1
|
Kit Y, Starykovych M, Manko N, Orfin A, Alexanyan T, Bozhko L, Turchyna T, Kit O, Krishnankutty R, Anand A, Sibirny A, Souchelnytskyi S, Stoika R. Elevation of truncated (48 kDa) form of unconventional myosin 1C in blood serum correlates with severe Covid-19. J Immunol Methods 2023; 514:113437. [PMID: 36736950 PMCID: PMC9889275 DOI: 10.1016/j.jim.2023.113437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/25/2022] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
In Covid-19 and autoimmune patients, there are several similarities revealed in the immune responses (Liu et al., 2021; Woodruff et al., 2020). Earlier, we firstly detected a truncated (48 kDa) form of the unconventional Myosin 1C (48/Myo1C) in a fraction of proteins soluble in 10% 2,2,2-trichloroacetic acid (TCA). These proteins were obtained from blood serum of patients with autoimmune diseases, such as multiple sclerosis, systemic lupus erythematosus, and rheumatoid arthritis (Kit et al., 2018). Here, we demonstrated that content of 48/Myo1C was also elevated in blood serum of the severe Covid-19 patients. Whereas in blood of 28 clinically healthy human individuals regularly tested for Covid-19 infection, the amount of this protein was undetectable or very low, in blood of 16 of 28 patients hospitalized with severe course of this disease, its amount was significantly increased. Dexamethasone, steroid hormone which is widely used for treatment of severe Covid-19 patients, induced time-dependent elevation of the 48/Myo1C in blood of such patients. The 48/Myo1C dose-dependently suppressed the viability of anti-CD3-activated lymphocytes of human peripheral blood. Recently, we used affinity chromatography on the magnetic poly(glycidyl-methacrylate) (mag-PGMA-NH2) microparticles functionalized with Myo1C and MALDI-TOF mass spectrometry with molecular modeling in silico in order to identify potential molecular partners of the 48/Myo1C. It was found that 48/Myo1C might bind to component 3 of the complement system and the anti-thrombin-III (Starykovych et al., 2021). Thus, the mechanisms of the pathogenic action of truncated form of Myo1C in severe COVID-19 patients may involve a suppression of the immune cells, as well as modulation of complement and coagulation cascades.
Collapse
Affiliation(s)
- Yuriy Kit
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Drahomanov st., 14/16, Lviv 79005, Ukraine
| | - Marina Starykovych
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Drahomanov st., 14/16, Lviv 79005, Ukraine
| | - Nazar Manko
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Drahomanov st., 14/16, Lviv 79005, Ukraine
| | - Andrii Orfin
- Municipal Non-commercial Enterprise of Lviv Regional Council "Lviv Regional Infection Clinical Hospital", Pekarska St., 54, 79010, Lviv, Ukraine
| | - Tamila Alexanyan
- Municipal Non-commercial Enterprise of Lviv Regional Council "Lviv Regional Infection Clinical Hospital", Pekarska St., 54, 79010, Lviv, Ukraine
| | - Lydmyla Bozhko
- Lviv Regional Phthysio-pulmonology Clinical Medical and Diagnostic Center, Zelena st., 477, 79035, Lviv, Ukraine
| | - Tetiana Turchyna
- Lviv Regional Phthysio-pulmonology Clinical Medical and Diagnostic Center, Zelena st., 477, 79035, Lviv, Ukraine
| | - Oleg Kit
- Interregional Academy of Personnel Management, Frometivska st., 2, Kyiv 01001, Ukraine
| | - Roopesh Krishnankutty
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 2713, Qatar; University of Edinburgh, Edinburgh EH4 2XU, the, UK
| | - Anjana Anand
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 2713, Qatar
| | - Andrey Sibirny
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Drahomanov st., 14/16, Lviv 79005, Ukraine
| | | | - Rostyslav Stoika
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Drahomanov st., 14/16, Lviv 79005, Ukraine.
| |
Collapse
|
2
|
Identification of cortactin molecular forms in human urine and their possible diagnostic value. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.04.103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
3
|
Takahashi L, Ishigami T, Tomiyama H, Kato Y, Kikuchi H, Tasaki K, Yamashita J, Inoue S, Taguri M, Nagao T, Chikamori T, Ishikawa Y, Yokoyama U. Increased Plasma Levels of Myosin Heavy Chain 11 Is Associated with Atherosclerosis. J Clin Med 2021; 10:jcm10143155. [PMID: 34300321 PMCID: PMC8304775 DOI: 10.3390/jcm10143155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022] Open
Abstract
Many studies have revealed numerous potential biomarkers for atherosclerosis, but tissue-specific biomarkers are still needed. Recent lineage-tracing studies revealed that smooth muscle cells (SMCs) contribute substantially to plaque formation, and the loss of SMCs causes plaque vulnerability. We investigated the association of SMC-specific myosin heavy chain 11 (myosin-11) with atherosclerosis. Forty-five patients with atherosclerosis and 34 control subjects were recruited into our study. In the atherosclerosis patients, 35 patients had either coronary artery disease (CAD) or peripheral artery disease (PAD), and 10 had both CAD and PAD. Coronary arteries isolated from five patients were subjected to histological study. Circulating myosin-11 levels were higher in the CAD or PAD group than in controls. The area under the receiver operating characteristic curve of myosin-11 was 0.954. Circulating myosin-11 levels in the CAD and PAD group were higher than in the CAD or PAD group, while high-sensitivity C-reactive protein concentrations did not differ between these groups. Multinomial logistic regression analyses showed a significant association of myosin-11 levels with the presence of multiple atherosclerotic regions. Myosin-11 was expressed in the medial layer of human atherosclerotic lesions where apoptosis elevated. Circulating myosin-11 levels may be useful for detecting spatial expansion of atherosclerotic regions.
Collapse
Affiliation(s)
- Lisa Takahashi
- Department of Cardiology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (L.T.); (H.T.); (J.Y.); (T.C.)
- Department of Physiology, Tokyo Medical University, 6-6-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan;
| | - Tomoaki Ishigami
- Department of Cardio-Renal Medicine and Medical Science, Yokohama City University, 3-9 Fukuura, Yokohama 236-0004, Japan;
| | - Hirofumi Tomiyama
- Department of Cardiology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (L.T.); (H.T.); (J.Y.); (T.C.)
| | - Yuko Kato
- Department of Physiology, Tokyo Medical University, 6-6-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan;
| | - Hiroyuki Kikuchi
- Department of Preventive Medicine and Public Health, Tokyo Medical University, 6-6-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan; (H.K.); (S.I.)
| | - Koichiro Tasaki
- Department of Pathology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (K.T.); (T.N.)
| | - Jun Yamashita
- Department of Cardiology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (L.T.); (H.T.); (J.Y.); (T.C.)
| | - Shigeru Inoue
- Department of Preventive Medicine and Public Health, Tokyo Medical University, 6-6-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan; (H.K.); (S.I.)
| | - Masataka Taguri
- Department of Data Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan;
| | - Toshitaka Nagao
- Department of Pathology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (K.T.); (T.N.)
| | - Taishiro Chikamori
- Department of Cardiology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (L.T.); (H.T.); (J.Y.); (T.C.)
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan;
| | - Utako Yokoyama
- Department of Physiology, Tokyo Medical University, 6-6-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan;
- Cardiovascular Research Institute, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan;
- Correspondence: ; Tel.: +81-03-351-6141
| |
Collapse
|
4
|
Kharati M, Foroutanparsa S, Rabiee M, Salarian R, Rabiee N, Rabiee G. Early Diagnosis of Multiple Sclerosis Based on Optical and Electrochemical Biosensors: Comprehensive Perspective. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411014666180829111004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background:
Multiple Sclerosis (MS) involves an immune-mediated response in which
body’s immune system destructs the protective sheath (myelin). Part of the known MS biomarkers are
discovered in cerebrospinal fluid like oligoclonal lgG (OCGB), and also in blood like myelin Oligodendrocyte
Glycoprotein (MOG). The conventional MS diagnostic methods often fail to detect the
disease in early stages such as Clinically Isolated Syndrome (CIS), which considered as a concerning
issue since CIS highlighted as a prognostic factor of MS development in most cases.
Methods:
MS diagnostic techniques include Magnetic Resonance Imaging (MRI) of the brain and spinal
cord, lumbar puncture (or spinal tap) that evaluate cerebrospinal fluid, evoked potential testing revealing
abnormalities in the brain and spinal cord. These conventional diagnostic methods have some
negative points such as extensive processing time as well as restriction in the quantity of samples that
can be analyzed concurrently. Scientists have focused on developing the detection methods especially
early detection which belongs to ultra-sensitive, non-invasive and needed for the Point of Care (POC)
diagnosis because the situation was complicated by false positive or negative results.
Results:
As a result, biosensors are utilized and investigated since they could be ultra-sensitive to specific
compounds, cost effective devices, body-friendly and easy to implement. In addition, it has been
proved that the biosensors on physiological fluids (blood, serum, urine, saliva, milk etc.) have quick
response in a non-invasive rout. In general form, a biosensor system for diagnosis and early detection
process usually involves; biomarker (target molecule), bio receptor (recognition element) and compatible
bio transducer.
Conclusion:
Studies underlined that early treatment of patients with high possibility of MS can be advantageous
by postponing further abnormalities on MRI and subsequent attacks.
:
This Review highlights variable disease diagnosis approaches such as Surface Plasmon Resonance
(SPR), electrochemical biosensors, Microarrays and microbeads based Microarrays, which are considered
as promising methods for detection and early detection of MS.
Collapse
Affiliation(s)
- Maryam Kharati
- Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Sanam Foroutanparsa
- Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Reza Salarian
- Biomedical Engineering Department, Maziar University, Noor, Royan, Iran
| | - Navid Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Ghazal Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
5
|
Girón-Pérez DA, Piedra-Quintero ZL, Santos-Argumedo L. Class I myosins: Highly versatile proteins with specific functions in the immune system. J Leukoc Biol 2019; 105:973-981. [PMID: 30821871 DOI: 10.1002/jlb.1mr0918-350rrr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/20/2022] Open
Abstract
Connections established between cytoskeleton and plasma membrane are essential in cellular processes such as cell migration, vesicular trafficking, and cytokinesis. Class I myosins are motor proteins linking the actin-cytoskeleton with membrane phospholipids. Previous studies have implicated these molecules in cell functions including endocytosis, exocytosis, release of extracellular vesicles and the regulation of cell shape and membrane elasticity. In immune cells, those proteins also are involved in the formation and maintenance of immunological synapse-related signaling. Thus, these proteins are master regulators of actin cytoskeleton dynamics in different scenarios. Although the localization of class I myosins has been described in vertebrates, their functions, regulation, and mechanical properties are not very well understood. In this review, we focused on and summarized the current understanding of class I myosins in vertebrates with particular emphasis in leukocytes.
Collapse
Affiliation(s)
- Daniel Alberto Girón-Pérez
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Zayda Lizbeth Piedra-Quintero
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Leopoldo Santos-Argumedo
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
6
|
Myronovskij S, Shalay O, Spivak V, Stoika R, Kit Y. Characteristics of Potential Protein Biomarkers Extracted with 10% TCA from Blood Serum of Non-Hodgkin's Lymphoma and Multiple Myeloma Patients. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2018; 6:235-238. [PMID: 29988205 PMCID: PMC6004295 DOI: 10.22088/bums.6.4.235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/07/2017] [Indexed: 10/31/2022]
Affiliation(s)
- Severyn Myronovskij
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Olga Shalay
- Laboratory of Immunocytology and Genetics of Blood Tumors , Institute of Blood Pathology and Transfusion Medicine, National Academy of Medical Sciences of Ukraine, Lviv, Ukraine
| | - Veronika Spivak
- Biological Faculty of Ivan Franko Lviv National University, Lviv, Ukraine
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine .,Biological Faculty of Ivan Franko Lviv National University, Lviv, Ukraine
| | - Yuriy Kit
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| |
Collapse
|
7
|
Zasońska BA, Hlídková H, Petrovský E, Myronovskij S, Nehrych T, Negrych N, Shorobura M, Antonyuk V, Stoika R, Kit Y, Horák D. Monodisperse magnetic poly(glycidyl methacrylate) microspheres for isolation of autoantibodies with affinity for the 46 kDa form of unconventional Myo1C present in autoimmune patients. Mikrochim Acta 2018; 185:262. [PMID: 29687337 DOI: 10.1007/s00604-018-2807-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/13/2018] [Indexed: 01/07/2023]
Abstract
Monodisperse nonmagnetic macroporous poly(glycidyl methacrylate) (PGMA) microspheres were synthesized by multistep swelling polymerization of glycidyl methacrylate, ethylene dimethacrylate and 2-[(methoxycarbonyl)methoxy]ethyl methacrylate (MCMEMA). This was followed (a) by ammonolysis to modify the microspheres with amino groups, and (b) by incorporation of iron oxide (γ-Fe2O3) into the pores to render the particles magnetic. The resulting porous and magnetic microspheres were characterized by scanning and transmission electron microscopy (SEM and TEM), atomic absorption and Fourier transform infrared spectroscopy (AAS and FTIR), elemental analysis, vibrating magnetometry, mercury porosimetry and Brunauer-Emmett-Teller adsorption/desorption isotherms. The microspheres are meso- and macroporous, typically 5 μm in diameter, contain 0.9 mM · g-1 of amino groups and 14 wt.% of iron according to elemental analysis and AAS, respectively. The particles were conjugated to p46/Myo1C protein, a potential biomarker of autoimmune diseases, to isolate specific autoantibodies in the blood of patients suffering from multiple sclerosis (MS). The p46/Myo1C loaded microspheres are shown to enable the preconcentration of minute quantities of specific immunoglobulins prior to their quantification via SDS-PAGE. The immunoglobulin M (IgM) with affinity to Myo1C was detected in MS patients. Graphical abstract Monodisperse magnetic poly(glycidyl methacrylate) microspheres were synthesized, conjugated with 46 kDa form of unconventional Myo1C protein (p46/Myo1C) via carbodiimide (DIC) chemistry, and specific autoantibodies isolated from blood of multiple sclerosis (MS) patients; immunoglobulin M (IgM) level increased in MS patients.
Collapse
Affiliation(s)
- Beata A Zasońska
- Department of Polymer Particles, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Helena Hlídková
- Department of Polymer Particles, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Eduard Petrovský
- Geomagnetic Department, Institute of Geophysics, Academy of Sciences of the Czech Republic, Boční II/1401, 141 31, Prague 4, Czech Republic
| | - Severyn Myronovskij
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, NAS of Ukraine, Drahomanov Str. 14/16, Lviv, 79005, Ukraine
| | - Tetyana Nehrych
- Department of Neurology, Danylo Halytsky Lviv National Medical University, Pekarska Str. 69, Lviv, 79010, Ukraine
| | - Nazar Negrych
- Department of Neurology, Danylo Halytsky Lviv National Medical University, Pekarska Str. 69, Lviv, 79010, Ukraine
| | - Mariya Shorobura
- Department of Neurology, Danylo Halytsky Lviv National Medical University, Pekarska Str. 69, Lviv, 79010, Ukraine
| | - Volodymyr Antonyuk
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, NAS of Ukraine, Drahomanov Str. 14/16, Lviv, 79005, Ukraine
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, NAS of Ukraine, Drahomanov Str. 14/16, Lviv, 79005, Ukraine
| | - Yuriy Kit
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, NAS of Ukraine, Drahomanov Str. 14/16, Lviv, 79005, Ukraine
| | - Daniel Horák
- Department of Polymer Particles, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic.
| |
Collapse
|
8
|
Myronovskij SL, Boiko NM, Chumak VV, Shorobura MS, Lootsyk MD, Stoika RS, Kit YY. The characteristics of antibodies of mice immunized by human unconventional myosin 1c. UKRAINIAN BIOCHEMICAL JOURNAL 2017; 88:63-9. [PMID: 29235966 DOI: 10.15407/ubj88.06.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Specific antibodies produced against a protein of interest are invaluable tools for monitoring the protein structure, intracellular location and biological activity. Inoculation of murine lymphoma cells into the peritoneal cavity of immunized mice provides generation of ascitic fluid containing a significant amount of antibody with desired antigen specificity. Here we demonstrated that the intraperitoneal administration of murine lymphoma NK/Ly cells in mice immunized with 48 kDa isoform of human blood serum unconventional myosin 1c leads to generation of ascitic fluid that contained specific IgG-antibodies. These antibodies were capable of binding of the unconventional myosin 1c isolated from blood serum of patients with multiple sclerosis, rheumatoid arthritis and systemic lupus erythematosis, and could be used for diagnostics of several autoimmune diseases, the multiple sclerosis in particular.
Collapse
|
9
|
Magnetic poly(2-hydroxyethyl methacrylate) microspheres for affinity purification of monospecific anti-p46 kDa/Myo1C antibodies for early diagnosis of multiple sclerosis patients. Biosci Rep 2017; 37:BSR20160526. [PMID: 28351895 PMCID: PMC5484020 DOI: 10.1042/bsr20160526] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 11/17/2022] Open
Abstract
The aim of the present study is to develop new magnetic polymer microspheres with
functional groups available for easy protein and antibody binding. Monodisperse
macroporous poly(2-hydroxyethyl methacrylate) (PHEMA-COOH) microspheres
~4 µm in diameter and containing ∼1 mmol COOH/g
were synthesized by multistep swelling polymerization of 2-hydroxyethyl methacrylate
(HEMA), ethylene dimethacrylate (EDMA), and 2-[(methoxycarbonyl)methoxy]ethyl
methacrylate (MCMEMA), which was followed by MCMEMA hydrolysis. The microspheres were
rendered magnetic by precipitation of iron oxide inside the pores, which made them
easily separable in a magnetic field. Properties of the resulting magnetic
poly(2-hydroxyethyl methacrylate) (mgt.PHEMA) particles with COOH functionality were
examined by scanning and transmission electron microscopy (SEM and TEM), static
volumetric adsorption of helium and nitrogen, mercury porosimetry, Fourier transform
infrared (FTIR) and atomic absorption spectroscopy (AAS), and elemental analysis.
Mgt.PHEMA microspheres were coupled with p46/Myo1C protein purified from blood
serum of multiple sclerosis (MS) patients, which enabled easy isolation of
monospecific anti-p46/Myo1C immunoglobulin G (IgG) antibodies from crude
antibody preparations of mouse blood serum. High efficiency of this approach was
confirmed by SDS/PAGE, Western blot, and dot blot analyses. The newly
developed mgt.PHEMA microspheres conjugated with a potential disease biomarker,
p46/Myo1C protein, are thus a promising tool for affinity purification of
antibodies, which can improve diagnosis and treatment of MS patients.
Collapse
|