1
|
Shi A, He C, Otten K, Wu G, Forouzanfar T, Wüst RCI, Jaspers RT. Reduced myotube diameter induced by combined inhibition of transforming growth factor-β type I receptors Acvr1b and Tgfbr1 is associated with enhanced β1-syntrophin expression. J Cell Physiol 2024; 239:e31418. [PMID: 39164996 PMCID: PMC11649968 DOI: 10.1002/jcp.31418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
Simultaneous inhibition of transforming growth factor-β (TGF-β) type I receptors Acvr1b and Tgfbr1 signalling has been associated with excessive skeletal muscle hypertrophy in vivo. However, it remains unclear whether the increased muscle mass in vivo is a direct result of inhibition of intracellular TGF-β signalling or whether this is an indirect effect of an altered extracellular anabolic environment. Here, we tested whether individual or simultaneous knockdown of TGF-β type I receptors in C2C12 myotubes was sufficient to induce muscle hypertrophy. The expression levels of TGF-β type I receptors Acvr1b and Tgfbr1 in myotubes were knocked down individually or in combination in the absence or presence of TGF-β1 and myostatin. Knocking down either Acvr1b or Tgfbr1 did not significantly change cell phenotype. Unexpectedly, simultaneous knockdown of both receptors reduced C2C12 myotube diameter, mRNA expression levels of Hgf, Ccn2 and Mymx with or without TGF-β1 and myostatin administration. In spite of decreased phosphorylation of Smad2/3, phosphorylation of P70S6K was reduced. In addition, the gene expression level of β1-syntrophin (Sntb1), which encodes a protein associated with the dystrophin-glycoprotein complex, was increased. Parallel experiments where Sntb1 gene expression was reduced showed an increase in myotube diameter and fusion of C2C12 myoblasts. Together, these results indicate that the knockdown of both TGF-β type I receptors reduced myotube diameter. This atrophic effect was attributed to reduced protein synthesis signalling and an increased expression of β1-syntrophin. These results have implications for our fundamental understanding of how TGF-β signalling regulates skeletal muscle size.
Collapse
Affiliation(s)
- Andi Shi
- Laboratory for Myology, Department of Human Movement SciencesFaculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Department of ProsthodonticsAffiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and ReconstructionGuangzhouChina
| | - Chuqi He
- Laboratory for Myology, Department of Human Movement SciencesFaculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - Kirsten Otten
- Laboratory for Myology, Department of Human Movement SciencesFaculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - Gang Wu
- Department of Oral Cell BiologyAcademic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU)AmsterdamThe Netherlands
| | - Tymour Forouzanfar
- Department of Oral Cell BiologyAcademic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU)AmsterdamThe Netherlands
- Department of Oral and Maxillofacial SurgeryLeiden University Medical CenterLeidenThe Netherlands
| | - Rob C. I. Wüst
- Laboratory for Myology, Department of Human Movement SciencesFaculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - Richard T. Jaspers
- Laboratory for Myology, Department of Human Movement SciencesFaculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Department of ProsthodonticsAffiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and ReconstructionGuangzhouChina
| |
Collapse
|
2
|
Tsai SY. Lost in translation: challenges of current pharmacotherapy for sarcopenia. Trends Mol Med 2024; 30:1047-1060. [PMID: 38880726 DOI: 10.1016/j.molmed.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024]
Abstract
A healthy lifespan relies on independent living, in which active skeletal muscle is a critical element. The cost of not recognizing and acting earlier on unhealthy or aging muscle could be detrimental, since muscular weakness is inversely associated with all-cause mortality. Sarcopenia is characterized by a decline in skeletal muscle mass and strength and is associated with aging. Exercise is the only effective therapy to delay sarcopenia development and improve muscle health in older adults. Although numerous interventions have been proposed to reduce sarcopenia, none has yet succeeded in clinical trials. This review evaluates the biological gap between recent clinical trials targeting sarcopenia and the preclinical studies on which they are based, and suggests an alternative approach to bridge the discrepancy.
Collapse
Affiliation(s)
- Shih-Yin Tsai
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
3
|
Zhang L, Zhang W, Wang Y, Cai P, Li C, Shi Y, Athari SS, Li A. Allergo-immunopathology mechanism of thymol-inhibiting airway remodeling in asthmatic mice by regulating TGF-β/Smad3 pathway. Allergol Immunopathol (Madr) 2024; 52:51-58. [PMID: 39278851 DOI: 10.15586/aei.v52i5.1148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/24/2024] [Indexed: 09/18/2024]
Abstract
Allergic asthma is an important public health problem and is a complicated respiratory sickness that is characterized by bronchial inflammation, bronchoconstriction, and breathlessness. Asthma is orchestrated by type 2 immune response and remodeling is one of the important outputted problem in chronic asthma. Thymol is a naturally occurring monocyclic phenolic, it has a series of biological properties, and its immunomodulatory and anti-remodeling effects on allergic asthma were evaluated. The OVA-LPS-induced asthmatic mice were treated with thymol. Methacholine challenge test, eosinophil count, and levels of IL-4, IL-5, IL-13, and IL-33 in bronchoalveolar lavage fluid, total and OVA-specific IgE levels in serum, remodeling factors, gene expression of TGF-β, Smad2, Smad3, and lung histopathology were done. Treatment with thymol could control AHR, eosinophil percentage levels of Th2 cytokines and Igs, remodeling factors, expression of TGF-β, Smad2 and Smad3 genes, inflammation, goblet cell hyperplasia, and mucus production in asthmatic mice. Thymol can control asthma pathogens and related remodeling and fibrosis bio-factors and can be a potential treatment of asthma.
Collapse
Affiliation(s)
- Liyuan Zhang
- Department of Respiratory and Critical Care Medicine, Xi'an International Medical Center Hospital, Xi'an, 710100, China
| | - Wenna Zhang
- Department of Respiratory and Critical Care Medicine, Xi'an International Medical Center Hospital, Xi'an, 710100, China
| | - Yanan Wang
- Department of Respiratory and Critical Care Medicine, Xi'an International Medical Center Hospital, Xi'an, 710100, China
| | - Pei Cai
- Department of Respiratory and Critical Care Medicine, Xi'an International Medical Center Hospital, Xi'an, 710100, China
| | - Chaoran Li
- Department of Respiratory and Critical Care Medicine, Xi'an International Medical Center Hospital, Xi'an, 710100, China
| | - Yan Shi
- Department of Respiratory and Critical Care Medicine, Xi'an International Medical Center Hospital, Xi'an, 710100, China
| | - Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ailing Li
- Department of Respiratory and Critical Care Medicine, Xi'an International Medical Center Hospital, Xi'an, 710100, China;
| |
Collapse
|
4
|
Alissa N, Fang WB, Medrano M, Bergeron N, Kozai Y, Hu Q, Redding C, Thyfault J, Hamilton-Reeves J, Berkland C, Cheng N. CCL2 signaling promotes skeletal muscle wasting in non-tumor and breast tumor models. Dis Model Mech 2024; 17:dmm050398. [PMID: 38973385 DOI: 10.1242/dmm.050398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/15/2024] [Indexed: 07/09/2024] Open
Abstract
Despite advancements in treatment, approximately 25% of patients with breast cancer experience long-term skeletal muscle wasting (SMW), which limits mobility, reduces drug tolerance and adversely impacts survival. By understanding the underlying molecular mechanisms of SMW, we may be able to develop new strategies to alleviate this condition and improve the lives of patients with breast cancer. Chemokines are small soluble factors that regulate homing of immune cells to tissues during inflammation. In breast cancers, overexpression of C-C chemokine ligand 2 (CCL2) correlates with unfavorable prognosis. Elevated levels of CCL2 in peripheral blood indicate possible systemic effects of this chemokine in patients with breast cancer. Here, we investigated the role of CCL2 signaling on SMW in tumor and non-tumor contexts. In vitro, increasing concentrations of CCL2 inhibited myoblast and myotube function through C-C chemokine receptor 2 (CCR2)-dependent mechanisms involving JNK, SMAD3 and AMPK signaling. In healthy mice, delivery of recombinant CCL2 protein promoted SMW in a dose-dependent manner. In vivo knockdown of breast tumor-derived CCL2 partially protected against SMW. Overall, chronic, upregulated CCL2-CCR2 signaling positively regulates SMW, with implications for therapeutic targeting.
Collapse
Affiliation(s)
- Nadia Alissa
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Wei Bin Fang
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Marcela Medrano
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Nick Bergeron
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Yuuka Kozai
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Qingting Hu
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Chloe Redding
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - John Thyfault
- Department of Cell Biology and Physiology and Internal Medicine-Division of Endocrinology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jill Hamilton-Reeves
- Department of Urology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Cory Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Nikki Cheng
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- University of Kansas Cancer Center, Kansas City, KS 66160, USA
| |
Collapse
|
5
|
Liu D, Wang S, Liu S, Wang Q, Che X, Wu G. Frontiers in sarcopenia: Advancements in diagnostics, molecular mechanisms, and therapeutic strategies. Mol Aspects Med 2024; 97:101270. [PMID: 38583268 DOI: 10.1016/j.mam.2024.101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
The onset of sarcopenia is intimately linked with aging, posing significant implications not only for individual patient quality of life but also for the broader societal healthcare framework. Early and accurate identification of sarcopenia and a comprehensive understanding of its mechanistic underpinnings and therapeutic targets paramount to addressing this condition effectively. This review endeavors to present a cohesive overview of recent advancements in sarcopenia research and diagnosis. We initially delve into the contemporary diagnostic criteria, specifically referencing the European Working Group on Sarcopenia in Older People (EWGSOP) 2 and Asian Working Group on Sarcopenia (AWGS) 2019 benchmarks. Additionally, we elucidate comprehensive assessment techniques for muscle strength, quantity, and physical performance, highlighting tools such as grip strength, chair stand test, dual-energy X-ray Absorptiometry (DEXA), bioelectrical impedance analysis (BIA), gait speed, and short physical performance battery (SPPB), while also discussing their inherent advantages and limitations. Such diagnostic advancements pave the way for early identification and unequivocal diagnosis of sarcopenia. Proceeding further, we provide a deep-dive into sarcopenia's pathogenesis, offering a thorough examination of associated signaling pathways like the Myostatin, AMP-activated protein kinase (AMPK), insulin/IGF-1 Signaling (IIS), and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways. Each pathway's role in sarcopenia mediation is detailed, underscoring potential therapeutic target avenues. From a mechanistic perspective, the review also underscores the pivotal role of mitochondrial dysfunction in sarcopenia, emphasizing elements such as mitochondrial oxidative overload, mitochondrial biogenesis, and mitophagy, and highlighting their therapeutic significance. At last, we capture recent strides made in sarcopenia treatment, ranging from nutritional and exercise interventions to potential pharmacological and supplementation strategies. In sum, this review meticulously synthesizes the latest scientific developments in sarcopenia, aiming to enhance diagnostic precision in clinical practice and provide comprehensive insights into refined mechanistic targets and innovative therapeutic interventions, ultimately contributing to optimized patient care and advancements in the field.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Shuang Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Qifei Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.
| |
Collapse
|
6
|
Lisco G, Disoteo OE, De Tullio A, De Geronimo V, Giagulli VA, Monzani F, Jirillo E, Cozzi R, Guastamacchia E, De Pergola G, Triggiani V. Sarcopenia and Diabetes: A Detrimental Liaison of Advancing Age. Nutrients 2023; 16:63. [PMID: 38201893 PMCID: PMC10780932 DOI: 10.3390/nu16010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Sarcopenia is an age-related clinical complaint characterized by the progressive deterioration of skeletal muscle mass and strength over time. Type 2 diabetes (T2D) is associated with faster and more relevant skeletal muscle impairment. Both conditions influence each other, leading to negative consequences on glycemic control, cardiovascular risk, general health status, risk of falls, frailty, overall quality of life, and mortality. PubMed/Medline, Scopus, Web of Science, and Google Scholar were searched for research articles, scientific reports, observational studies, clinical trials, narrative and systematic reviews, and meta-analyses to review the evidence on the pathophysiology of di-abetes-induced sarcopenia, its relevance in terms of glucose control and diabetes-related outcomes, and diagnostic and therapeutic challenges. The review comprehensively addresses key elements for the clinical definition and diagnostic criteria of sarcopenia, the pathophysiological correlation be-tween T2D, sarcopenia, and related outcomes, a critical review of the role of antihyperglycemic treatment on skeletal muscle health, and perspectives on the role of specific treatment targeting myokine signaling pathways involved in glucose control and the regulation of skeletal muscle metabolism and trophism. Prompt diagnosis and adequate management, including lifestyle inter-vention, health diet programs, micronutrient supplementation, physical exercise, and pharmaco-logical treatment, are needed to prevent or delay skeletal muscle deterioration in T2D.
Collapse
Affiliation(s)
- Giuseppe Lisco
- Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.T.); (V.A.G.); (E.J.); (E.G.)
| | - Olga Eugenia Disoteo
- Unit of Endocrinology, Diabetology, Dietetics and Clinical Nutrition, Sant Anna Hospital, 22020 San Fermo della Battaglia, Italy;
| | - Anna De Tullio
- Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.T.); (V.A.G.); (E.J.); (E.G.)
| | - Vincenzo De Geronimo
- Unit of Endocrinology, Clinical Diagnostic Center Morgagni, 95100 Catania, Italy;
| | - Vito Angelo Giagulli
- Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.T.); (V.A.G.); (E.J.); (E.G.)
| | - Fabio Monzani
- Geriatrics Unit, Department of Clinical & Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
| | - Emilio Jirillo
- Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.T.); (V.A.G.); (E.J.); (E.G.)
| | - Renato Cozzi
- Division of Endocrinology, Niguarda Hospital, 20162 Milan, Italy;
| | - Edoardo Guastamacchia
- Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.T.); (V.A.G.); (E.J.); (E.G.)
| | - Giovanni De Pergola
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy;
| | - Vincenzo Triggiani
- Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.T.); (V.A.G.); (E.J.); (E.G.)
| |
Collapse
|
7
|
Zheng Y, Dai H, Chen R, Zhong Y, Zhou C, Wang Y, Zhan C, Luo J. Endoplasmic reticulum stress promotes sepsis-induced muscle atrophy via activation of STAT3 and Smad3. J Cell Physiol 2023; 238:582-596. [PMID: 36791253 DOI: 10.1002/jcp.30950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/12/2022] [Accepted: 01/04/2023] [Indexed: 02/17/2023]
Abstract
Endoplasmic reticulum (ER) stress is involved in skeletal muscle atrophy in various conditions, but the role of ER stress in sepsis-induced muscle atrophy is not well understood. In this study, we conducted experiments in wild-type (WT) mice and C/EBP homologous protein knockout (CHOP KO) mice to explore the role and mechanism of ER stress in sepsis-induced muscle atrophy. Cecal ligation and puncture (CLP) was used to establish a mouse model of sepsis. In WT mice, the body weight, muscle mass, and cross-sectional area of muscle fibers in CLP group both decreased significantly compared with sham group, which revealed that sepsis-induced dramatic muscle atrophy. Additionally, sepsis activated the ubiquitin-proteasome system (UPS), accompanied by the activation of ER stress. In vitro, inhibition of ER stress suppressed the activity of E3 ubiquitin ligases and alleviated the myotube atrophy. In vivo, CHOP KO also reduced the expression of E3 ubiquitin ligases and UPS-mediated protein degradation, and significantly attenuated sepsis-induced muscle atrophy. Deletion of CHOP also decreased the phosphorylation of signal transducer and activator of transcription 3 (STAT3) and Smad3, and inhibition of STAT3 and Smad3 partly reduced proteolysis caused by ER stress in vitro. These findings confirm that ER stress activates UPS-mediated proteolysis and promotes sepsis-induced muscle atrophy, which is partly achieved by activating STAT3 and Smad3.
Collapse
Affiliation(s)
- Yingfang Zheng
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongkai Dai
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renyu Chen
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanxia Zhong
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenchen Zhou
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yurou Wang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengye Zhan
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinlong Luo
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Hao1 Is Not a Pathogenic Factor for Ectopic Ossifications but Functions to Regulate the TCA Cycle In Vivo. Metabolites 2022; 12:metabo12010082. [PMID: 35050204 PMCID: PMC8780519 DOI: 10.3390/metabo12010082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
Ossification of the posterior longitudinal ligament (OPLL), a disease characterized by the ectopic ossification of a spinal ligament, promotes neurological disorders associated with spinal canal stenosis. While blocking ectopic ossification is mandatory to prevent OPLL development and progression, the mechanisms underlying the condition remain unknown. Here we show that expression of hydroxyacid oxidase 1 (Hao1), a gene identified in a previous genome-wide association study (GWAS) as an OPLL-associated candidate gene, specifically and significantly decreased in fibroblasts during osteoblast differentiation. We then newly established Hao1-deficient mice by generating Hao1-flox mice and crossing them with CAG-Cre mice to yield global Hao1-knockout (CAG-Cre/Hao1flox/flox; Hao1 KO) animals. Hao1 KO mice were born normally and exhibited no obvious phenotypes, including growth retardation. Moreover, Hao1 KO mice did not exhibit ectopic ossification or calcification. However, urinary levels of some metabolites of the tricarboxylic acid (TCA) cycle were significantly lower in Hao1 KO compared to control mice based on comprehensive metabolomic analysis. Our data indicate that Hao1 loss does not promote ectopic ossification, but rather that Hao1 functions to regulate the TCA cycle in vivo.
Collapse
|