong Hospital, Fudan University, No. 221, West Yan An Road, Shanghai, China
| | - Wenshi Wei
- Department of Neurology, Cognitive Disorders Center, Huadong Hospital, Fudan University, No. 221, West Yan An Road, Shanghai, China.
| | - Li Zhang
- Department of Neurology, Cognitive Disorders Center, Huadong Hospital, Fudan University, No. 221, West Yan An Road, Shanghai, China.
| |
Collapse
|