1
|
Fatmi MK, Rouhi N, Lozonschi L, Li J. Cardiac metabolism in the elderly: effects and consequences. Aging (Albany NY) 2024; 16:11773-11775. [PMID: 39167437 PMCID: PMC11386932 DOI: 10.18632/aging.206071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024]
Affiliation(s)
- Mohammad Kasim Fatmi
- Nova Southeastern University Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, FL 33328, USA
- Department of Surgery, University of South Florida, Tampa, FL 33612, USA
| | - Nadiyeh Rouhi
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39110 USA
| | - Lucian Lozonschi
- Division of Cardiothoracic Surgery, Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Ji Li
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39110 USA
| |
Collapse
|
2
|
Peng Y, Tao Y, Liu L, Zhang J, Wei B. Crosstalk among Reactive Oxygen Species, Autophagy and Metabolism in Myocardial Ischemia and Reperfusion Stages. Aging Dis 2024; 15:1075-1107. [PMID: 37728583 PMCID: PMC11081167 DOI: 10.14336/ad.2023.0823-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Myocardial ischemia is the most common cardiovascular disease. Reperfusion, an important myocardial ischemia tool, causes unexpected and irreversible damage to cardiomyocytes, resulting in myocardial ischemia/reperfusion (MI/R) injury. Upon stress, especially oxidative stress induced by reactive oxygen species (ROS), autophagy, which degrades the intracellular energy storage to produce metabolites that are recycled into metabolic pathways to buffer metabolic stress, is initiated during myocardial ischemia and MI/R injury. Excellent cardioprotective effects of autophagy regulators against MI and MI/R have been reported. Reversing disordered cardiac metabolism induced by ROS also exhibits cardioprotective action in patients with myocardial ischemia. Herein, we review current knowledge on the crosstalk between ROS, cardiac autophagy, and metabolism in myocardial ischemia and MI/R. Finally, we discuss the possible regulators of autophagy and metabolism that can be exploited to harness the therapeutic potential of cardiac metabolism and autophagy in the diagnosis and treatment of myocardial ischemia and MI/R.
Collapse
Affiliation(s)
- Yajie Peng
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Yachuan Tao
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- Department of Pharmacology, School of Pharmaceutical Sciences, Fudan University, Shanghai, China
| | - Lingxu Liu
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Ji Zhang
- The First Affiliated Hospital of Zhengzhou University, Department of Pharmacy, Zhengzhou, Henan, China.
| | - Bo Wei
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Wang H, Slotabec L, Didik S, Li Z, Leng L, Zhao B, Bucala R, Li J. A small molecule macrophage migration inhibitory factor agonist ameliorates age-related myocardial intolerance to ischemia-reperfusion insults via metabolic regulation. Metabolism 2024; 153:155792. [PMID: 38232801 DOI: 10.1016/j.metabol.2024.155792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/27/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Macrophage migration inhibitory factor (MIF) is an innate cytokine that regulates both inflammatory and homeostatic responses. MIF is expressed by cardiomyocytes, where it exerts a protective action against ischemia-reperfusion (I/R) injury by activating AMP-activated protein kinase (AMPK). This effect is attenuated in the senescent heart due to an intrinsic, age-related reduction in MIF expression. We hypothesized that treating the aged heart with the small molecule MIF agonist (MIF20) can reinforce protective MIF signaling in cardiomyocytes, leading to a beneficial effect against I/R stress. The administration of MIF20 at the onset of reperfusion was found to not only decrease myocardial infarct size but also preserves systolic function in the aged heart. Protection from I/R injury was reduced in mice with cardiomyocyte-specific Mif deletion, consistent with the mechanism of action of MIF20 to allosterically increase MIF affinity for its cognate receptor CD74. We further found MIF20 to contribute to the maintenance of mitochondrial fitness and to preserve the contractile properties of aged cardiomyocytes under hypoxia/reoxygenation. MIF20 augments protective metabolic responses by reducing the NADH/NAD ratio, leading to a decrease in the accumulation of reactive oxygen species (ROS) in the aged myocardium under I/R stress. We also identify alterations in the expression levels of the downstream effectors PDK4 and LCAD, which participate in the remodeling of the cardiac metabolic profile. Data from this study demonstrates that pharmacologic augmentation of MIF signaling provides beneficial homeostatic actions on senescent myocardium under I/R stress.
Collapse
Affiliation(s)
- Hao Wang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, United States of America
| | - Lily Slotabec
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, United States of America
| | - Steven Didik
- Department of Surgery, University of South Florida, FL 33612, United States of America
| | - Zehui Li
- Department of Surgery, University of South Florida, FL 33612, United States of America
| | - Lin Leng
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, United States of America
| | - Bi Zhao
- Genomics Program, College of Public Health, University of South Florida, Tampa, FL 33612, United States of America.
| | - Richard Bucala
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, United States of America
| | - Ji Li
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, United States of America; G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS 39216, United States of America.
| |
Collapse
|
4
|
Sánchez-Pérez P, Mata A, Torp MK, López-Bernardo E, Heiestad CM, Aronsen JM, Molina-Iracheta A, Jiménez-Borreguero LJ, García-Roves P, Costa ASH, Frezza C, Murphy MP, Stenslokken KO, Cadenas S. Energy substrate metabolism, mitochondrial structure and oxidative stress after cardiac ischemia-reperfusion in mice lacking UCP3. Free Radic Biol Med 2023; 205:244-261. [PMID: 37295539 DOI: 10.1016/j.freeradbiomed.2023.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/22/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023]
Abstract
Myocardial ischemia-reperfusion (IR) injury may result in cardiomyocyte dysfunction. Mitochondria play a critical role in cardiomyocyte recovery after IR injury. The mitochondrial uncoupling protein 3 (UCP3) has been proposed to reduce mitochondrial reactive oxygen species (ROS) production and to facilitate fatty acid oxidation. As both mechanisms might be protective following IR injury, we investigated functional, mitochondrial structural, and metabolic cardiac remodeling in wild-type mice and in mice lacking UCP3 (UCP3-KO) after IR. Results showed that infarct size in isolated perfused hearts subjected to IR ex vivo was larger in adult and old UCP3-KO mice than in equivalent wild-type mice, and was accompanied by higher levels of creatine kinase in the effluent and by more pronounced mitochondrial structural changes. The greater myocardial damage in UCP3-KO hearts was confirmed in vivo after coronary artery occlusion followed by reperfusion. S1QEL, a suppressor of superoxide generation from site IQ in complex I, limited infarct size in UCP3-KO hearts, pointing to exacerbated superoxide production as a possible cause of the damage. Metabolomics analysis of isolated perfused hearts confirmed the reported accumulation of succinate, xanthine and hypoxanthine during ischemia, and a shift to anaerobic glucose utilization, which all recovered upon reoxygenation. The metabolic response to ischemia and IR was similar in UCP3-KO and wild-type hearts, being lipid and energy metabolism the most affected pathways. Fatty acid oxidation and complex I (but not complex II) activity were equally impaired after IR. Overall, our results indicate that UCP3 deficiency promotes enhanced superoxide generation and mitochondrial structural changes that increase the vulnerability of the myocardium to IR injury.
Collapse
Affiliation(s)
- Patricia Sánchez-Pérez
- Centro de Biología Molecular "Severo Ochoa" (CSIC/UAM), 28049, Madrid, Spain; Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain
| | - Ana Mata
- Centro de Biología Molecular "Severo Ochoa" (CSIC/UAM), 28049, Madrid, Spain; Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain
| | - May-Kristin Torp
- Centro de Biología Molecular "Severo Ochoa" (CSIC/UAM), 28049, Madrid, Spain; Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PB1110, N-0317, Oslo, Norway
| | - Elia López-Bernardo
- Centro de Biología Molecular "Severo Ochoa" (CSIC/UAM), 28049, Madrid, Spain; Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain
| | - Christina M Heiestad
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PB1110, N-0317, Oslo, Norway
| | - Jan Magnus Aronsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PB1110, N-0317, Oslo, Norway; Bjørknes College, 0456, Oslo, Norway
| | | | - Luis J Jiménez-Borreguero
- Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain; Servicio de Cardiología, Hospital Universitario de La Princesa, 28006, Madrid, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Pablo García-Roves
- Department of Physiological Sciences, Universitat de Barcelona, 08907, Barcelona, Spain; Nutrition, Metabolism and Gene Therapy Group, Diabetes and Metabolism Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Ana S H Costa
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Center, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Center, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge, CB2 0XY, UK
| | - Kåre-Olav Stenslokken
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PB1110, N-0317, Oslo, Norway
| | - Susana Cadenas
- Centro de Biología Molecular "Severo Ochoa" (CSIC/UAM), 28049, Madrid, Spain; Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain.
| |
Collapse
|