1
|
Wu Z, Zang Y, Li C, He Z, Liu J, Du Z, Ma X, Jing L, Duan H, Feng J, Yan X. CD146, a therapeutic target involved in cell plasticity. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1563-1578. [PMID: 38613742 DOI: 10.1007/s11427-023-2521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/28/2023] [Indexed: 04/15/2024]
Abstract
Since its identification as a marker for advanced melanoma in the 1980s, CD146 has been found to have multiple functions in both physiological and pathological processes, including embryonic development, tissue repair and regeneration, tumor progression, fibrosis disease, and inflammations. Subsequent research has revealed that CD146 is involved in various signaling pathways as a receptor or co-receptor in these processes. This correlation between CD146 and multiple diseases has sparked interest in its potential applications in diagnosis, prognosis, and targeted therapy. To better comprehend the versatile roles of CD146, we have summarized its research history and synthesized findings from numerous reports, proposing that cell plasticity serves as the underlying mechanism through which CD146 contributes to development, regeneration, and various diseases. Targeting CD146 would consequently halt cell state shifting during the onset and progression of these related diseases. Therefore, the development of therapy targeting CD146 holds significant practical value.
Collapse
Affiliation(s)
- Zhenzhen Wu
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuzhe Zang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuyi Li
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiheng He
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyu Liu
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoqi Du
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinran Ma
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Jing
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongxia Duan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, 451163, China.
| | - Jing Feng
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, 451163, China.
- Joint Laboratory of Nanozymes in Zhengzhou University, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Sultan MH, Bedair R, Ragab OG, Abd-ELShafy E, Mahfouz AY, Daigham GE. Biological activities and ecological aspects of Limonium pruinosum (L.) collected from Wadi Hof Eastern Desert, Egypt, as a promising attempt for potential medical applications. BIOMASS CONVERSION AND BIOREFINERY 2023. [DOI: 10.1007/s13399-023-04385-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 09/02/2023]
Abstract
Abstract
Very few researchers have focused on the biological efficacy of Limonium plants. In this concern, no investigations were commenced to delve into the in vitro and ex vivo biological actions of Limonium pruinosum in Egypt. Therefore, this work aims to assess for the first time the antimicrobial, antioxidant, and antitumor activities of Limonium pruinosum extract in addition to studying its ability to suppress the transcription of cell cycle–stimulating genes. L. pruinosum ethyl acetate extract exhibits considerable antibacterial and antibiofilm activity versus E. coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Results revealed that L. pruinosum exerts antioxidant effectiveness concerning DPPH, nitric oxide (NO), and hydroxyl radical (OH) scavenging ability with an IC50 (35.88 ± 2.2, 51.31 ± 1.06, and 65.87 ± 1.19 μg/mL) respectively. The results proved the effectiveness of L. pruinosum in closing wounds in gastric epithelial cells (GES-1) by (79.9343 ± 1.98%) compared with control (68.3637 ± 2.32%) in 48 h. Additionally, L. pruinosum had anticancer activity contrary to breast cancer MCF-7 and liver cancer HepG-2 cell lines with IC50 values of 96.73 ± 2.18 and 81.81 ± 0.99 μg/mL, respectively, while it had no cytotoxic activity against (Wi-38) normal cells. Also, L. pruinosum extract provoked considerable early- and late-apoptotic cell populations and was effective in inducing cell death of MCF-7. Our findings evoked that L. pruinosum has promising antibacterial, antioxidant, and wound healing activities and a good breast tumor suppressor arresting the cell cycle-stimulating genes, which may be an auspicious approach for the treatment of breast cancer.
Collapse
|
3
|
de Jong E, Kocer A. Current Methods for Identifying Plasma Membrane Proteins as Cancer Biomarkers. MEMBRANES 2023; 13:409. [PMID: 37103836 PMCID: PMC10142483 DOI: 10.3390/membranes13040409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Plasma membrane proteins are a special class of biomolecules present on the cellular membrane. They provide the transport of ions, small molecules, and water in response to internal and external signals, define a cell's immunological identity, and facilitate intra- and intercellular communication. Since they are vital to almost all cellular functions, their mutants, or aberrant expression is linked to many diseases, including cancer, where they are a part of cancer cell-specific molecular signatures and phenotypes. In addition, their surface-exposed domains make them exciting biomarkers for targeting by imaging agents and drugs. This review looks at the challenges in identifying cancer-related cell membrane proteins and the current methodologies that solve most of the challenges. We classified the methodologies as biased, i.e., search cells for the presence of already known membrane proteins. Second, we discuss the unbiased methods that can identify proteins without prior knowledge of what they are. Finally, we discuss the potential impact of membrane proteins on the early detection and treatment of cancer.
Collapse
|
4
|
Muench MO, Fomin ME, Gutierrez AG, López-Terrada D, Gilfanova R, Nosworthy C, Beyer AI, Ostolaza G, Kats D, Matlock KL, Cairo S, Keller C. CD203c is expressed by human fetal hepatoblasts and distinguishes subsets of hepatoblastoma. Front Oncol 2023; 13:927852. [PMID: 36845728 PMCID: PMC9947649 DOI: 10.3389/fonc.2023.927852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Background & Aims Hepatocytic cells found during prenatal development have unique features compared to their adult counterparts, and are believed to be the precursors of pediatric hepatoblastoma. The cell-surface phenotype of hepatoblasts and hepatoblastoma cell lines was evaluated to discover new markers of these cells and gain insight into the development of hepatocytic cells and the phenotypes and origins of hepatoblastoma. Methods Human midgestation livers and four pediatric hepatoblastoma cell lines were screened using flow cytometry. Expression of over 300 antigens was evaluated on hepatoblasts defined by their expression of CD326 (EpCAM) and CD14. Also analyzed were hematopoietic cells, expressing CD45, and liver sinusoidal-endothelial cells (LSECs), expressing CD14 but lacking CD45 expression. Select antigens were further examined by fluorescence immunomicroscopy of fetal liver sections. Antigen expression was also confirmed on cultured cells by both methods. Gene expression analysis by liver cells, 6 hepatoblastoma cell lines, and hepatoblastoma cells was performed. Immunohistochemistry was used to evaluate CD203c, CD326, and cytokeratin-19 expression on three hepatoblastoma tumors. Results Antibody screening identified many cell surface markers commonly or divergently expressed by hematopoietic cells, LSECs, and hepatoblasts. Thirteen novel markers expressed on fetal hepatoblasts were identified including ectonucleotide pyrophosphatase/phosphodiesterase family member 3 (ENPP-3/CD203c), which was found to be expressed by hepatoblasts with widespread expression in the parenchyma of the fetal liver. In culture CD203c+CD326++ cells resembled hepatocytic cells with coexpression of albumin and cytokeratin-19 confirming a hepatoblast phenotype. CD203c expression declined rapidly in culture whereas the loss of CD326 was not as pronounced. CD203c and CD326 were co-expressed on a subset of hepatoblastoma cell lines and hepatoblastomas with an embryonal pattern. Conclusions CD203c is expressed on hepatoblasts and may play a role in purinergic signaling in the developing liver. Hepatoblastoma cell lines were found to consist of two broad phenotypes consisting of a cholangiocyte-like phenotype that expressed CD203c and CD326 and a hepatocyte-like phenotype with diminished expression of these markers. CD203c was expressed by some hepatoblastoma tumors and may represent a marker of a less differentiated embryonal component.
Collapse
Affiliation(s)
- Marcus O. Muench
- Vitalant Research Institute, San Francisco, CA, United States,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States,*Correspondence: Marcus O. Muench,
| | - Marina E. Fomin
- Vitalant Research Institute, San Francisco, CA, United States
| | | | - Dolores López-Terrada
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States,Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX, United States
| | | | | | - Ashley I. Beyer
- Vitalant Research Institute, San Francisco, CA, United States
| | | | - Dina Kats
- Pediatric Cancer Biology, Children’s Cancer Therapy Development Institute, Beaverton, OR, United States
| | | | - Stefano Cairo
- Research and Development Unit, XenTech, Evry, France
| | - Charles Keller
- Pediatric Cancer Biology, Children’s Cancer Therapy Development Institute, Beaverton, OR, United States
| |
Collapse
|