1
|
Jagirdar RM, Pitaraki E, Rouka E, Papazoglou ED, Bartosova M, Zebekakis P, Schmitt CP, Zarogiannis SG, Liakopoulos V. Differential effects of biocompatible peritoneal dialysis fluids on human mesothelial and endothelial cells in 2D and 3D phenotypes. Artif Organs 2024; 48:484-494. [PMID: 38151979 DOI: 10.1111/aor.14703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
INTRODUCTION Peritoneal dialysis (PD) is a life maintaining treatment in patients with end-stage renal disease. Its chronic application leads to peritoneal mesothelial layer denudation and fibrotic transformation along with vascular activation of inflammatory pathways. The impact of different PD fluids (PDF) on mesothelial and endothelial cell function and repair mechanisms are not comprehensively described. MATERIALS AND METHODS Mesothelial (MeT-5A) and endothelial cells (EA.hy926) were cultured in 1:1 ratio with cell medium and different PDF (icodextrin-based, amino acid-based, and glucose-based). Cell adhesion, cell migration, and cell proliferation in 2D and spheroid formation and collagen gel contraction assays in 3D cell cultures were performed. RESULTS Cell proliferation and cell-mediated gel contraction were both significantly decreased in all conditions. 3D spheroid formation was significantly reduced with icodextrin and amino acid PDF, but unchanged with glucose PDF. Adhesion was significantly increased by amino acid PDF in mesothelial cells and decreased by icodextrin and amino acid PDF in endothelial cells. Migration capacity was significantly decreased in mesothelial cells by all three PDF, while endothelial cells remained unaffected. CONCLUSIONS In 3D phenotypes the effects of PDF are more uniform in both mesothelial and endothelial cells, mitigating spheroid formation and gel contraction. On the contrary, effects on 2D phenotypes are more uniform in the icodextrin and amino acid PDF as opposed to glucose ones and affect mesothelial cells more variably. 2D and 3D comparative assessments of PDF effects on the main peritoneal membrane cell barriers, the mesothelial and endothelial, could provide useful translational information for PD studies.
Collapse
Affiliation(s)
- Rajesh M Jagirdar
- 2nd Department of Nephrology, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Eleanna Pitaraki
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Erasmia Rouka
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Eleftherios D Papazoglou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Maria Bartosova
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Pantelis Zebekakis
- First Department of Internal Medicine, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Claus Peter Schmitt
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sotirios G Zarogiannis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Vassilios Liakopoulos
- 2nd Department of Nephrology, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
2
|
Rouka E, Jagirdar RM, Sarrigeorgiou I, Pitaraki E, Sinis SI, Varsamas C, Papazoglou ED, Kotsiou OS, Lymberi P, Giannou A, Hatzoglou C, Gourgoulianis KI, Zarogiannis SG. Changes in expression of mesothelial BBS genes in 2D and 3D after lithium chloride and ammonium sulphate induction of primary cilium disturbance: a pilot study. Pharmacol Rep 2023; 75:1230-1239. [PMID: 37542187 PMCID: PMC10539424 DOI: 10.1007/s43440-023-00513-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND Malignant pleural mesothelioma (MPM), a rare and aggressive pleural tumor, has significant histological and molecular heterogeneity. Primary Cilium (PC), an organelle of emerging importance in malignancies, has been scarcely investigated in MPM. A critical molecular complex for the PC function is the BBSome and here we aimed at assessing its expression patterns in ordinary 2D and spheroid 3D cell cultures. METHODS A human benign mesothelial cell line (MeT-5A), MPM cell lines (M14K, epithelioid MPM; MSTO, biphasic MPM), and primary MPM cells (pMPM) were used. Primers specific for the human BBS1, 2, 4, 5, 7, 9, 18 transcripts were designed, and quantitative real-time PCR (qRT-PCR) was done with β-actin as the gene of reference. The relative gene expression across 2D and 3D cultures was analyzed by the expression factor (mean of 1/ΔCt values). With the 2-∆∆Ct method the gene expression fold changes were assessed from qRT-PCR data. Molecular changes using the PC-modulating drugs ammonium sulfate (AS) and lithium chloride (LC) were also determined. RESULTS PC was present in all cells used in the study at approximately 15% of the observed area. BBSome transcripts were differentially expressed in different dimensions of cell culture (2D vs. 3D) in all cell lines and pMPM. Treatment with AS and LC affected the expression of the ciliary BBS2 and BBS18 genes in the benign as well as in the MPM cells. CONCLUSIONS These data indicate distinct BBSome molecular profiles in human benign and MPM cells cultured in 2D and 3D dimensions and support the notion that PC genes should be investigated as potential MPM therapeutic targets.
Collapse
Affiliation(s)
- Erasmia Rouka
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece
- Department of Nursing, School of Health Sciences, University of Thessaly, GAIOPOLIS, 41500, Larissa, Greece
| | - Rajesh M Jagirdar
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece
| | - Ioannis Sarrigeorgiou
- Laboratory of Immunology, Department of Immunology, Hellenic Pasteur Institute, 11521, Athens, Greece
| | - Eleanna Pitaraki
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece
| | - Sotirios I Sinis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece
| | - Charalambos Varsamas
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece
| | - Eleftherios D Papazoglou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece
| | - Ourania S Kotsiou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece
- Laboratory of Human Pathophysiology, Department of Nursing, School of Health Sciences, University of Thessaly, GAIOPOLIS, 41500, Larissa, Greece
| | - Peggy Lymberi
- Laboratory of Immunology, Department of Immunology, Hellenic Pasteur Institute, 11521, Athens, Greece
| | - Anastasios Giannou
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, UKE, 20246, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Chrissi Hatzoglou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece
| | - Sotirios G Zarogiannis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece.
| |
Collapse
|