1
|
Xu P, Sun Z, Zheng S, Pan L, Dong S, He J, Chen P, Shu C. Exploring the molecular underpinnings of macrosomia in gestational diabetes mellitus: The role of EGFR signaling and placental syncytiotrophoblast. Life Sci 2024; 359:123207. [PMID: 39489396 DOI: 10.1016/j.lfs.2024.123207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/18/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Macrosomia, which is frequently associated with gestational diabetes mellitus (GDM), is linked to maternal glycemic control during gestation. When GDM is complicated by macrosomia (GDMM), the placenta exhibits increased mass, underscoring its role as a critical nexus for maternal-fetal nutrient exchange. Despite this recognized correlation, the underlying mechanisms propelling placental hypertrophy have remained elusive. Our study leveraged single-cell RNA transcriptome sequencing of GDMM placental tissues to pinpoint the specific syncytiotrophoblast (SCT) subsets that regulate placental dimensions. Notably, we observed pronounced upregulation of the epidermal growth factor receptor (EGFR) and its corresponding ligands, with a particular emphasis on the autoregulatory cascade involving the glycoprotein hormone alpha subunit (CGA), EGFR, and the transcription factor GATA binding protein 2 (GATA2), as well as perturbations in hormonal homeostasis within the SCT. Furthermore, our cell interaction analysis revealed an enhanced interplay between myeloid cells and SCT3, augmenting the EGFR signaling pathway. These molecular exchanges underscore the pivotal role of the placental immune microenvironment in the etiology of macrosomia, shedding light on the pathophysiology of GDMM and paving the way for novel therapeutic approaches.
Collapse
Affiliation(s)
- Peng Xu
- Department of Obstetrics, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Zewen Sun
- Department of Genetics, College of Basic Medical Sciences, Jilin University Changchun, China
| | - Shu Zheng
- Department of Obstetrics, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Lin Pan
- The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Shuai Dong
- Department of Obstetrics, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Jin He
- Department of Obstetrics, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Peng Chen
- Department of Genetics, College of Basic Medical Sciences, Jilin University Changchun, China.
| | - Chang Shu
- Department of Obstetrics, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Jilin University, Changchun 130021, China.
| |
Collapse
|
2
|
Dong Z, Liu H, Wan D, Wu X, Yin Y. Ferrous-sucrose complex supplementation regulates maternal plasma metabolism and the fecal microbiota composition and improves neonatal immunity and placental glucose transportation by activating the EGF/PI3K/AKT signaling pathways in sows. Food Funct 2024; 15:906-916. [PMID: 38168829 DOI: 10.1039/d3fo03733a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Pregnancy is a dynamic state involving rapid physiological changes in metabolism, affecting the health and development of the offspring. During pregnancy, the placenta constitutes a physical and immunological barrier to provide fetal nutrition through the maternal blood and prevent the exposure of the fetus to dangerous signals. Metabolic changes in the plasma, the fecal microbiota profile, and functional regulation in the placenta were studied in sows supplied with a ferrous-sucrose complex (FeSuc) from late gestation to parturition. The results revealed that maternal FeSuc supplementation enhanced arginine and proline metabolism, glutathione metabolism, with increased glutamic acid, beta-D-glucosamine, L-proline, 1-butylamine, and succinic acid and reduced sphingosine and chenodeoxycholic acid sulfate levels in the plasma. Moreover, significantly increased abundances of Christensenellaceae_R-7_group, Prevotellaceae_NK3B31_group, and Lachnospiraceae_NK4B4_group were detected in the feces of sows from the FeSuc group (P < 0.05). Spearman's correlation analysis indicated that Prevotellaceae_NK3B31_group abundances were positively correlated with glutamic acid, indoxyl sulfate, acetyl-DL-leucine, and beta-D-glucosamine, while Christensenellaceae_R-7_group was positively correlated with beta-D-glucosamine. Furthermore, maternal FeSuc supplementation significantly increased neonatal glucose (P < 0.01) and iron (P < 0.01) in the neonatal serum, significantly increased IL-10 and TGF-β1 levels in the neonatal liver (P < 0.01) and jejunum (P < 0.05), promoted the transcription of immune molecules in the placenta, and significantly increased the protein expressions of EGF (P < 0.05), PI3K (P < 0.01), p-PI3K (P < 0.001), p-AKT (P < 0.01), and glucose transporter 1 (GLUT1) (P < 0.001) in the placenta. The current study demonstrated that FeSuc supplementation regulated maternal metabolism processes by altering the fecal microbial composition and improved neonatal immunity and placental glucose transportation by activating the EGF/PI3K/AKT signaling pathways in sows.
Collapse
Affiliation(s)
- Zhenglin Dong
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan 410125, China.
| | - Hongwei Liu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan 410125, China.
| | - Dan Wan
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan 410125, China.
| | - Xin Wu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan 410125, China.
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan 410125, China.
| |
Collapse
|