1
|
Tipbunjong C, Thitiphatphuvanon T, Pholpramool C, Surinlert P. Bisphenol-A Abrogates Proliferation and Differentiation of C2C12 Mouse Myoblasts via Downregulation of Phospho-P65 NF- κB Signaling Pathway. J Toxicol 2024; 2024:3840950. [PMID: 38449520 PMCID: PMC10917485 DOI: 10.1155/2024/3840950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 03/08/2024] Open
Abstract
Previous studies showed that bisphenol-A (BPA), a monomer of polycarbonate plastic, is leached out and contaminated in foods and beverages. This study aimed to investigate the effects of BPA on the myogenesis of adult muscle stem cells. C2C12 myoblasts were treated with BPA in both proliferation and differentiation conditions. Cytotoxicity, cell proliferation and differentiation, antioxidant activity, apoptosis, myogenic regulatory factors (MRFs) gene expression, and mechanism of BPA on myogenesis were examined. C2C12 myoblasts exposed to 25-50 µM BPA showed abnormal morphology, expressing numerous and long cytoplasmic extensions. Cell proliferation was inhibited and was accumulated in subG1 and S phases of the cell cycle, subsequently leading to apoptosis confirmed by nuclear condensation and the expression of apoptosis markers, cleaved caspase-9 and caspase-3. In addition, the activity of antioxidant enzymes, catalase, superoxide dismutase, and glutathione peroxidase was significantly decreased. Meanwhile, BPA suppressed myoblast differentiation by decreasing the number and size of multinucleated myotubes via the modulation of MRF gene expression. Moreover, BPA significantly inhibited the phosphorylation of P65 NF-κB in both proliferation and differentiation conditions. Altogether, the results revealed the adverse effects of BPA on myogenesis leading to abnormal growth and development via the inhibition of phospho-P65 NF-κB.
Collapse
Affiliation(s)
- Chittipong Tipbunjong
- Department of Anatomy, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | | | - Chumpol Pholpramool
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Piyaporn Surinlert
- Chulabhorn International College of Medicine, Thammasat University, Bangkok, Pathum-Thani 12120, Thailand
- Thammasat University Research Unit in Synthesis and Applications of Graphene, Thammasat University, Pathum-Thani 12120, Thailand
| |
Collapse
|
2
|
Bunn RC, Adatorwovor R, Smith RR, Ray PD, Fields SE, Keeble AR, Fry CS, Uppuganti S, Nyman JS, Fowlkes JL, Kalaitzoglou E. Pharmacologic Inhibition of Myostatin With a Myostatin Antibody Improves the Skeletal Muscle and Bone Phenotype of Male Insulin-Deficient Diabetic Mice. JBMR Plus 2023; 7:e10833. [PMID: 38025035 PMCID: PMC10652179 DOI: 10.1002/jbm4.10833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/18/2023] [Accepted: 10/01/2023] [Indexed: 12/01/2023] Open
Abstract
Type 1 diabetes (T1D) is associated with low bone and muscle mass, increased fracture risk, and impaired skeletal muscle function. Myostatin, a myokine that is systemically elevated in humans with T1D, negatively regulates muscle mass and bone formation. We investigated whether pharmacologic myostatin inhibition in a mouse model of insulin-deficient, streptozotocin (STZ)-induced diabetes is protective for bone and skeletal muscle. DBA/2J male mice were injected with low-dose STZ (diabetic) or vehicle (non-diabetic). Subsequently, insulin or palmitate Linbits were implanted and myostatin (REGN647-MyoAb) or control (REGN1945-ConAb) antibody was administered for 8 weeks. Body composition and contractile muscle function were assessed in vivo. Systemic myostatin, P1NP, CTX-I, and glycated hemoglobin (HbA1c) were quantified, and gastrocnemii were weighed and analyzed for muscle fiber composition and gene expression of selected genes. Cortical and trabecular parameters were analyzed (micro-computed tomography evaluations of femur) and cortical bone strength was assessed (three-point bending test of femur diaphysis). In diabetic mice, the combination of insulin/MyoAb treatment resulted in significantly higher lean mass and gastrocnemius weight compared with MyoAb or insulin treatment alone. Similarly, higher raw torque was observed in skeletal muscle of insulin/MyoAb-treated diabetic mice compared with MyoAb or insulin treatment. Additionally, muscle fiber cross-sectional area (CSA) was lower with diabetes and the combination treatment with insulin/MyoAb significantly improved CSA in type II fibers. Insulin, MyoAb, or insulin/MyoAb treatment improved several parameters of trabecular architecture (eg, bone volume fraction [BV/TV], trabecular connectivity density [Conn.D]) and cortical structure (eg, cortical bone area [Ct. Ar.], minimum moment of inertia [Imin]) in diabetic mice. Lastly, cortical bone biomechanical properties (stiffness and yield force) were also improved with insulin or MyoAb treatment. In conclusion, pharmacologic myostatin inhibition is beneficial for muscle mass, muscle function, and bone properties in this mouse model of T1D and its effects are both independent and additive to the positive effects of insulin. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- R Clay Bunn
- Department of Pediatrics and Barnstable Brown Diabetes CenterUniversity of KentuckyLexingtonKYUSA
| | - Reuben Adatorwovor
- Department of Biostatistics, College of Public HealthUniversity of KentuckyLexingtonKYUSA
| | - Rebecca R Smith
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKYUSA
| | - Philip D Ray
- Department of PediatricsUniversity of KentuckyLexingtonKYUSA
| | - Sarah E Fields
- College of Agriculture, Food and EnvironmentUniversity of KentuckyLexingtonKYUSA
| | | | | | - Sasidhar Uppuganti
- Department of Orthopaedic SurgeryVanderbilt University Medical CenterNashvilleTNUSA
| | - Jeffry S Nyman
- Department of Orthopaedic SurgeryVanderbilt University Medical CenterNashvilleTNUSA
- Department of Veterans AffairsTennessee Valley Healthcare SystemNashvilleTNUSA
| | - John L Fowlkes
- Department of Pediatrics and Barnstable Brown Diabetes CenterUniversity of KentuckyLexingtonKYUSA
| | - Evangelia Kalaitzoglou
- Department of Pediatrics and Barnstable Brown Diabetes CenterUniversity of KentuckyLexingtonKYUSA
| |
Collapse
|
3
|
Fujimaki S, Ono Y. Murine Models of Tenotomy-Induced Mechanical Overloading and Tail-Suspension-Induced Mechanical Unloading. Methods Mol Biol 2023; 2640:207-215. [PMID: 36995597 DOI: 10.1007/978-1-0716-3036-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Skeletal muscle is a highly plastic tissue that can alter its mass and strength in response to mechanical stimulation, such as overloading and unloading, which lead to muscle hypertrophy and atrophy, respectively. Mechanical loading in the muscle influences muscle stem cell dynamics, including activation, proliferation, and differentiation. Although experimental models of mechanical overloading and unloading have been widely used for the investigation of the molecular mechanisms regulating muscle plasticity and stem cell function, few studies have described the methods in detail. Here, we describe the appropriate procedures for tenotomy-induced mechanical overloading and tail-suspension-induced mechanical unloading, which are the most common and simple methods to induce muscle hypertrophy and atrophy in mouse models.
Collapse
Affiliation(s)
- Shin Fujimaki
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
4
|
Wang Y, Zhang Y, Chen K, Liu J, Wu D, Cheng Y, Wang H, Li Y. Insufficient S-adenosylhomocysteine hydrolase compromises the beneficial effect of diabetic BMSCs on diabetic cardiomyopathy. Stem Cell Res Ther 2022; 13:418. [PMID: 35964109 PMCID: PMC9375418 DOI: 10.1186/s13287-022-03099-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background Autologous stem cell therapy is a promising strategy for cardiovascular diseases including diabetic cardiomyopathy (DCM), but conclusions from clinical trials were compromised. We assumed that diabetes might induce the dysfunction of stem cells and thus limit its therapeutic effect. This study aimed to compare the effect of diabetes and nondiabetes-derived bone marrow mesenchymal stem cells (BMSCs) transplantation on DCM and explored the potential mechanism. Methods Rats with diabetes were induced using high-fat diets and streptozotocin (STZ) injection. BMSCs harvested from diabetic and nondiabetic rats were infused into DCM rats, and the effects on the heart were identified by echocardiography and histopathology. The inhibition or overexpression of SAHH in nondiabetic and diabetic BMSCs was used to confirm its key role in stem cell activity and cardiac therapy. Results Compared with normal BMSCs, the therapeutic effects of diabetic rat-derived stem cells on improving cardiac function and adverse remodeling were significantly attenuated. In vitro, diabetic BMSCs had lower cell viability and paracrine function than nondiabetic BMSCs. It was further found that diabetic BMSCs had obvious mitochondrial oxidative stress damage and S-adenosylhomocysteine (SAH) accumulation due to S-adenosylhomocysteine hydrolase (SAHH) deficiency. SAHH inhibition by adenosine dialdehyde (ADA) or shSAHH plasmid in normal BMSCs significantly reduced the favorable effects on endothelial cell proliferation and tube-forming capacity. In contrast, SAHH overexpression in diabetic BMSCs significantly improved cellular activity and paracrine function. Transplantation of BMSCs with SAHH overexpression improved cardiac adverse remodeling and angiogenesis. Activation of the Nrf2 signaling pathway may be one of the key mechanisms of SAHH-mediated improvement of stem cell viability and cardiac repair. Conclusions Diabetes leads to compromised bioactivity and repair capacity of BMSCs. Our study suggests that SAHH activation may improve the cardioprotective effect of autologous transplantation of diabetes-derived BMSCs on patients with DCM. Graphical abstract Diabetes induced the inhibition of S-adenosylhomocysteine (SAH) expression and aging phenotype in BMSCs and thus decreased the cell viability and paracrine function. Compared with normal BMSCs, the therapeutic effects of diabetic rat-derived BMSCs on improving cardiac function and adverse remodeling were significantly attenuated. SAHH overexpression in diabetic BMSCs significantly rescued cellular function partly via activating Nrf2/HO-1 signal. Transplantation of diabetic BMSCs with SAHH overexpression improved angiogenesis and cardiac adverse remodeling in rats.![]() Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03099-1.
Collapse
Affiliation(s)
- Ying Wang
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China.,Department of Endocrinology, First Hospital of Harbin, Harbin, People's Republic of China
| | - Yuying Zhang
- Department of Pathology, First Hospital of Harbin, Harbin, People's Republic of China
| | - Kegong Chen
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Future Medical Laboratory, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Jie Liu
- Department of Endocrinology, First Hospital of Harbin, Harbin, People's Republic of China
| | - Donghong Wu
- Department of Endocrinology, First Hospital of Harbin, Harbin, People's Republic of China
| | - Yao Cheng
- Department of Endocrinology, First Hospital of Harbin, Harbin, People's Republic of China
| | - Hongjie Wang
- Department of Endocrinology, Forth Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Yanbo Li
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China. .,Department of Endocrinology, South China Hospital of Shenzhen University, No. 1 Fuxin Road, Longgang District, Shenzhen, 518116, People's Republic of China.
| |
Collapse
|
5
|
alinejad H, abbassi daloii A, farzanegi P, abdi A. Response of Cardiac Tissue β-catenin and GSK-3β to Aerobic Training and Hyaluronic Acid in Knee OA Model Rats. MEDICAL LABORATORY JOURNAL 2021. [DOI: 10.29252/mlj.15.1.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
6
|
Húngaro TGR, Freitas-Lima LC, Gregnani MF, Perilhão MS, Alves-Silva T, Arruda AC, Barrera-Chimal J, Estrela GR, Araújo RC. Physical Exercise Exacerbates Acute Kidney Injury Induced by LPS via Toll-Like Receptor 4. Front Physiol 2020; 11:768. [PMID: 32765291 PMCID: PMC7380174 DOI: 10.3389/fphys.2020.00768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022] Open
Abstract
Introduction: Lipopolysaccharide (LPS) is a systemic response-triggering endotoxin, which has the kidney as one of its first targets, thus causing acute injuries to this organ. Physical exercise is capable of promoting physiological alterations and modulating inflammatory responses in the infectious process through multiple parameters, including the toll-like receptor (TLR)-4 pathway, which is the main LPS signaling in sepsis. Additionally, previous studies have shown that physical exercise can be both a protector factor and an aggravating factor for some kidney diseases. This study aims at analyzing whether physical exercise before the induction of LPS endotoxemia can protect kidneys from acute kidney injury. Methods: C57BL/6J male mice, 12 weeks old, were distributed into four groups: (1) sedentary (control, N = 7); (2) sedentary + LPS (N = 7); (3) trained (N = 7); and (4) trained + LPS (N = 7). In the training groups, the animals exercised 5×/week in a treadmill, 60 min/day, for 4 weeks (60% of max. velocity). Sepsis was induced in the training group by the application of a single dose of LPS (5 mg/kg i.p.). Sedentary animals received LPS on the same day, and the non-LPS groups received a saline solution instead. All animals were euthanized 24 h after the administration of LPS or saline. Results: The groups receiving LPS presented a significant increase in serum urea (p < 0.0001) and creatinine (p < 0.001) concentration and renal gene expression of inflammatory markers, such as tumor necrosis factor alpha and interleukin-6, as well as TLRs. In addition, LPS promoted a decrease in reduced glutathione. Compared to the sedentary + LPS group, trained + LPS showed overexpression of a gene related to kidney injury (NGAL, p < 0.01) and the protein levels of LPS receptor TLR-4 (p < 0.01). Trained + LPS animals showed an expansion of the tubulointerstitial space in the kidney (p < 0.05) and a decrease in the gene expression of hepatic AOAH (p < 0.01), an enzyme involved in LPS clearance. Conclusion: In contrast to our hypothesis, training was unable to mitigate the renal inflammatory response caused by LPS. On the contrary, it seems to enhance injury by accentuating endotoxin-induced TLR-4 signaling. This effect could be partly due to the modulation of a hepatic enzyme that detoxifies LPS.
Collapse
Affiliation(s)
- Talita Guerreiro Rodrigues Húngaro
- Laboratório de Genética e Metabolismo do Exercício, Programa de Nefrologia, Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Leandro Ceotto Freitas-Lima
- Laboratório de Genética e Metabolismo do Exercício, Programa de Biologia Molecular, Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcos Fernandes Gregnani
- Laboratório de Genética e Metabolismo do Exercício, Programa de Biologia Molecular, Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mauro Sérgio Perilhão
- Laboratório de Genética e Metabolismo do Exercício, Programa de Nefrologia, Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Thaís Alves-Silva
- Laboratório de Genética e Metabolismo do Exercício, Programa de Biologia Molecular, Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Adriano Cleis Arruda
- Laboratório de Genética e Metabolismo do Exercício, Programa de Nefrologia, Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jonatan Barrera-Chimal
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Gabriel Rufino Estrela
- Departamento de Oncologia Clínica e Experimental, Disciplina de Hematologia e Hematoterapia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ronaldo Carvalho Araújo
- Laboratório de Genética e Metabolismo do Exercício, Programa de Nefrologia, Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil.,Laboratório de Genética e Metabolismo do Exercício, Programa de Biologia Molecular, Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Improvement of Skeletal Muscle Regeneration by Platelet-Rich Plasma in Rats with Experimental Chronic Hyperglycemia. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6980607. [PMID: 32766312 PMCID: PMC7374220 DOI: 10.1155/2020/6980607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/05/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
Herein, the structural effect of autologous platelet-rich plasma (PRP) on posttraumatic skeletal muscle regeneration in rats with chronic hyperglycemia (CH) was tested. 130 white laboratory male rats divided into four groups (I—control; II—rats with CH; III—rats with CH and PRP treatment; and IV—rats for CH confirmation) were used for the experiment. CH was simulated by streptozotocin and nicotinic acid administration. Triceps surae muscle injury was reproduced by transverse linear incision. Autologous PRP was used in order to correct the possible negative CH effect on skeletal muscle recovery. On the 28th day after the injury, the regenerating muscle fiber and blood vessel number in the CH+PRP group were higher than those in the CH rats. However, the connective tissue area in the CH group was larger than that in the CH+PRP animals. The amount of agranulocytes in the regenerating muscle of the CH rats was lower compared to that of the CH+PRP group. The histological analysis of skeletal muscle recovery in CH+PRP animals revealed more intensive neoangiogenesis compared to that in the CH group. Herewith, the massive connective tissue development and inflammation signs were observed within the skeletal muscle of CH rats. Obtained results suggest that streptozotocin-induced CH has a negative effect on posttraumatic skeletal muscle regeneration, contributing to massive connective tissue development. The autologous PRP injection promotes muscle recovery process in rats with CH, shifting it away from fibrosis toward the complete muscular organ repair.
Collapse
|
8
|
Bostani M, Rahmati M, Mard SA. The effect of endurance training on levels of LINC complex proteins in skeletal muscle fibers of STZ-induced diabetic rats. Sci Rep 2020; 10:8738. [PMID: 32457392 PMCID: PMC7251114 DOI: 10.1038/s41598-020-65793-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
The changes of the linker of nucleoskeleton and cytoskeleton (LINC) complex have been studied in many muscular abnormality conditions; however, the effects of diabetes and physical activities on it have still remained to be defined. Therefore, the purpose of the this study was to evaluate the impacts of a six-week endurance training on the levels of SUN1 and Nesprin-1 proteins in Soleus and EDL muscles from diabetic wistar rats. A total number of 48 male Wistar rats (10 weeks, 200-250 gr) were randomly divided into healthy control (HC, N = 12), healthy trained (HT, N = 12), diabetic control (DC, N = 12), and diabetic trained (DT, N = 12) groups. Diabetes was also induced by a single intraperitoneally injection of streptozocin (45 mg/kg). The training groups ran a treadmill for five consecutive days within six weeks. The levels of the SUN1 and the Nesprin-1 proteins were further determined via ELISA method. The induction of diabetes had significantly decreased the levels of Nesprin-1 protein in the soleus and EDL muscles but it had no effects on the SUN1 in these muscles. As well, the findings revealed that six weeks of endurance training had significantly increased the levels of Nesprin-1 in DT and HT groups in the soleus as well as the EDL muscles; however, it had no impacts on the SUN1 in these muscles. The muscle fiber cross-sectional area (CSA) and myonuclei also decreased in diabetic control rats in both studied muscles. The training further augmented these parameters in both studied muscles in HT and DT groups. The present study provides new evidence that diabetes changes Nesprin-1 protein levels in skeletal muscle and endurance exercise training can modify it.
Collapse
Affiliation(s)
- Mehdi Bostani
- Department of Physical Education, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran.
| | - Seyyed Ali Mard
- Alimentary Tract Research Center and Physiology Research Center, Department of Physiology, The School of Medicine, Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
9
|
Shanaki M, Khosravi M, Khoshdooni-Farahani A, Dadashi A, Heydari MF, Delfan M, Jafary H, Gorgani-Firuzjaee S. High-Intensity Interval Training Reversed High-Fat Diet-Induced M1-Macrophage Polarization in Rat Adipose Tissue via Inhibition of NOTCH Signaling. J Inflamm Res 2020; 13:165-174. [PMID: 32231438 PMCID: PMC7085339 DOI: 10.2147/jir.s237049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/22/2020] [Indexed: 12/29/2022] Open
Abstract
Introduction There is accumulating evidence on the beneficial effect of exercise intervention in the management of metabolic disorders; however, the molecular mechanism is still unclear. Here, the current study aimed to compare the effect of high-intensity interval training (HIIT) and continuous endurance training (CET) on serum and adipose-tissue markers of M1/M2 macrophage polarization. Methods A total of 45 healthy male Wistar rats were divided into groups of normal chow (n=10) and high-fat diet (HFD) (n=35). Then, rats receiving the HFD were randomly divided into four groups. Training programs were performed for 5 days/week over 10 weeks. The CET protocol included 30 minutes running at 50%–60% of VO2max. The HIIT protocol consisted of five repeated intervals of 2-minute sprints on the treadmill at 80%–90% VO2max workload with 1 minute's 30%–35% VO2max interval for each rat. Then, biochemical parameters were assessed. Macrophage-polarization markers were assessed at mRNA and protein levels by real-time PCR and Western blotting, respectively. Results Both exercise-training programs, especially HIIT, reversed increased serum biochemical parameters (glucose, triglycerides, cholesterol, Homeostatic Model Assessment of Insulin Resistance, and hsCRP), M1-polarization markers (circulating IL6, TNFα, and adipose-tissue mRNA expression of IL6, TNFα and iNOS), M2 markers (CD206, CD163, and IL10 expression), as well as pIκKB, pNFκB, and NICD expression in HFD-induced diabetes. Conclusion Our findings suggest that despite devoting less time, the HIIT workout is a more effective intervention for diabetes management. Moreover, HIIT reverses HFD-induced macrophage polarization by targeting the NFκB and NOTCH signaling pathways.
Collapse
Affiliation(s)
- Mehrnoosh Shanaki
- Department of Medical Laboratory Sciences, School of Allied Health Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Khosravi
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Alireza Dadashi
- Department of Infectious Disease, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammad Foad Heydari
- Department of Medical Laboratory Sciences, School of Allied Health Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Maryam Delfan
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Alzahra University, Tehran, Iran
| | - Hanieh Jafary
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sattar Gorgani-Firuzjaee
- Department of Medical Laboratory Sciences, School of Allied Health Medicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Ikeda Y, Satoh A, Horinouchi Y, Hamano H, Watanabe H, Imao M, Imanishi M, Zamami Y, Takechi K, Izawa‐Ishizawa Y, Miyamoto L, Hirayama T, Nagasawa H, Ishizawa K, Aihara K, Tsuchiya K, Tamaki T. Iron accumulation causes impaired myogenesis correlated with MAPK signaling pathway inhibition by oxidative stress. FASEB J 2019; 33:9551-9564. [DOI: 10.1096/fj.201802724rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yasumasa Ikeda
- Department of Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| | - Akiho Satoh
- Department of Medical Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| | - Yuya Horinouchi
- Department of Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| | - Hirofumi Hamano
- Department of Pharmacy Tokushima University Hospital Tokushima Japan
| | - Hiroaki Watanabe
- Department of Clinical Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| | - Mizuki Imao
- Department of Medical Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| | - Masaki Imanishi
- Department of Pharmacy Tokushima University Hospital Tokushima Japan
| | - Yoshito Zamami
- Department of Clinical Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
- Department of Pharmacy Tokushima University Hospital Tokushima Japan
| | - Kenshi Takechi
- Clinical Trial Center for Developmental Therapeutics Tokushima University Hospital Tokushima Japan
| | - Yuki Izawa‐Ishizawa
- Department of Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| | - Licht Miyamoto
- Department of Medical Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry Gifu Pharmaceutical University Gifu Japan
| | - Hideko Nagasawa
- Laboratory of Pharmaceutical and Medicinal Chemistry Gifu Pharmaceutical University Gifu Japan
| | - Keisuke Ishizawa
- Department of Clinical Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
- Department of Pharmacy Tokushima University Hospital Tokushima Japan
| | - Ken‐Ichi Aihara
- Department of Community Medicine for Diabetes and Metabolic Disorders Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| | - Koichiro Tsuchiya
- Department of Medical Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| | - Toshiaki Tamaki
- Department of Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| |
Collapse
|
11
|
Nutmeg Extract Increases Skeletal Muscle Mass in Aging Rats Partly via IGF1-AKT-mTOR Pathway and Inhibition of Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2810840. [PMID: 30647761 PMCID: PMC6311876 DOI: 10.1155/2018/2810840] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/31/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023]
Abstract
The sarcopenic phenotype is characterized by a reduction of muscle mass, a shift in fiber-type distribution, and reduced satellite cell regeneration. Sarcopenia is still a major challenge to healthy aging. Traditional Indonesian societies in Sulawesi island have been using nutmeg for maintaining health condition during aging. Interestingly, nutmeg has been known to stimulate peroxisome proliferator activated receptors γ (PPARγ) which may contribute to myogenesis process in cardiac muscle. There is limited information about the role of nutmeg extract into physiological health benefit during aging especially myogenesis process in skeletal muscle. In the present study, we want to explore the potential effect of nutmeg in preserving skeletal muscle mass of aging rats. Aging rats, 80 weeks old, were divided into two groups (control and nutmeg). Nutmeg extract was administered for 12 weeks by gavaging. After treatment, rats were anaesthesized, then soleus and gastrocnemius muscles were collected, weighted, frozen using liquid nitrogen, and stored at -80°C until use. We observed phenomenon that nutmeg increased a little but significant food consumption on week 12, but significant decrease in body weight on weeks 10 and 12 unexpectedly increased significantly in soleus muscle weight (p<0.05). Nutmeg extract increased significantly gene expression of myogenic differentiation (MyoD), paired box 7 (Pax7), myogenin, myosin heavy chain I (MHC I), and insulin-like growth factor I (p<0.01) in soleus muscle. Furthermore, nutmeg increased serine/threonine kinase (AKT) protein levels and activation of mammalian target of rapamycin (mTOR), inhibited autophagy activity, and stimulated or at least preserved muscle mass during aging. Taken together, nutmeg extract may increase muscle mass or prevent decrease of muscle wasting in soleus muscle by partly stimulating myogenesis, regeneration process, and preserving muscle mass via IGF-AKT-mTOR pathway leading to inhibition of autophagy activity during aging. This finding may reveal the potential nutmeg benefits as alternative supplement for preserving skeletal muscle mass and preventing sarcopenia in elderly.
Collapse
|
12
|
Diabetes-Induced Dysfunction of Mitochondria and Stem Cells in Skeletal Muscle and the Nervous System. Int J Mol Sci 2017; 18:ijms18102147. [PMID: 29036909 PMCID: PMC5666829 DOI: 10.3390/ijms18102147] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/11/2017] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus is one of the most common metabolic diseases spread all over the world, which results in hyperglycemia caused by the breakdown of insulin secretion or insulin action or both. Diabetes has been reported to disrupt the functions and dynamics of mitochondria, which play a fundamental role in regulating metabolic pathways and are crucial to maintain appropriate energy balance. Similar to mitochondria, the functions and the abilities of stem cells are attenuated under diabetic condition in several tissues. In recent years, several studies have suggested that the regulation of mitochondria functions and dynamics is critical for the precise differentiation of stem cells. Importantly, physical exercise is very useful for preventing the diabetic alteration by improving the functions of both mitochondria and stem cells. In the present review, we provide an overview of the diabetic alterations of mitochondria and stem cells and the preventive effects of physical exercise on diabetes, focused on skeletal muscle and the nervous system. We propose physical exercise as a countermeasure for the dysfunction of mitochondria and stem cells in several target tissues under diabetes complication and to improve the physiological function of patients with diabetes, resulting in their quality of life being maintained.
Collapse
|