1
|
Bai L, Zhu J, Ma W, Zhao P, Li F, Zhang C, Zhang S. A novel mouse model of myositis-associated interstitial lung disease was established by using TLR9 agonist combined with muscle homogenate. Clin Exp Immunol 2025; 219:uxae106. [PMID: 39575634 PMCID: PMC11773800 DOI: 10.1093/cei/uxae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/13/2024] [Accepted: 11/20/2024] [Indexed: 01/29/2025] Open
Abstract
Our group previously demonstrated that NETs were involved in interstitial lung diseases (ILD) among patients with idiopathic inflammatory myopathies (IIM) and the experimental autoimmune myositis (EAM) mouse model and that NETs activated lung fibroblasts through the TLR9-miR7-Smad2 axis. This study aimed to establish a novel mouse model of myositis-associated interstitial lung disease (MAILD) by using a TLR9 agonist (ODN2395). ODN2395 and muscle homogenate were used to induce MAILD in BALB/c mice. MAILD was evaluated using histopathology, immunohistochemistry, serum NETs determination, and myositis-specific antibody profile. Furthermore, TLR9 and IRF3 were examined in a lung biopsy tissue from a dermatomyositis patient with ILD. MAILD mice developed inflammatory myopathy with positive expression of myositis-specific antibodies. ILD occurred in all mice of the MAILD group. ODN2395 at doses of 5 μg, 10 μg, or 20 μg induced ILD, with increasing severity as the dose increased, but 20 μg ODN2395 was not recommended due to non-specific damage to the lungs. ILD could occur as early as one week after immunization and was most pronounced by the fourth/fifth week. MAILD process was accompanied by NETs infiltration and TLR9 activation. TLR9 activation was demonstrated in the patient with DM-ILD. Serum levels of Cit-H3 were elevated in the MAILD group. Skeletal muscle homogenate and ODN2395 induced neutrophils to form NETs in vitro. Combined with muscle homogenate, ODN2395 induced a novel MAILD mouse model with NETs infiltration and TLR9 activation, which are similar to pathogenesis of IIM-ILD, suggesting that MAILD model could replace EAM model in IIM-ILD research.
Collapse
Affiliation(s)
- Ling Bai
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Pediatric Cardiology, Kidney Disease and Rheumatology, Gansu Provincial Maternity and Child Care Hospital, Lanzhou, China
| | - Jiarui Zhu
- Department of Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Wenlan Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Rheumatology, Qinghai University Affiliated Hospital, Xining, China
| | - Peipei Zhao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Feifei Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Cen Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Sigong Zhang
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
2
|
Wu Y, Wang X, Zhang J, Du S, Wang Z, Li J, Zhang W, Xiang J, Li R, Liu J, Bi X. Capsaicin combined with stem cells improved mitochondrial dysfunction in PIG3V cells, an immortalized human vitiligo melanocyte cell line, by inhibiting the HSP70/TLR4/mTOR/FAK signaling axis. Mol Biol Rep 2024; 51:650. [PMID: 38734811 DOI: 10.1007/s11033-024-09592-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Vitiligo is a common autoimmune skin disease. Capsaicin has been found to exert a positive effect on vitiligo treatment, and mesenchymal stem cells (MSCs) are also confirmed to be an ideal cell type. This study aimed to explore the influence of capsaicin combined with stem cells on the treatment of vitiligo and to confirm the molecular mechanism of capsaicin combined with stem cells in treating vitiligo. METHODS AND RESULTS PIG3V cell proliferation and apoptosis were detected using CCK-8 and TUNEL assays, MitoSOX Red fluorescence staining was used to measure the mitochondrial ROS level, and JC-1 staining was used to detect the mitochondrial membrane potential. The expression of related genes and proteins was detected using RT‒qPCR and Western blotting. Coimmunoprecipitation was used to analyze the protein interactions between HSP70 and TLR4 or between TLR4 and mTOR. The results showed higher expression of HSP70 in PIG3V cells than in PIG1 cells. The overexpression of HSP70 reduced the proliferation of PIG3V cells, promoted apoptosis, and aggravated mitochondrial dysfunction and autophagy abnormalities. The expression of HSP70 could be inhibited by capsaicin combined with MSCs, which increased the levels of Tyr, Tyrp1 and DCT, promoted the proliferation of PIG3V cells, inhibited apoptosis, activated autophagy, and improved mitochondrial dysfunction. In addition, capsaicin combined with MSCs regulated the expression of TLR4 through HSP70 and subsequently affected the mTOR/FAK signaling pathway CONCLUSIONS: Capsaicin combined with MSCs inhibits TLR4 through HSP70, and the mTOR/FAK signaling pathway is inhibited to alleviate mitochondrial dysfunction and autophagy abnormalities in PIG3V cells.
Collapse
Affiliation(s)
- Yifei Wu
- Department of Dermatology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Kunming, Yunnan, 650032, China
| | - Xiaochuan Wang
- Department of Dermatology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Kunming, Yunnan, 650032, China
| | - Jiayu Zhang
- Department of Dermatology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Kunming, Yunnan, 650032, China
| | - Sha Du
- Department of Laboratory, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, China
| | - Zhiqiong Wang
- Department of Dermatology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Kunming, Yunnan, 650032, China
| | - Jinrong Li
- Department of Dermatology, Traditional Chinese Medicine Hospital of Jinggu County, Pu'er, Yunnan, 666400, China
| | - Wenhe Zhang
- Department of Dermatology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Kunming, Yunnan, 650032, China
| | - Jie Xiang
- Department of Dermatology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Kunming, Yunnan, 650032, China
| | - Renfu Li
- Department of Dermatology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Kunming, Yunnan, 650032, China
| | - Jing Liu
- Department of Dermatology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Kunming, Yunnan, 650032, China
| | - Xin Bi
- Department of Dermatology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Kunming, Yunnan, 650032, China.
| |
Collapse
|
3
|
de Hart NM, Petrocelli JJ, Nicholson RJ, Yee EM, Ferrara PJ, Bastian ED, Ward LS, Petersen BL, Summers SA, Drummond MJ. Palmitate-Induced Inflammation and Myotube Atrophy in C2C12 Cells Are Prevented by the Whey Bioactive Peptide, Glycomacropeptide. J Nutr 2023; 153:2915-2928. [PMID: 37652286 PMCID: PMC10731921 DOI: 10.1016/j.tjnut.2023.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Metabolic diseases are often associated with muscle atrophy and heightened inflammation. The whey bioactive compound, glycomacropeptide (GMP), has been shown to exhibit anti-inflammatory properties and therefore may have potential therapeutic efficacy in conditions of skeletal muscle inflammation and atrophy. OBJECTIVES The purpose of this study was to determine the role of GMP in preventing lipotoxicity-induced myotube atrophy and inflammation. METHODS C2C12 myoblasts were differentiated to determine the effect of GMP on atrophy and inflammation and to explore its mechanism of action in evaluating various anabolic and catabolic cellular signaling nodes. We also used a lipidomic analysis to evaluate muscle sphingolipid accumulation with the various treatments. Palmitate (0.75 mM) in the presence and absence of GMP (5 μg/mL) was used to induce myotube atrophy and inflammation and cells were collected over a time course of 6-24 h. RESULTS After 24 h of treatment, GMP prevented the palmitate-induced decrease in the myotube area and myogenic index and the increase in the TLR4-mediated inflammatory genes tumor necrosis factor-α and interleukin 1β. Moreover, phosphorylation of Erk1/2, and gene expression of myostatin, and the E3 ubiquitin ligases, FBXO32, and MuRF1 were decreased with GMP treatment. GMP did not alter palmitate-induced ceramide or diacylglycerol accumulation, muscle insulin resistance, or protein synthesis. CONCLUSIONS In summary, GMP prevented palmitate-induced inflammation and atrophy in C2C12 myotubes. The GMP protective mechanism of action in muscle cells during lipotoxic stress may be related to targeting catabolic signaling associated with cellular stress and proteolysis but not protein synthesis.
Collapse
Affiliation(s)
- Naomi Mmp de Hart
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
| | - Jonathan J Petrocelli
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, United States
| | - Rebekah J Nicholson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
| | - Elena M Yee
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, United States
| | - Patrick J Ferrara
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
| | - Eric D Bastian
- Dairy West Innovation Partnerships, Twin Falls, ID, United States
| | - Loren S Ward
- Glanbia Nutritionals Research, Twin Falls, ID, United States
| | | | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
| | - Micah J Drummond
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States; Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
4
|
Li Y, Wang T, Ma B, Yu S, Pei H, Tian S, Tian Y, Liu C, Zhao X, Zuo Z, Wang Z. Xianglian Zhixie Tablet Antagonizes Dextran Sulfate Sodium-Induced Ulcerative Colitis by Attenuating Systemic Inflammation and Modulating Gut Microbiota. J Inflamm Res 2023; 16:4331-4346. [PMID: 37791114 PMCID: PMC10544264 DOI: 10.2147/jir.s423240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
Purpose Xianglian Zhixie Tablet (XLZXT), a classical traditional Chinese medicine formulation, is commonly used to treat Ulcerative Colitis (UC) in China. However, the therapeutic mechanisms of XLZXT for UC have yet to be fully understood. This study aimed to investigate the curative benefits of XLZXT and its associated mechanisms for healing UC in mice. Methods In the present study, the 1% dextran sulfate sodium (DSS) solution was used to establish the UC model in C57BL/6N mice. To investigate the therapeutic effects of XLZXT on DSS-induced UC mice, several parameters were measured, including DAI score, colon length, spleen index, pathological changes in colon tissue, and levels of inflammatory factors in plasma and colon tissue. By investigating the gut microbiota, assessing the levels of intestinal mucosal protein expression, and looking at the proteins involved in the TLR4/MyD88/NF-B p65 signaling pathway, the mechanisms of XLZXT impact on UC were investigated. Mouse feces were examined for patterns of gut microbiota expression using high-throughput sequencing of 16S rRNA. Results XLZXT effectively alleviated UC symptoms and colon pathological damage in DSS-induced UC mice. It improved body weight loss, stool consistency, and hematochezia, while also repairing colon damage. Moreover, it down-regulated pro-inflammatory cytokines (such as TNF-α, IL-1β, and IL-6), and up-regulated anti-inflammatory cytokines (such as IL-10). XLZXT also increased the expression of MUC-2, Occludin and ZO-1, while decreasing the expression of NF-κB, MyD88 and TLR4. Additionally, it regulated gut microbiota disorder by increasing the abundance of beneficial bacteria and reducing the adhesion of intestinal harmful bacteria. Conclusion XLZXT demonstrated therapeutic effects on DSS-induced UC mice. The mechanisms may be associated with repairing the intestinal mucosal barrier, regulating the TLR4/MyD88/NF-κB p65 signaling pathway, and restoring the balance of gut microbiota.
Collapse
Affiliation(s)
- Yilin Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Tingting Wang
- Beijing Tongrentang Technology Co., LTD. Pharmaceutical Factory, Beijing, People’s Republic of China
| | - Beibei Ma
- Beijing Tongrentang Technology Co., LTD. Pharmaceutical Factory, Beijing, People’s Republic of China
| | - Shangyue Yu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Hailuan Pei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shiqiu Tian
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yingying Tian
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Chuang Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xinyue Zhao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Zeping Zuo
- Beijing Tongrentang Technology Co., LTD. Pharmaceutical Factory, Beijing, People’s Republic of China
| | - Zhibin Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- Beijing Tongrentang Technology Co., LTD. Pharmaceutical Factory, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Radzka J, Łapińska Z, Szwedowicz U, Gajewska-Naryniecka A, Gizak A, Kulbacka J. Alternations of NF-κB Signaling by Natural Compounds in Muscle-Derived Cancers. Int J Mol Sci 2023; 24:11900. [PMID: 37569275 PMCID: PMC10418583 DOI: 10.3390/ijms241511900] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
The NF-κB-signaling pathway plays a crucial role in cancer progression, including muscle-derived cancers such as rhabdomyosarcoma or sarcoma. Several natural compounds have been studied for their ability to alter NF-κB signaling in these types of cancers. This review paper summarizes the current knowledge on the effects of natural compounds, including curcumin, resveratrol, quercetin, epigallocatechin-3-gallate, and berberine, on NF-κB signaling in muscle-derived cancers. These compounds have been shown to inhibit NF-κB signaling in rhabdomyosarcoma cells through various mechanisms, such as inhibiting the activation of the IKK complex and the NF-κB transcription factor. These findings suggest that natural compounds could be potential therapeutic agents for muscle-derived cancers. However, further research is needed to fully understand their mechanisms of action and potential clinical applications.
Collapse
Affiliation(s)
- Justyna Radzka
- Department of Molecular Physiology and Neurobiology, Faculty of Biology, University of Wroclaw, 50-335 Wroclaw, Poland; (J.R.); (A.G.)
| | - Zofia Łapińska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (Z.Ł.); (U.S.); (A.G.-N.)
| | - Urszula Szwedowicz
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (Z.Ł.); (U.S.); (A.G.-N.)
| | - Agnieszka Gajewska-Naryniecka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (Z.Ł.); (U.S.); (A.G.-N.)
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, Faculty of Biology, University of Wroclaw, 50-335 Wroclaw, Poland; (J.R.); (A.G.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (Z.Ł.); (U.S.); (A.G.-N.)
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08410 Vilnius, Lithuania
| |
Collapse
|
6
|
Anti-inflammatory effects of Torin2 on lipopolysaccharide-treated RAW264.7 murine macrophages and potential mechanisms. Heliyon 2022; 8:e09917. [PMID: 35874059 PMCID: PMC9304722 DOI: 10.1016/j.heliyon.2022.e09917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/24/2022] [Accepted: 07/05/2022] [Indexed: 11/25/2022] Open
Abstract
Context Torin2 has various pharmacological properties. However, its anti-inflammatory activity has not been reported. Objective This study focused on the potential anti-inflammatory properties of Torin2 in lipopolysaccharide (LPS)-evoked RAW264.7 murine macrophages. The study aimed to shed light on the molecular mechanisms that ameliorate these effects. Methods Torin2 was applied to 100 ng/mL lipopolysaccharide-induced RAW 264.7 macrophages in vitro. Nitric oxide (NO) levels were detected using the Griess reagent kit. Prostaglandin E2 (PGE2), pro-inflammatory cytokines interleukin (IL)-1β, interleukin (IL)-6, and tumor necrosis factor in the supernatant fraction were determined using enzyme-linked immunosorbent assay (ELISA). Gene expression of pro-inflammatory cytokines, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) were tested using real-time quantitative polymerase chain reaction (qPCR). Cyclooxygenase-2 and inducible nitric oxide synthase proteins, phosphorylation of mitogen-activated protein kinase (MAPK) subgroups, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38, I-kappa-B-alpha (IκBα), and nuclear factor-kappa-B (NF-κB), and activation in extracts were detected via western blotting. Nuclear factor-kappa-B/p65 nuclear translocation was tested using an immunofluorescence assay. Results The results demonstrated that pre-treatment with Torin2 profoundly attenuated the lipopolysaccharide-stimulated levels of nitric oxide and prostaglandin E2, pro-inflammatory cytokines, messenger ribonucleic acid (mRNA), and protein expression of cyclooxygenase-2 and inducible nitric oxide synthase. Collectively, Torin2 pre-treatment notably weakened lipopolysaccharide-induced damage by reducing the phosphorylation of nuclear factor-kappa-B, p38, c-Jun N-terminal kinase, extracellular signal-regulated kinase proteins, and nuclear factor-kappa-B/p65 nuclear translocation. Conclusion Numerous pieces of evidence indicated that Torin2 reversed inflammatory activation by regulating nuclear factor-kappa-B and mitogen-activated protein kinase signaling pathways and provided a tentative potential candidate for preventing and treating inflammatory diseases.
Collapse
|