1
|
Lozano D, Gortazar AR, Portal-Núñez S. Osteostatin, a peptide for the future treatment of musculoskeletal diseases. Biochem Pharmacol 2024; 223:116177. [PMID: 38552853 DOI: 10.1016/j.bcp.2024.116177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
Nowadays, the treatment of musculoskeletal diseases represents a major challenge in the developed world. Diseases such as osteoporosis, osteoarthritis and arthritis have a high incidence and prevalence as a consequence of population aging, and they are also associated with a socioeconomic burden. Many efforts have been made to find a treatment for these diseases with various levels of success, but new approaches are still needed to deal with these pathologies. In this context, one peptide derived for the C-terminal extreme of the Parathormone related Peptide (PTHrP) called Osteostatin can be useful to treat musculoskeletal diseases. This pentapeptide (TRSAW) has demonstrated both in different in vitro and in vivo models, its role as a molecule with anti-resorptive, anabolic, anti-inflammatory, and anti-antioxidant properties. Our aim with this work is to review the Osteostatin main features, the knowledge of its mechanisms of action as well as its possible use for the treatment of osteoporosis, bone regeneration and fractures and against arthritis given its anti-inflammatory properties.
Collapse
Affiliation(s)
- Daniel Lozano
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Hospital 12 de Octubre (i+12), Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Arancha R Gortazar
- Grupo de Fisiopatología Ósea, Departamento de Ciencias Médicas Básicas, Instituto de Medicina Aplicada de la Universidad San Pablo-CEU, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Urbanización Montepríncipe s/n, 28925 Madrid, Spain
| | - Sergio Portal-Núñez
- Grupo de Fisiopatología Ósea, Departamento de Ciencias Médicas Básicas, Instituto de Medicina Aplicada de la Universidad San Pablo-CEU, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Urbanización Montepríncipe s/n, 28925 Madrid, Spain.
| |
Collapse
|
2
|
Catalán L, Carceller MC, Terencio MC, Alcaraz MJ, Ferrándiz ML, Montesinos MC. Osteostatin Mitigates Gouty Arthritis through the Inhibition of Caspase-1 Activation and Upregulation of Nrf2 Expression. Int J Mol Sci 2024; 25:2752. [PMID: 38474000 DOI: 10.3390/ijms25052752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Gouty arthritis results from monosodium urate (MSU) crystal deposition in joints, initiating (pro)-interleukin (IL)-1β maturation, inflammatory mediator release, and neutrophil infiltration, leading to joint swelling and pain. Parathyroid hormone-related protein (107-111) C-terminal peptide (osteostatin) has shown anti-inflammatory properties in osteoblasts and collagen-induced arthritis in mice, but its impact in gouty arthritis models remains unexplored. We investigated the effect of osteostatin on pyroptosis, inflammation, and oxidation in macrophages, as well as its role in the formation of calcium pyrophosphate dihydrate crystals and MSU-induced gouty arthritis in mice models. Osteostatin ameliorated pyroptosis induced by lipopolysaccharide and adenosine 5'-triphosphate (LPS + ATP) in mice peritoneal macrophages by reducing the expression of caspase-1, lactate dehydrogenase release, and IL-1β and IL-18 secretion. Additionally, IL-6 and tumor necrosis factor-α (TNF-α) were also decreased due to the reduced activation of the NF-κB pathway. Furthermore, osteostatin displayed antioxidant properties in LPS + ATP-stimulated macrophages, resulting in reduced production of mitochondrial and extracellular reactive oxygen species and enhanced Nrf2 translocation to the nuclei. In both models of gouty arthritis, osteostatin administration resulted in reduced pro-inflammatory cytokine production, decreased leukocyte migration, and reduced caspase-1 and NF-κB activation. These results highlight the potential of osteostatin as a therapeutic option for gouty arthritis.
Collapse
Affiliation(s)
- Laura Catalán
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
- Department of Pharmacology, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - María Carmen Carceller
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
- Department of Pharmacy, Pharmaceutical Technology and Parasitology, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - María Carmen Terencio
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
- Department of Pharmacology, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - María José Alcaraz
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
- Department of Pharmacology, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - María Luisa Ferrándiz
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
- Department of Pharmacology, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - María Carmen Montesinos
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
- Department of Pharmacology, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| |
Collapse
|
3
|
Luengo-Alonso G, Bravo-Gimenez B, Lozano D, Heras C, Sanchez-Salcedo S, Benito-Garzón L, Abella M, Vallet-Regi M, Cecilia-Lopez D, Salinas AJ. Osteogenic Potential of a Biomaterial Enriched with Osteostatin and Mesenchymal Stem Cells in Osteoporotic Rabbits. Biomolecules 2024; 14:143. [PMID: 38397380 PMCID: PMC10887093 DOI: 10.3390/biom14020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/25/2024] Open
Abstract
Mesoporous bioactive glasses (MBGs) of the SiO2-CaO-P2O5 system are biocompatible materials with a quick and effective in vitro and in vivo bioactive response. MBGs can be enhanced by including therapeutically active ions in their composition, by hosting osteogenic molecules within their mesopores, or by decorating their surfaces with mesenchymal stem cells (MSCs). In previous studies, our group showed that MBGs, ZnO-enriched and loaded with the osteogenic peptide osteostatin (OST), and MSCs exhibited osteogenic features under in vitro conditions. The aim of the present study was to evaluate bone repair capability after large bone defect treatment in distal femur osteoporotic rabbits using MBGs (76%SiO2-15%CaO-5%P2O5-4%ZnO (mol-%)) before and after loading with OST and MSCs from a donor rabbit. MSCs presence and/or OST in scaffolds significantly improved bone repair capacity at 6 and 12 weeks, as confirmed by variations observed in trabecular and cortical bone parameters obtained by micro-CT as well as histological analysis results. A greater effect was observed when OST and MSCs were combined. These findings may indicate the great potential for treating critical bone defects by combining MBGs with MSCs and osteogenic peptides such as OST, with good prospects for translation to clinical practice.
Collapse
Affiliation(s)
- Gonzalo Luengo-Alonso
- Orthopaedics and Traumatology Service, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain;
- Orthopedics and Traumatology Service, Hospital Universitario 12 de Octubre & Imas12, 28041 Madrid, Spain;
| | - Beatriz Bravo-Gimenez
- Orthopedics and Traumatology Service, Hospital Universitario 12 de Octubre & Imas12, 28041 Madrid, Spain;
| | - Daniel Lozano
- Department of Chemistry in Pharmaceutical Sciences, Universidad Complutense & Imas12, 28040 Madrid, Spain; (D.L.); (C.H.); (S.S.-S.); (M.V.-R.)
- Networking Research Center on Bioengineering, Biomaterials, Nanomedicine, CIBER-BBN, 28040 Madrid, Spain
| | - Clara Heras
- Department of Chemistry in Pharmaceutical Sciences, Universidad Complutense & Imas12, 28040 Madrid, Spain; (D.L.); (C.H.); (S.S.-S.); (M.V.-R.)
| | - Sandra Sanchez-Salcedo
- Department of Chemistry in Pharmaceutical Sciences, Universidad Complutense & Imas12, 28040 Madrid, Spain; (D.L.); (C.H.); (S.S.-S.); (M.V.-R.)
- Networking Research Center on Bioengineering, Biomaterials, Nanomedicine, CIBER-BBN, 28040 Madrid, Spain
| | - Lorena Benito-Garzón
- Department of Human Anatomy and Histology, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain;
| | - Monica Abella
- Department of Bioengineering, Universidad Carlos III de Madrid, 28911 Madrid, Spain;
| | - María Vallet-Regi
- Department of Chemistry in Pharmaceutical Sciences, Universidad Complutense & Imas12, 28040 Madrid, Spain; (D.L.); (C.H.); (S.S.-S.); (M.V.-R.)
- Networking Research Center on Bioengineering, Biomaterials, Nanomedicine, CIBER-BBN, 28040 Madrid, Spain
| | - David Cecilia-Lopez
- Orthopedics and Traumatology Service, Hospital Universitario 12 de Octubre & Imas12, 28041 Madrid, Spain;
| | - Antonio J. Salinas
- Department of Chemistry in Pharmaceutical Sciences, Universidad Complutense & Imas12, 28040 Madrid, Spain; (D.L.); (C.H.); (S.S.-S.); (M.V.-R.)
- Networking Research Center on Bioengineering, Biomaterials, Nanomedicine, CIBER-BBN, 28040 Madrid, Spain
| |
Collapse
|
4
|
Phinney DG, Hwa Lee R, Boregowda SV. Revisiting the Mesenchymal "Stem vs. Stromal" Cell Dichotomy and Its Implications for Development of Improved Potency Metrics. Stem Cells 2023; 41:444-452. [PMID: 36891977 PMCID: PMC10183967 DOI: 10.1093/stmcls/sxad019] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/21/2023] [Indexed: 03/10/2023]
Abstract
Mesenchymal stem/stromal cell (MSC)-based therapies have been evaluated in over 1500 human clinical trials for a diverse array of disease indication, but outcomes remain unpredictable due to knowledge gaps in the quality attributes that confer therapeutic potency onto cells and their mode of action in vivo. Based on accumulated evidence from pre-clinical models, MSCs exert therapeutic effects by repressing inflammatory and immune-mediated response via paracrine action following reprogramming by the host injury microenvironment, and by polarization of tissue resident macrophages following phagocytosis to an alternatively activated (M2) state. An important tenet of this existing paradigm is that well-established stem/progenitor functions of MSCs are independent of paracrine function and dispensable for their anti-inflammatory and immune suppressive functions. Herein, we review evidence that stem/progenitor and paracrine functions of MSCs are mechanistically linked and organized hierarchically and describe how this link may be exploited to develop metrics that predict MSC potency across a spectrum of activities and regenerative medicine applications.
Collapse
Affiliation(s)
- Donald G Phinney
- Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA
| | - Ryang Hwa Lee
- Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA
| | - Siddaraju V Boregowda
- Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA
| |
Collapse
|
5
|
Feng Z, Jin M, Liang J, Kang J, Yang H, Guo S, Sun X. Insight into the effect of biomaterials on osteogenic differentiation of mesenchymal stem cells: A review from a mitochondrial perspective. Acta Biomater 2023; 164:1-14. [PMID: 36972808 DOI: 10.1016/j.actbio.2023.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Bone damage may be triggered by a variety of factors, and the damaged area often requires a bone graft. Bone tissue engineering can serve as an alternative strategy for repairing large bone defects. Mesenchymal stem cells (MSCs), the progenitor cells of connective tissue, have become an important tool for tissue engineering due to their ability to differentiate into a variety of cell types. The precise regulation of the growth and differentiation of the stem cells used for bone regeneration significantly affects the efficiency of this type of tissue engineering. During the process of osteogenic induction, the dynamics and function of localized mitochondria are altered. These changes may also alter the microenvironment of the therapeutic stem cells and result in mitochondria transfer. Mitochondrial regulation not only affects the induction/rate of differentiation, but also influences its direction, determining the final identity of the differentiated cell. To date, bone tissue engineering research has mainly focused on the influence of biomaterials on phenotype and nuclear genotype, with few studies investigating the role of mitochondria. In this review, we provide a comprehensive summary of researches into the role of mitochondria in MSCs differentiation and critical analysis regarding smart biomaterials that are able to "programme" mitochondria modulation was proposed. STATEMENT OF SIGNIFICANCE: : • This review proposed the precise regulation of the growth and differentiation of the stem cells used to seed bone regeneration. • This review addressed the dynamics and function of localized mitochondria during the process of osteogenic induction and the effect of mitochondria on the microenvironment of stem cells. • This review summarized biomaterials which affect the induction/rate of differentiation, but also influences its direction, determining the final identity of the differentiated cell through the regulation of mitochondria.
Collapse
Affiliation(s)
- Ziyi Feng
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110002 Liaoning Province, China
| | - Meiqi Jin
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China
| | - Junzhi Liang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping, Shenyang, 110004 Liaoning Province, China
| | - Junning Kang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping, Shenyang, 110004 Liaoning Province, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China.
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110002 Liaoning Province, China.
| | - Xiaoting Sun
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China.
| |
Collapse
|
6
|
Chen W, Wu P, Yu F, Luo G, Qing L, Tang J. HIF-1α Regulates Bone Homeostasis and Angiogenesis, Participating in the Occurrence of Bone Metabolic Diseases. Cells 2022; 11:cells11223552. [PMID: 36428981 PMCID: PMC9688488 DOI: 10.3390/cells11223552] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/16/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
In the physiological condition, the skeletal system's bone resorption and formation are in dynamic balance, called bone homeostasis. However, bone homeostasis is destroyed under pathological conditions, leading to the occurrence of bone metabolism diseases. The expression of hypoxia-inducible factor-1α (HIF-1α) is regulated by oxygen concentration. It affects energy metabolism, which plays a vital role in preventing bone metabolic diseases. This review focuses on the HIF-1α pathway and describes in detail the possible mechanism of its involvement in the regulation of bone homeostasis and angiogenesis, as well as the current experimental studies on the use of HIF-1α in the prevention of bone metabolic diseases. HIF-1α/RANKL/Notch1 pathway bidirectionally regulates the differentiation of macrophages into osteoclasts under different conditions. In addition, HIF-1α is also regulated by many factors, including hypoxia, cofactor activity, non-coding RNA, trace elements, etc. As a pivotal pathway for coupling angiogenesis and osteogenesis, HIF-1α has been widely studied in bone metabolic diseases such as bone defect, osteoporosis, osteonecrosis of the femoral head, fracture, and nonunion. The wide application of biomaterials in bone metabolism also provides a reasonable basis for the experimental study of HIF-1α in preventing bone metabolic diseases.
Collapse
|
7
|
Osteostatin Inhibits M-CSF+RANKL-Induced Human Osteoclast Differentiation by Modulating NFATc1. Int J Mol Sci 2022; 23:ijms23158551. [PMID: 35955685 PMCID: PMC9369336 DOI: 10.3390/ijms23158551] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/24/2022] [Accepted: 07/29/2022] [Indexed: 01/27/2023] Open
Abstract
Parathyroid hormone-related protein (PTHrP) C-terminal peptides regulate the metabolism of bone cells. PHTrP [107–111] (osteostatin) promotes bone repair in animal models of bone defects and prevents bone erosion in inflammatory arthritis. In addition to its positive effects on osteoblasts, osteostatin may inhibit bone resorption. The aim of this study was to determine the effects of osteostatin on human osteoclast differentiation and function. We used macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor κB ligand (RANKL) to induce the osteoclast differentiation of adherent human peripheral blood mononuclear cells. Tartrate-resistant acid phosphatase (TRAP) staining was performed for the detection of the osteoclasts. The function of mature osteoclasts was assessed with a pit resorption assay. Gene expression was evaluated with qRT-PCR, and nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) nuclear translocation was studied by immunofluorescence. We observed that osteostatin (100, 250 and 500 nM) decreased the differentiation of osteoclasts in a concentration-dependent manner, but it did not modify the resorptive ability of mature osteoclasts. In addition, osteostatin decreased the mRNA levels of cathepsin K, osteoclast associated Ig-like receptor (OSCAR) and NFATc1. The nuclear translocation of the master transcription factor in osteoclast differentiation NFATc1 was reduced by osteostatin. Our results suggest that the anti-resorptive effects of osteostatin may be dependent on the inhibition of osteoclastogenesis. This study has shown that osteostatin controls human osteoclast differentiation in vitro through the downregulation of NFATc1.
Collapse
|
8
|
Duan X, Liu X, Zhan Z. Metabolic Regulation of Cardiac Regeneration. Front Cardiovasc Med 2022; 9:933060. [PMID: 35872916 PMCID: PMC9304552 DOI: 10.3389/fcvm.2022.933060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/13/2022] [Indexed: 12/16/2022] Open
Abstract
The mortality due to heart diseases remains highest in the world every year, with ischemic cardiomyopathy being the prime cause. The irreversible loss of cardiomyocytes following myocardial injury leads to compromised contractility of the remaining myocardium, adverse cardiac remodeling, and ultimately heart failure. The hearts of adult mammals can hardly regenerate after cardiac injury since adult cardiomyocytes exit the cell cycle. Nonetheless, the hearts of early neonatal mammals possess a stronger capacity for regeneration. To improve the prognosis of patients with heart failure and to find the effective therapeutic strategies for it, it is essential to promote endogenous regeneration of adult mammalian cardiomyocytes. Mitochondrial metabolism maintains normal physiological functions of the heart and compensates for heart failure. In recent decades, the focus is on the changes in myocardial energy metabolism, including glucose, fatty acid, and amino acid metabolism, in cardiac physiological and pathological states. In addition to being a source of energy, metabolites are becoming key regulators of gene expression and epigenetic patterns, which may affect heart regeneration. However, the myocardial energy metabolism during heart regeneration is majorly unknown. This review focuses on the role of energy metabolism in cardiac regeneration, intending to shed light on the strategies for manipulating heart regeneration and promoting heart repair after cardiac injury.
Collapse
Affiliation(s)
- Xuewen Duan
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xingguang Liu
- Department of Pathogen Biology, Naval Medical University, Shanghai, China
- Xingguang Liu,
| | - Zhenzhen Zhan
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Zhenzhen Zhan,
| |
Collapse
|