1
|
Eldakhakhny B, Bima A, Alamoudi AA, Alnami A, Abo-Elkhair SM, Sakr H, Almoghrabi Y, Ghoneim FM, Nagib RM, Elsamanoudy A. The role of low-carbohydrate, high-fat diet in modulating autophagy and endoplasmic reticulum stress in aortic endothelial dysfunction of metabolic syndrome animal model. Front Nutr 2024; 11:1467719. [PMID: 39610878 PMCID: PMC11603365 DOI: 10.3389/fnut.2024.1467719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/30/2024] [Indexed: 11/30/2024] Open
Abstract
Background Endothelial dysfunction (ED) is induced by insulin resistance, mediated by endoplasmic reticulum (ER) stress and disturbed autophagy. This study investigates the protective role of a low-carbohydrate, high-fat (LCHF) diet on ED, ER stress, and autophagy dysregulation in an experimental animal model of metabolic syndrome. Methods Forty male Sprague-Dawley rats were divided into four groups: a Control group (standard diet) and three Dexamethasone (DEX) treated groups. Group II continued the standard diet, Group III received an LCHF diet, and Group IV received a high-carbohydrate, low-fat (HCLF) diet. At the end of the experiment, aortic tissue samples were obtained and used for histological, immunohistochemical (Endothelin and PCNA, biochemical MDA, TCA, NO, 8-OH-dG, and Nrf2/ARE protein) and molecular (Endothelin, eNOS, Nrf-2 α, p62, LC3, BECN-1, PINK1, CHOP, BNIP3, PCNA) analysis. Results Oxidative stress, autophagy markers, and ED markers are increased in the metabolic syndrome group. LCHF diet mitigates the adverse effects of DEX on endothelial dysfunction and oxidative stress, as evidenced by reduced BMI, HOMA-IR, and improved histological and molecular parameters. Conclusion Oxidative stress, autophagy dysregulation, and ER stress play crucial roles in the pathogenesis of insulin resistance-induced endothelial dysfunction. An LCHF diet offers protective benefits against insulin resistance and related comorbidities, including endothelial dysfunction.
Collapse
Affiliation(s)
- Basmah Eldakhakhny
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Food, Nutrition, and Lifestyle Research Unit, King Fahd for Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulhadi Bima
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aliaa A. Alamoudi
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abrar Alnami
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salwa Mohamed Abo-Elkhair
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hussein Sakr
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Yousef Almoghrabi
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fatma Mohamed Ghoneim
- MBBS Program, Department of Physiological Sciences, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Reham Mohamed Nagib
- Department of Anatomical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ayman Elsamanoudy
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Food, Nutrition, and Lifestyle Research Unit, King Fahd for Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Fang YQ, Ding H, Li T, Zhao XJ, Luo D, Liu Y, Li Y. N-acetylcysteine supplementation improves endocrine-metabolism profiles and ovulation induction efficacy in polycystic ovary syndrome. J Ovarian Res 2024; 17:205. [PMID: 39415242 PMCID: PMC11484282 DOI: 10.1186/s13048-024-01528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) affects 6-20% of women worldwide, with insulin resistance and hyperinsulinemia occurring in 50-70% of patients. Hyperinsulinemia exacerbates oxidative stress, contributing to PCOS pathogenesis. N-acetylcysteine (NAC) is an antioxidant and insulin sensitizer that shows promise as a therapeutic for PCOS. Our current study aimed to investigate the effects of NAC supplementation on endocrine-metabolic parameters in PCOS mice and its effect on ovulation induction (OI) efficacy in women with PCOS. METHODS Female C57BL/6 mice were orally administered letrozole (LE) to induce PCOS and then randomly divided into groups receiving daily oral administration of 160 mg/kg NAC (PCOS + NAC group), 200 mg/kg metformin (PCOS + Met group), or 0.5% carboxymethyl cellulose (drug solvent) (pure PCOS group) for 12 days. Healthy female mice served as pure controls. Estrous cycles were monitored during the intervention. Metabolic and hormone levels, ovarian phenotypes, antioxidant activity in ovarian tissues, and oxidative stress levels in oocytes were assessed post-intervention. Furthermore, a pragmatic, randomized, controlled clinical study was conducted with 230 PCOS women, randomly assigned to the NAC group (1.8 g/day oral NAC, n = 115) or the control group (n = 115). Patients in both groups underwent ≤ 3 cycles of OI with sequential LE and urinary follicle-stimulating hormone (uFSH). Cycle characteristics and pregnancy outcomes were compared between groups. RESULTS Similar to metformin, NAC supplementation significantly improved the estrous cycles and ovarian phenotypes of PCOS mice; reduced the LH concentration, LH/FSH ratio, and T level; and increased glucose clearance and insulin sensitivity. Notably, NAC significantly reduced oocyte ROS levels and increased the mitochondrial membrane potential in PCOS mice. Additionally, NAC significantly enhanced enzymatic and nonenzymatic antioxidant activities in PCOS mouse ovaries, whereas metformin had no such effect. In the clinical trial, compared to women in the control group, women receiving NAC had significantly lower average uFSH dosage and duration (p < 0.005) and significantly greater clinical pregnancy rates per OI cycle and cumulative clinical pregnancy rates per patient (p < 0.005). CONCLUSION NAC supplementation improved endocrine-metabolic parameters in PCOS mice and significantly enhanced OI efficacy with sequential LE and uFSH in women with PCOS. Therefore, NAC could be a valuable adjuvant in OI for women with PCOS.
Collapse
Affiliation(s)
- Yu-Qing Fang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Hui Ding
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Tao Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Xiao-Jie Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Dan Luo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yanhui Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| |
Collapse
|
3
|
Aksu F, Akkoc RF, Savur E, Çelik C. Effects of N-Acetylcysteine on Humanin and Endostatin in Rats Exposed to Formaldehyde. Cureus 2024; 16:e61354. [PMID: 38947691 PMCID: PMC11214271 DOI: 10.7759/cureus.61354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
INTRODUCTION People are constantly exposed to formaldehyde, a volatile and poisonous gas, in indoor environments. In particular, anatomists, pathologists, histologists, and those involved in embalming are exposed to higher amounts of formaldehyde continuously due to their work. This study aimed to investigate the effect of N-acetylcysteine on endostatin and humanin values in male rats exposed to experimental formaldehyde. METHODS In the study, 28 male Spraque-Dawley rats aged 12-14 weeks (seven animals in each group: control group, formaldehyde group, N-acetylcysteine group, formaldehyde+N-acetylcysteine group) were used. Four weeks later, the animals were sacrificed by decapitation. Following decapitation, endostatin and humanin levels in the serum of rats were studied by the enzyme-linked immunoassay (ELISA) method. In all analyses, p<0.05 was accepted as statistically significant. RESULTS Humanin and endostatin values were checked in the serum of rats. When humanin levels were compared between groups, a statistically significant difference was found between the formaldehyde group and both the control group (p<0.05) and the N-acetylcysteine group (p<0.05). In the formaldehyde+N-acetylcysteine group, it was determined that the humanin level was impaired due to formaldehyde exposure, approaching the control group values with the administered N-acetylcysteine. When the endostatin level was compared between the groups, a statistical significance (p<0.05) was found only between the formaldehyde group and the N-acetylcysteine group. In the formaldehyde+N-acetylcysteine group, it was determined that the endostatin level was impaired due to formaldehyde exposure, approaching the control group values with the administered N-acetylcysteine. CONCLUSION In this study, the effects of N-acetylcysteine on humanin and endostatin on rats exposed to formaldehyde were demonstrated for the first time. Formaldehyde exposure negatively affected humanin and endostatin levels in rat sera. N-acetylcysteine ameliorated the negative effects of formaldehyde, bringing humanin and endostatin levels closer to the healthy control group.
Collapse
Affiliation(s)
- Feyza Aksu
- Department of Anatomy, Faculty of Medicine, Firat University, Elazig, TUR
| | | | - Ezgi Savur
- College of Medicine, Faculty of Medicine, Firat University, Elazig, TUR
| | - Celal Çelik
- College of Medicine, Faculty of Medicine, Firat University, Elazig, TUR
| |
Collapse
|
4
|
Xiao CL, Liu LL, Tang W, Liu WY, Wu LY, Zhao K. Reduction of the trans-cortical vessel was associated with bone loss, another underlying mechanism of osteoporosis. Microvasc Res 2024; 152:104650. [PMID: 38123064 DOI: 10.1016/j.mvr.2023.104650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
RATIONALE Numerous studies have established a robust association between bone morrow microvascular diseases and osteoporosis. This study sought to investigate the relationship between alterations in trans-cortical vessel (TCVs) and the onset of osteoporosis in various mouse models. METHODS Aged mice, ovariectomized mice, and db/db mice, were utilized as osteoporosis models. TCVs in the tibia were detected using tissue clearing and light sheet fluorescence microscopy imaging. Femurs bone mass were analyzed using micro-CT scanning. Correlations between the number of TCVs and bone mass were analyzed using Pearson correlation analysis. RESULTS All osteoporosis mouse models showed a significant reduction in the number of TCVs compared to the control group. Correlation analysis revealed a positive association between the number of TCVs and bone mass. TCVs were also expressed high levels of CD31 and EMCN proteins as type H vessels. CONCLUSIONS This study underscores a consistent correlation between the number of TCVs and bone mass. Moreover, TCVs may serve as a potential biomarker for bone mass evaluation.
Collapse
Affiliation(s)
- Chun-Lin Xiao
- Department of Orthopaedics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, PR China
| | - Lu-Lin Liu
- Department of Orthopaedics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, PR China
| | - Wen Tang
- Department of Orthopaedics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, PR China
| | - Wu-Yang Liu
- Department of Orthopaedics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, PR China
| | - Long-Yan Wu
- Ganzhou People's Hospital, Ganzhou, PR China.
| | - Kai Zhao
- Department of Orthopaedics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, PR China; Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
5
|
Gao H, Li Q. The Prediction of Antioxidant Q-Markers for Angelica dahurica Based on the Dynamics Change in Chemical Compositions and Network Pharmacology. Molecules 2023; 28:5248. [PMID: 37446909 DOI: 10.3390/molecules28135248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
OBJECTIVE To clarify the accumulation and mutual transformation patterns of the chemical components in Angelica dahurica (A. dahurica) and predict the quality markers (Q-Markers) of its antioxidant activity. METHOD The types of and content changes in the chemical components in various parts of A. dahurica during different periods were analyzed by using gas chromatography-mass spectrometry technology (GC-MS). The antioxidant effect of the Q-Markers was predicted using network pharmacological networks, and molecular docking was used to verify the biological activity of the Q-Markers. RESULT The differences in the content changes in the coumarin compounds in different parts were found by using GC-MS technology, with the relative content being the best in the root, followed by the leaves, and the least in the stems. The common components were used as potential Q-Markers for a network pharmacology analysis. The component-target-pathway-disease network was constructed. In the molecular docking, the Q-Markers had a good binding ability with the core target, reflecting better biological activity. CONCLUSIONS The accumulation and mutual transformation patterns of the chemical components in different parts of A. dahurica were clarified. The predicted Q-Markers lay a material foundation for the establishment of quality standards and a quality evaluation.
Collapse
Affiliation(s)
- Hui Gao
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Qian Li
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|