1
|
Tang J, Li S, Zhou Z, Wang Y, Ni D, Zhou S. MiR-3680-3p is a novel biomarker for the diagnosis and prognosis of liver cancer and is involved in regulating the progression of liver cancer. IUBMB Life 2024; 76:820-831. [PMID: 38822621 DOI: 10.1002/iub.2856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/27/2024] [Indexed: 06/03/2024]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that can actively participate in post-transcriptional regulation of genes. A number of studies have shown that miRNAs can serve as important regulators of cancer cell growth, differentiation, and apoptosis. They can also act as markers for the diagnosis and prognosis of certain cancers. To explore the potential prognosis-related miRNAs in liver cancer patients, to provide theoretical basis for early diagnosis and prognosis of liver cancer, as well as to provide a new direction for the targeted therapy of liver cancer. The miRNA expression profiles of liver cancer patients in the the Cancer Genome Atlas database were comprehensively analyzed and various prognostic-related miRNAs of liver cancer were screened out. The data was further subjected to survival analysis, prognostic analysis, gene ontology and kyoto encyclopedia of genes and genomes enrichment analysis, microenvironment analysis, and drug sensitivity analysis by R Language version 4.2.0. Finally, the screened miRNAs were further validated by different experiments. Thus, miNRAs involved in liver cancer diagnosis and prognosis were identified. MiRNA-3680-3p was found to be significantly different in 10 different cancers, including liver cancer, and was significantly associated with the microenvironment, survival, and prognosis of liver cancer patients. In addition, drug sensitivity analysis revealed that miRNA-3680-3p can provide a useful reference for drug selection in targeted therapy for liver cancer. MiRNA-3680-3p can serve as a biomarker for the diagnosis and prognosis of liver cancer patients and down-regulation of miRNA-3680-3p could significantly inhibit both the proliferation and migration of liver cancer cells.
Collapse
Affiliation(s)
- Jie Tang
- General Surgery, Shenzhen Yantian District People's Hospital, Shenzhen, Guangdong, China
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Song Li
- Department of Hepatobilary Pancreatic Gastrointestinal Surgery, JinHua People's Hospital, Jinhua, China
| | - Zixiao Zhou
- Xiangya Medical College, Central South University, Changsha, China
| | - Yongqiang Wang
- General Surgery, Shenzhen Yantian District People's Hospital, Shenzhen, Guangdong, China
| | - DeSheng Ni
- Department of Hepatobilary Pancreatic Gastrointestinal Surgery, JinHua People's Hospital, Jinhua, China
| | - Shaobo Zhou
- General Surgery, Shenzhen Yantian District People's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Chen C, Lan Z, Tang X, Chen W, Zhou X, Su H, Su R, Chen Z, Chen H, Guo Y, Deng W. Human-Derived Induced GABAergic Progenitor Cells Improve Cognitive Function in Mice and Inhibit Astrocyte Activation with Anti-Inflammatory Exosomes. Ann Neurol 2024; 96:488-507. [PMID: 38860520 DOI: 10.1002/ana.27001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 04/17/2024] [Accepted: 05/10/2024] [Indexed: 06/12/2024]
Abstract
OBJECTIVE The role of gamma-aminobutyric acid-ergic (GABAergic) neuron impairment in Alzheimer's disease (AD), and if and how transplantation of healthy GABAergic neurons can improve AD, remain unknown. METHODS Human-derived medial ganglionic eminence progenitors (hiMGEs) differentiated from programmed induced neural precursor cells (hiNPCs) were injected into the dentate gyrus region of the hippocampus (HIP). RESULTS We showed that grafts migrate to the whole brain and form functional synaptic connections in amyloid precursor protein gene/ presenilin-1 (APP/PS1) chimeric mice. Following transplantation of hiMGEs, behavioral deficits and AD-related pathology were alleviated and defective neurons were repaired. Notably, exosomes secreted from hiMGEs, which are rich in anti-inflammatory miRNA, inhibited astrocyte activation invitro and in vivo, and the mechanism was related to regulation of CD4+ Th1 cells mediated tumor necrosis factor (TNF) pathway. INTERPRETATION Taken together, these findings support the hypothesis that hiMGEs transplantation is an alternative treatment for neuronal loss in AD and demonstrate that exosomes with anti-inflammatory activity derived from hiMGEs are important factors for graft survival. ANN NEUROL 2024;96:488-507.
Collapse
Affiliation(s)
- Chunxia Chen
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, P. R. China
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, P. R. China
| | - Zhaohui Lan
- Center for Brain Health and Brain Technology, Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Xihe Tang
- Department of Neurosurgery, Aviation General Hospital, Beijing, P. R. China
- Department of Neurosurgery, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, P. R. China
| | - Wan Chen
- Department of Emergency, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, P. R. China
| | - Xing Zhou
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, P. R. China
| | - Hua Su
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, P. R. China
| | - Rixiang Su
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, P. R. China
| | - Zhaolin Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, P. R. China
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, P. R. China
| | - Ying Guo
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, P. R. China
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, P. R. China
| |
Collapse
|
3
|
Sletten M, Skogstrøm KB, Lind SM, Tinholt M, Stavik B, Rayner S, Iversen N. Elevated TFPI is a prognostic factor in hepatocellular carcinoma: Putative role of miR-7-5p and miR-1236-3p. Thromb Res 2024; 241:109073. [PMID: 38945092 DOI: 10.1016/j.thromres.2024.109073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Primary liver cancer is the third leading cause of cancer related deaths worldwide, and the disease is associated with high incidence rate of thrombosis. Studies indicate that Tissue Factor Pathway Inhibitor (TFPI) plays a role in cancer development. We aimed to study its expression, clinical role and regulation by micro RNAs (miRNAs) in hepatocellular carcinoma (HCC). METHODS Publically available datasets were used for clinical analysis of TFPI and miRNAs expression by web analysis tools. miRNA mimics targeting TFPIα 3'untranslated region (UTR) were selected from target prediction programs and verified by luciferase reporter assay. In vitro effects of miRNAs overexpression in HCC cell lines on TFPI expression and cell proliferation and apoptosis were analysed. RESULTS TFPI expression was significantly increased in HCC tumours compared to normal tissue. Low TFPI tumour expression was associated with better survival probability. Four candidate miRNAs were selected from the target prediction programs. miR-7-5p and miR-1236-3p were validated in HepG2 and Huh7 cells to reduce TFPI mRNA and protein levels following overexpression. Furthermore, miR-7-5p and miR-1236-3p reduced TFPIα-3'UTR-controlled luciferase activity. The two validated miRNAs inhibited proliferation of HepG2 cells, and had clinical significance in HCC. CONCLUSIONS TFPI was increased in HCC tumours compared to normal tissue and high TFPI expression was associated with an unfavorable outcome in HCC patients. miR-7-5p and miR-1236-3p were identified as novel regulators of TFPI in vitro.
Collapse
Affiliation(s)
- M Sletten
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - K B Skogstrøm
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - S M Lind
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - M Tinholt
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - B Stavik
- Department of Haematology, Oslo University Hospital, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - S Rayner
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway; Institue of Clinical Medicine, University of Oslo, Oslo, Norway
| | - N Iversen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway.
| |
Collapse
|
4
|
Zhu W, Zhang Y, Zhou Q, Zhen C, Huang H, Liu X. Identification and Comprehensive Analysis of circRNA-miRNA-mRNA Regulatory Networks in A2780 Cells Treated with Resveratrol. Genes (Basel) 2024; 15:965. [PMID: 39062744 PMCID: PMC11276136 DOI: 10.3390/genes15070965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Ovarian cancer (OC) is one of the most commonplace gynecological malignancies. This study explored the effects of resveratrol (RES) on OC cell proliferation and apoptosis. Proliferation activity was measured for A2780 cells treated with RES for 24 h and 48 h at concentrations of 0, 10, 25, 50, 75, 100, 150, 200, and 300 μM. RNA sequencing (RNA-seq) was performed to analyze the circular RNA (circRNA), microRNA (miRNA), and messenger RNA (mRNA) expression spectrum. The differentially expressed genes included 460 circRNAs, 1988 miRNAs, and 1671 mRNAs, and they were subjected to analyses including Gene Ontology, the Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome enrichment. We selected signaling pathways enriched in the cell processes by mRNA KEGG, comprehensively analyzed the circRNA-miRNA-mRNA regulatory network, and verified several miRNAs expressed in the regulatory network diagram using the quantitative real-time polymerase chain reaction. The data showed that the cell proliferation of A2780 cells treated with RES for 24 h or 48 h decreased with increasing concentrations of RES. The circRNA-miRNA-mRNA regulatory network that we constructed provides new insights into the ability of RES to inhibit cell proliferation and promote apoptosis in A2780 cells.
Collapse
Affiliation(s)
- Weihua Zhu
- Department of Basic Medical Sciences, Clinical College of Anhui Medical University, Hefei 230031, China
| | - Yuanting Zhang
- Department of Basic Medical Sciences, Clinical College of Anhui Medical University, Hefei 230031, China
| | - Qianqian Zhou
- Department of Basic Medical Sciences, Clinical College of Anhui Medical University, Hefei 230031, China
| | - Cheng Zhen
- Department of Basic Medical Sciences, Clinical College of Anhui Medical University, Hefei 230031, China
| | - Herong Huang
- Department of Basic Medical Sciences, Clinical College of Anhui Medical University, Hefei 230031, China
| | - Xiaoying Liu
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
5
|
Balakittnen J, Ekanayake Weeramange C, Wallace DF, Duijf PHG, Cristino AS, Hartel G, Barrero RA, Taheri T, Kenny L, Vasani S, Batstone M, Breik O, Punyadeera C. A novel saliva-based miRNA profile to diagnose and predict oral cancer. Int J Oral Sci 2024; 16:14. [PMID: 38368395 PMCID: PMC10874410 DOI: 10.1038/s41368-023-00273-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/13/2023] [Accepted: 12/25/2023] [Indexed: 02/19/2024] Open
Abstract
Oral cancer (OC) is the most common form of head and neck cancer. Despite the high incidence and unfavourable patient outcomes, currently, there are no biomarkers for the early detection of OC. This study aims to discover, develop, and validate a novel saliva-based microRNA signature for early diagnosis and prediction of OC risk in oral potentially malignant disorders (OPMD). The Cancer Genome Atlas (TCGA) miRNA sequencing data and small RNA sequencing data of saliva samples were used to discover differentially expressed miRNAs. Identified miRNAs were validated in saliva samples of OC (n = 50), OPMD (n = 52), and controls (n = 60) using quantitative real-time PCR. Eight differentially expressed miRNAs (miR-7-5p, miR-10b-5p, miR-182-5p, miR-215-5p, miR-431-5p, miR-486-3p, miR-3614-5p, and miR-4707-3p) were identified in the discovery phase and were validated. The efficiency of our eight-miRNA signature to discriminate OC and controls was: area under curve (AUC): 0.954, sensitivity: 86%, specificity: 90%, positive predictive value (PPV): 87.8% and negative predictive value (NPV): 88.5% whereas between OC and OPMD was: AUC: 0.911, sensitivity: 90%, specificity: 82.7%, PPV: 74.2% and NPV: 89.6%. We have developed a risk probability score to predict the presence or risk of OC in OPMD patients. We established a salivary miRNA signature that can aid in diagnosing and predicting OC, revolutionising the management of patients with OPMD. Together, our results shed new light on the management of OC by salivary miRNAs to the clinical utility of using miRNAs derived from saliva samples.
Collapse
Affiliation(s)
- Jaikrishna Balakittnen
- Saliva & Liquid Biopsy Translational Laboratory, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, University of Jaffna, Jaffna, Sri Lanka
| | - Chameera Ekanayake Weeramange
- Saliva & Liquid Biopsy Translational Laboratory, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
- Menzies Health Institute, Griffith University, Gold Coast, QLD, Australia
| | - Daniel F Wallace
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Pascal H G Duijf
- Centre for Cancer Biology, Clinical and Health Sciences, University of South Australia & SA Pathology, Adelaide, SA, Australia
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Alexandre S Cristino
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Gunter Hartel
- QIMR Berghofer Medical Research Institute, Statistics Unit, Brisbane, QLD, Australia
- School of Public Health, The University of Queensland, Brisbane, QLD, Australia
- School of Nursing, Queensland University of Technology, Brisbane, QLD, Australia
| | - Roberto A Barrero
- eResearch, Research Infrastructure, Academic Division, Queensland University of Technology, Brisbane, QLD, Australia
| | - Touraj Taheri
- Department of Anatomical Pathology, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Liz Kenny
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Royal Brisbane and Women's Hospital, Cancer Care Services, Herston, QLD, Australia
| | - Sarju Vasani
- Saliva & Liquid Biopsy Translational Laboratory, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
- Royal Brisbane and Women's Hospital, Cancer Care Services, Herston, QLD, Australia
- Department of Otolaryngology, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Martin Batstone
- Department of Oral and Maxillofacial Surgery, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Omar Breik
- Royal Brisbane and Women's Hospital, Cancer Care Services, Herston, QLD, Australia
- Department of Oral and Maxillofacial Surgery, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Chamindie Punyadeera
- Saliva & Liquid Biopsy Translational Laboratory, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia.
- Menzies Health Institute, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
6
|
Zhai L, Gao Y, Cui Z, Chen L, Yu L, Guo P, Zhu D, Tang H, Liu X, Luo H. MiR-7-5p targeted Rb regulating cell cycle is involved in hydroquinone-induced malignant progression in human lymphoblastoid TK6 cells. Food Chem Toxicol 2023; 182:114186. [PMID: 37951342 DOI: 10.1016/j.fct.2023.114186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
MiR-7-5p has been demonstrated to inhibit tumorigenesis by limiting tumor cell proliferation, migration and invasion. However, its role in countering hydroquinone (HQ)-induced malignant phenotype of TK6 cells has remained unclear. The present study aimed to investigate whether miR-7-5p overexpression could restrain the malignant phenotype in TK6 cells exposed to HQ. The results displayed that HQ suppressed the expression of miR-7-5p and promoted cell cycle progression. Further investigations confirmed that miR-7-5p could decelerate the cell cycle progression by targeting Rb after acute HQ exposure. Through the regulation of the Rb/E2F1 signaling pathway, the overexpression of miR-7-5p mitigated HQ-induced malignant phenotype in TK6 cells by impeding cell cycle progression. In conclusion, miR-7-5p overexpression appears to be involved in HQ-induced malignant transformation by suppressing Rb/E2F1 signaling pathway, resulting in a deceleration of the cell cycle progression.
Collapse
Affiliation(s)
- Lu Zhai
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yuting Gao
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Zheming Cui
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Lin Chen
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Lingxue Yu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Pu Guo
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Delong Zhu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Huanwen Tang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China; The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Xin Liu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.
| | - Hao Luo
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
7
|
Jiang W, Wang Y, Yu C, Sui D, Du G, Li Y. Prognostic Analysis and Biomarkers Identification of Immune Infiltration in Early and Late Stage Hepatocellular Carcinoma Based on TCGA Data. Int J Gen Med 2023; 16:2519-2530. [PMID: 37346812 PMCID: PMC10281275 DOI: 10.2147/ijgm.s420458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a major cause of cancer death in the world. The aim of this study was to establish a new model to predict the prognosis of HCC. Materials and Methods The mRNA, miRNA and lncRNA expression profiles of early (stage I-II) and late (stage III-IV) stage HCC patients were acquired from The Cancer Genome Atlas (TCGA) database. The differentially expressed mRNAs (DEmRNAs), miRNAs (DEmiRNAs) and lncRNAs (DElncRNAs) were identified between early and late stage HCC. Key molecules associated with the prognosis, and important immune cell types in HCC were identified. The nomogram based on incorporating age, gender, stage, and all important factors was constructed to predict the survival of HCC. Results A total of 1516 DEmRNAs, 97 DEmiRNAs and 87 DElncRNAs were identified. A DElncRNA-DEmiRNA-DEmRNA regulatory network including 78 mRNAs, 50 miRNAs and 1 lncRNA was established. Among the regulatory network, 11 molecules were significantly correlated with the prognosis of HCC based on Lasso regression analysis. Then, Preadipocytes and 3 survival-associated DEmRNAs were identified as crucial biomarkers. Subsequently, a nomogram with a differentiation degree of 0.758, including 1 immune cell, 11 mRNAs and 3 miRNAs, was generated. Conclusion Our study constructed a model by incorporating clinical information, significant biomarkers and immune cells to predict the survival of HCC, which achieved a good performance.
Collapse
Affiliation(s)
- Wenying Jiang
- Department of General Surgery, The Second People’s Hospital of Liaocheng Affiliated to Shandong First Medical University, Liaocheng, Shandong, People’s Republic of China
| | - Yunxing Wang
- Department of General Surgery, The Second People’s Hospital of Liaocheng Affiliated to Shandong First Medical University, Liaocheng, Shandong, People’s Republic of China
| | - Changtao Yu
- Department of General Surgery, The Second People’s Hospital of Liaocheng Affiliated to Shandong First Medical University, Liaocheng, Shandong, People’s Republic of China
| | - Deling Sui
- Department of General Surgery, The Second People’s Hospital of Liaocheng Affiliated to Shandong First Medical University, Liaocheng, Shandong, People’s Republic of China
| | - Gang Du
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, People’s Republic of China
| | - Youchun Li
- Department of General Surgery, The Second People’s Hospital of Liaocheng Affiliated to Shandong First Medical University, Liaocheng, Shandong, People’s Republic of China
| |
Collapse
|
8
|
Du Z, Zhang F, Liu L, Shen H, Liu T, Jin J, Yu N, Wan Z, Wang H, Hu X, Chen Y, Cai J. LncRNA ANRIL promotes HR repair through regulating PARP1 expression by sponging miR-7-5p in lung cancer. BMC Cancer 2023; 23:130. [PMID: 36755223 PMCID: PMC9906921 DOI: 10.1186/s12885-023-10593-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Radiotherapy is an important treatment for lung cancer, mainly by triggering DNA double-strand breaks to induce cell death. Blocking DNA damage repair can increase the radiosensitivity of tumor cells. Recent studies have identified long noncoding RNAs as key regulators in DNA damage repair. The lncRNA ANRIL was previously shown to be involved in homologous recombination (HR) repair, but its specific mechanism has not been fully elucidated. METHODS The downstream interacting miRNAs of ANRIL were predicted according to miRanda software. Fluorescence quantitative PCR was used to detect the expression levels of ANRIL and candidate miRNAs. Clone formation experiment and cell viability assays detect cell viability after ionizing radiation. Apoptosis assay was used to detect the apoptosis of cells after 8 h of ionizing radiation. Western blot analysis and immunofluorescence assays verified the protein expression levels of the downstream target molecule PARP1 of miR-7-5p and key molecules in the HR pathway. Fluorescent reporter gene experiments were used to verify the interaction between ANRIL and miR-7-5p and between miR-7-5p and PARP1. RESULTS Bioinformatics analysis and qPCR validation suggested that miR-7-5p might be a downstream molecule of ANRIL. The expression of miR-7-5p was up-regulated after knockdown of ANRIL, and the expression of miR-7-5p was down-regulated after overexpression of ANRIL. Meanwhile, there was a negative correlation between ANRIL and miR-7-5p expression changes before and after ionizing radiation. The luciferase reporter gene assay confirmed the existence of ANRIL binding site with miR-7-5p, and found that transfection of miR-7-5p inhibitor can reduce the radiation sensitivity of ANRIL-KD cells. A downstream target molecule of miR-7-5p related to HR repair, PARP1, was screened through website prediction. Subsequently, it was confirmed by Western blot and luciferase reporter assays that miR-7-5p could down-regulate the expression of PARP1, and there was a miR-7-5p binding site on the 3'UTR of PARP1 mRNA. This suggests that ANRIL may act as a competitive endogenous RNA to bind miR-7-5p and upregulate the expression of PARP1. Western blot and immunofluorescence staining were used to detect the expression changes of HR repair factors in ANRIL-KD cells after ionizing radiation, and it was found that knockdown of ANRIL can inhibit the expression of PARP1, BRCA1 and Rad51, hinder radiation-induced HR repair, and eventually result in resensitizing ANRIL-KD cells to ionizing radiation. CONCLUSIONS Our findings provide evidence that ANRIL targets the miR-7-5p/PARP1 axis to exert its regulatory effect on HR repair, suggesting that altering ANRIL expression may be a promising strategy to overcome radiation resistance.
Collapse
Affiliation(s)
- Zhipeng Du
- grid.268099.c0000 0001 0348 3990School of Public Health and Management, Wenzhou Medical University, University Town, Wenzhou, Zhejiang P. R. China
| | - Fangxiao Zhang
- grid.268099.c0000 0001 0348 3990School of Public Health and Management, Wenzhou Medical University, University Town, Wenzhou, Zhejiang P. R. China
| | - Lei Liu
- grid.417279.eDepartment of Oncology, General Hospital of Central Theater Command of Chinese People’s Liberation Army, Wuhan, Hubei P. R. China
| | - Hui Shen
- grid.73113.370000 0004 0369 1660Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, P. R. China
| | - Tingting Liu
- grid.73113.370000 0004 0369 1660Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, P. R. China
| | - Jing Jin
- grid.216417.70000 0001 0379 7164Department of Occupational and Environment Health, Xiangya School of Public Health, Central South University, Changsha, Hunan P. R. China
| | - Nanxi Yu
- grid.268099.c0000 0001 0348 3990School of Public Health and Management, Wenzhou Medical University, University Town, Wenzhou, Zhejiang P. R. China
| | - Zhijie Wan
- grid.73113.370000 0004 0369 1660Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, P. R. China
| | - Hang Wang
- grid.73113.370000 0004 0369 1660Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, P. R. China
| | - Xuguang Hu
- Department of Gastrointestinal Surgery, Changhai Hospital, Shanghai, P. R. China.
| | - Yuanyuan Chen
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, P. R. China. .,South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou, Zhejiang, P. R. China.
| | - Jianming Cai
- School of Public Health and Management, Wenzhou Medical University, University Town, Wenzhou, Zhejiang, P. R. China. .,Department of Oncology, General Hospital of Central Theater Command of Chinese People's Liberation Army, Wuhan, Hubei, P. R. China. .,Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, P. R. China.
| |
Collapse
|
9
|
De Palma FDE, Carbonnier V, Salvatore F, Kroemer G, Pol JG, Maiuri MC. Systematic Investigation of the Diagnostic and Prognostic Impact of LINC01087 in Human Cancers. Cancers (Basel) 2022; 14:cancers14235980. [PMID: 36497462 PMCID: PMC9738797 DOI: 10.3390/cancers14235980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Long non-coding RNAs may constitute epigenetic biomarkers for the diagnosis, prognosis, and therapeutic response of a variety of tumors. In this context, we aimed at assessing the diagnostic and prognostic value of the recently described long intergenic non-coding RNA 01087 (LINC01087) in human cancers. (2) Methods: We studied the expression of LINC01087 across 30 oncological indications by interrogating public resources. Data extracted from the TCGA and GTEx databases were exploited to plot receiver operating characteristic curves (ROC) and determine the diagnostic performance of LINC01087. Survival data from TCGA and KM-Plotter directories allowed us to graph Kaplan-Meier curves and evaluate the prognostic value of LINC01087. To investigate the function of LINC01087, gene ontology (GO) annotation and Kyoto Encyclopedia of Gene and Genomes (KEGG) enrichment analyses were performed. Furthermore, interactions between LINC01087 and both miRNA and mRNA were studied by means of bioinformatics tools. (3) Results: LINC01087 was significantly deregulated in 7 out of 30 cancers, showing a predominant upregulation. Notably, it was overexpressed in breast (BC), esophageal (ESCA), and ovarian (OV) cancers, as well as lung squamous cell carcinoma (LUSC), stomach adenocarcinoma (STAD), and uterine carcinosarcoma (UCS). By contrast, LINC01087 displayed downregulation in testicular germ cell tumors (TGCT). ROC curve analyses identified LINC01087 as a potential diagnostic indicator in BC, ESCA, OV, STAD, and TGCT. Moreover, high and low expression of LINC01087 predicted a favorable prognosis in BC and papillary cell carcinoma, respectively. In silico analyses indicated that deregulation of LINC01087 in cancer was associated with a modulation of genes related to ion channel, transporter, and peptide receptor activity. (4) Conclusions: the quantification of an altered abundance of LINC01087 in tissue specimens might be clinically useful for the diagnosis and prognosis of some hormone-related tumors, including BC, OV, and TGCT, as well as other cancer types such as ESCA and STAD. Moreover, our study revealed the potential of LINC01087 (and perhaps other lncRNAs) to regulate neuroactive molecules in cancer.
Collapse
Affiliation(s)
- Fatima Domenica Elisa De Palma
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Napoli, Italy
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Vincent Carbonnier
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Francesco Salvatore
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Napoli, Italy
- Centro Interuniversitario per Malattie Multigeniche e Multifattoriali e Loro Modelli Animali (Federico II, 80131, Napoli, Tor Vergata, Rome and “G. D’Annunzio”, Chieti-Pescara), 80131 Napoli, Italy
| | - Guido Kroemer
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, 75004 Paris, France
| | - Jonathan G. Pol
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
- Correspondence: (J.G.P.); (M.C.M.)
| | - Maria Chiara Maiuri
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, 80131 Napoli, Italy
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
- Correspondence: (J.G.P.); (M.C.M.)
| |
Collapse
|
10
|
Liang Z, Liu L, Gao R, Che C, Yang G. Downregulation of exosomal miR-7-5p promotes breast cancer migration and invasion by targeting RYK and participating in the atypical WNT signalling pathway. Cell Mol Biol Lett 2022; 27:88. [PMID: 36210461 PMCID: PMC9549651 DOI: 10.1186/s11658-022-00393-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/29/2022] [Indexed: 11/15/2022] Open
Abstract
Background Current studies show that exosomal miRNAs become an important factor in cancer metastasis. Among the many miRNA studies, miR-7-5p has not been thoroughly investigated in breast cancer metastasis. Methods Bioinformatic screening was performed using extant data from the GEO database, and miR-7-5p expression levels in breast cancer cell lines and exosomes were further examined using real-time quantitative PCR (qRT-PCR). The extracted exosomes were characterised by transmission electron microscopy (TEM), particle size analysis and marker protein determination. Cell migration and invasion were then examined using wound healing assays and Transwell assays, respectively. Correlation between miR-7-5p and receptor-like tyrosine kinase (RYK) was analysed by luciferase reporter. The effect of miR-7-5p against RYK-related downstream factors was verified using western blot assays. Results In this study, we found that the expression of miR-7-5p was significantly different in exosomes secreted from breast cancer cell lines with different high and low invasiveness. Further experiments revealed that miR-7-5p has an important role in inhibiting the migration and invasion of breast cancer. In terms of mechanism of action, miR-7-5p was found to target the RYK, leading to its reduced expression, which in turn caused a reduction in the phosphorylation level of the downstream factor JNK. Reduced levels of phosphorylated JNK factors lead to reduced levels of phosphorylation of c-Jun protein, which in turn leads to increased expression of EMT transcription factors, thereby inhibiting the epithelial–mesenchymal transition (EMT) process to suppress the invasion of breast cancer. Conclusion Thus, we demonstrated that exosomes loaded with high levels of miR-7-5p emitted from less aggressive breast cancers can participate in the atypical WNT pathway by targeting the RYK gene and thus inhibit breast cancer metastasis. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00393-x.
Collapse
|
11
|
Morales-Martínez M, Vega MI. Role of MicroRNA-7 (MiR-7) in Cancer Physiopathology. Int J Mol Sci 2022; 23:ijms23169091. [PMID: 36012357 PMCID: PMC9408913 DOI: 10.3390/ijms23169091] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
miRNAs are non-coding RNA sequences of approximately 22 nucleotides that interact with genes by inhibiting their translation through binding to their 3′ or 5′ UTR regions. Following their discovery, the role they play in the development of various pathologies, particularly cancer, has been studied. In this context, miR-7 is described as an important factor in the development of cancer because of its role as a tumor suppressor, regulating a large number of genes involved in the development and progression of cancer. Recent data support the function of miR-7 as a prognostic biomarker in cancer, and miR-7 has been proposed as a strategy in cancer therapy. In this work, the role of miR-7 in various types of cancer is reviewed, illustrating its regulation, direct targets, and effects, as well as its possible relationship to the clinical outcome of cancer patients.
Collapse
Affiliation(s)
- Mario Morales-Martínez
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, IMSS, Mexico City 06720, Mexico
| | - Mario I. Vega
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, IMSS, Mexico City 06720, Mexico
- Department of Medicine, Hematology-Oncology Division, Greater Los Angeles VA Healthcare Center, UCLA Medical Center, Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Correspondence: or
| |
Collapse
|
12
|
Lei M, Du X, Li X, Wang F, Gu L, Guo F. LINC00665 regulates hepatocellular carcinoma by modulating mRNA via the m6A enzyme. Open Life Sci 2022; 17:71-80. [PMID: 35233461 PMCID: PMC8847717 DOI: 10.1515/biol-2022-0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/05/2021] [Accepted: 12/12/2021] [Indexed: 12/13/2022] Open
Abstract
This study aimed to reveal the mechanism by which long noncoding RNAs (lncRNAs) modulate hepatocellular carcinoma (HCC) by regulating mRNA via the N6-methyladenosine (m6A) enzyme. The expression and clinical data of 365 HCC patients and 50 healthy control samples were downloaded from the the Cancer Genome Atlas (TCGA) database. Differentially expressed lncRNAs (DElncRNAs) and differentially expressed mRNAs (DEmRNAs) screened using limma packages from the R. m6A2Target database were used to predict the relationship between m6A enzyme-lncRNA and m6A enzyme-mRNA. The mRNAs in the lncRNA-m6A enzyme-mRNA network were subjected to enrichment analysis. Cox regression analysis was used to screen for RNAs significantly related to HCC prognosis. The expression of differentially expressed RNAs (DERs) was verified using the TCGA dataset and GSE55092. Eighty-five DElncRNAs and 747 DEmRNAs were identified. The mRNAs in the lncRNA-m6A enzyme-mRNA network were primarily involved in mitotic cell division, the p53 signaling pathway, and the cell cycle. Three lncRNAs and 14 mRNAs were significantly associated with HCC prognosis. Furthermore, the expression of 12 DERs differed significantly between patients in the early and advanced stages. LINC00665 was predicted to regulate 11 mRNAs by modulating IGF2BP1, IGF2BP2, and YTHDF1. Thus, this study provides new insights into the roles of lncRNA and m6A enzymes in HCC.
Collapse
Affiliation(s)
- Ming Lei
- Nursing Health Sciences College, Yunnan Open University , Kunming , Yunnan, 650500 , China
| | - Xinghua Du
- Laboratory Medicine Department, The Integrated Traditional Chinese and Western Medicine Hospital of Yunnan Province , Kunming , Yunnan, 650224 , China
| | - Xiaokai Li
- Hepatobiliary Surgery Department, The First Affiliated Hospital of Kunming Medical University , Kunming , Yunnan, 650032 , China
| | - Fuke Wang
- Sport Medicine Department, The First Affiliated Hospital of Kunming Medical University , Kunming , Yunnan, 650032 , China
| | - Ling Gu
- Pain Department, The First Affiliated Hospital of Kunming Medical University , Kunming , Yunnan, 650032 , China
| | - Feng Guo
- The Clinical Skills Training Center, Kunming Medical University, No. 1168 Chunrongxi Road Chenggong District , Kunming , Yunnan, 650500 , China
| |
Collapse
|
13
|
Sun C, Wei J, Long Z, Zhao W, Huangfu Q, Xie Q, Wang B, Wen J. Spindle pole body component 24 homolog potentiates tumor progression via regulation of SRY-box transcription factor 2 in clear cell renal cell carcinoma. FASEB J 2022; 36:e22086. [PMID: 35028983 DOI: 10.1096/fj.202101310r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/13/2021] [Accepted: 11/22/2021] [Indexed: 11/11/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common pathological subtype of human kidney cancer with a high probability of metastasis. To understand the molecular processing essential for ccRCC tumorigenicity, we conducted an integrative in silico analysis of The Cancer Genome Atlas (TCGA) ccRCC dataset and clustered randomly interspersed short palindromic repeats (CRISPR) screening dataset of ccRCC cell lines from Depmap. We identified spindle pole body component 24 homolog (SPC24) as an essential gene for ccRCC cell lines with prognostic significance in the TCGA database. Targeting SPC24 by CRISPR/Cas9-mediated gene knockout attenuated ccRCC proliferation, metastasis, and in vivo tumor growth. Furthermore, we found that SPC24 regulates metastasis genes expression in a SRY-box transcription factor 2 (SOX2)-dependent manner. The anti-proliferative effects of SPC24 knockout were strengthened with SOX2 knockdown. Collectively, our findings suggest SPC24 has a pivotal function in promoting ccRCC progression, providing a new insight for the treatment of ccRCC.
Collapse
Affiliation(s)
- Chengfang Sun
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingchao Wei
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhilin Long
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Weixi Zhao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Qi Huangfu
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qi Xie
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Bohan Wang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiaming Wen
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|