1
|
Garcia SN, Guedes RC, Marques MM. Unlocking the Potential of HK2 in Cancer Metabolism and Therapeutics. Curr Med Chem 2020; 26:7285-7322. [PMID: 30543165 DOI: 10.2174/0929867326666181213092652] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/26/2018] [Accepted: 11/06/2018] [Indexed: 12/24/2022]
Abstract
Glycolysis is a tightly regulated process in which several enzymes, such as Hexokinases (HKs), play crucial roles. Cancer cells are characterized by specific expression levels of several isoenzymes in different metabolic pathways and these features offer possibilities for therapeutic interventions. Overexpression of HKs (mostly of the HK2 isoform) have been consistently reported in numerous types of cancer. Moreover, deletion of HK2 has been shown to decrease cancer cell proliferation without explicit side effects in animal models, which suggests that targeting HK2 is a viable strategy for cancer therapy. HK2 inhibition causes a substantial decrease of glycolysis that affects multiple pathways of central metabolism and also destabilizes the mitochondrial outer membrane, ultimately enhancing cell death. Although glycolysis inhibition has met limited success, partly due to low selectivity for specific isoforms and excessive side effects of the reported HK inhibitors, there is ample ground for progress. The current review is focused on HK2 inhibition, envisaging the development of potent and selective anticancer agents. The information on function, expression, and activity of HKs is presented, along with their structures, known inhibitors, and reported effects of HK2 ablation/inhibition. The structural features of the different isozymes are discussed, aiming to stimulate a more rational approach to the design of selective HK2 inhibitors with appropriate drug-like properties. Particular attention is dedicated to a structural and sequence comparison of the structurally similar HK1 and HK2 isoforms, aiming to unveil differences that could be explored therapeutically. Finally, several additional catalytic- and non-catalytic roles on different pathways and diseases, recently attributed to HK2, are reviewed and their implications briefly discussed.
Collapse
Affiliation(s)
- Sara N Garcia
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.,iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Rita C Guedes
- iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - M Matilde Marques
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| |
Collapse
|
2
|
Mailer RKW, Hänel L, Allende M, Renné T. Polyphosphate as a Target for Interference With Inflammation and Thrombosis. Front Med (Lausanne) 2019; 6:76. [PMID: 31106204 PMCID: PMC6499166 DOI: 10.3389/fmed.2019.00076] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/28/2019] [Indexed: 12/19/2022] Open
Abstract
Activated platelets and mast cells expose the inorganic polymer, polyphosphate (polyP) on their surfaces. PolyP initiates procoagulant and proinflammatory reactions and the polymer has been recognized as a therapeutic target for interference with blood coagulation and vascular hyperpermeability. PolyP content and chain length depend on the specific cell type and energy status, which may affect cellular functions. PolyP metabolism has mainly been studied in bacteria and yeast, but its roles in eukaryotic cells and mammalian systems have remained enigmatic. In this review, we will present an overview of polyP functions, focusing on intra- and extracellular roles of the polymer and discuss open questions that emerge from the current knowledge on polyP regulation.
Collapse
Affiliation(s)
- Reiner K W Mailer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lorena Hänel
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mikel Allende
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Reshetnikov AS, Solntseva NP, Rozova ON, Mustakhimov II, Trotsenko YA, Khmelenina VN. ATP- and Polyphosphate-Dependent Glucokinases from Aerobic Methanotrophs. Microorganisms 2019; 7:microorganisms7020052. [PMID: 30769875 PMCID: PMC6406325 DOI: 10.3390/microorganisms7020052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/01/2019] [Accepted: 02/12/2019] [Indexed: 11/28/2022] Open
Abstract
The genes encoding adenosine triphosphate (ATP)- and polyphosphate (polyP)-dependent glucokinases (Glk) were identified in the aerobic obligate methanotroph Methylomonas sp. 12. The recombinant proteins were obtained by the heterologous expression of the glk genes in Esherichia coli. ATP-Glk behaved as a multimeric protein consisting of di-, tri-, tetra-, penta- and hexamers with a subunit molecular mass of 35.5 kDa. ATP-Glk phosphorylated glucose and glucosamine using ATP (100% activity), uridine triphosphate (UTP) (85%) or guanosine triphosphate (GTP) (71%) as a phosphoryl donor and exhibited the highest activity in the presence of 5 mM Mg2+ at pH 7.5 and 65 °C but was fully inactivated after a short-term incubation at this temperature. According to a gel filtration in the presence of polyP, the polyP-dependent Glk was a dimeric protein (2 × 28 kDa). PolyP-Glk phosphorylated glucose, mannose, 2-deoxy-D-glucose, glucosamine and N-acetylglucosamine using polyP as the phosphoryl donor but not using nucleoside triphosphates. The Km values of ATP-Glk for glucose and ATP were about 78 μM, and the Km values of polyP-Glk for glucose and polyP(n=45) were 450 and 21 μM, respectively. The genomic analysis of methanotrophs showed that ATP-dependent glucokinase is present in all sequenced methanotrophs, with the exception of the genera Methylosinus and Methylocystis, whereas polyP-Glks were found in all species of the genus Methylomonas and in Methylomarinum vadi only. This work presents the first characterization of polyphosphate specific glucokinase in a methanotrophic bacterium.
Collapse
Affiliation(s)
- Alexander S Reshetnikov
- Laboratory of Methylotrophy, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino 142290, Russia.
| | - Natalia P Solntseva
- Department of Microbiology and Biotechnology, Pushchino State Institute of Natural Sciences, Prospect Nauki 3, Pushchino 142290, Russia.
| | - Olga N Rozova
- Laboratory of Methylotrophy, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino 142290, Russia.
| | - Ildar I Mustakhimov
- Laboratory of Methylotrophy, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino 142290, Russia.
- Department of Microbiology and Biotechnology, Pushchino State Institute of Natural Sciences, Prospect Nauki 3, Pushchino 142290, Russia.
| | - Yuri A Trotsenko
- Laboratory of Methylotrophy, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino 142290, Russia.
- Department of Microbiology and Biotechnology, Pushchino State Institute of Natural Sciences, Prospect Nauki 3, Pushchino 142290, Russia.
| | - Valentina N Khmelenina
- Laboratory of Methylotrophy, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino 142290, Russia.
| |
Collapse
|
4
|
Nakamura A, Kawano N, Motomura K, Kuroda A, Sekiguchi K, Miyado M, Kang W, Miyamoto Y, Hanai M, Iwai M, Yamada M, Hamatani T, Saito T, Saito H, Tanaka M, Umezawa A, Miyado K. Degradation of phosphate polymer polyP enhances lactic fermentation in mice. Genes Cells 2018; 23:904-914. [PMID: 30144248 DOI: 10.1111/gtc.12639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 01/10/2023]
Abstract
In bacteria, a polymer of inorganic phosphate (Pi) (inorganic polyphosphate; polyP) is enzymatically produced and consumed as an alternative phosphate donor for adenosine triphosphate (ATP) production to protect against nutrient starvation. In vertebrates, polyP has been dismissed as a "molecular fossil" due to the lack of any known physiological function. Here, we have explored its possible role by producing transgenic (TG) mice widely expressing Saccharomyces cerevisiae exopolyphosphatase 1 (ScPPX1), which catalyzes hydrolytic polyP degradation. TG mice were produced and displayed reduced mitochondrial respiration in muscles. In female TG mice, the blood concentration of lactic acid was enhanced, whereas ATP storage in liver and brain tissues was reduced significantly. Thus, we suggested that the elongation of polyP reduces the intracellular Pi concentration, suppresses anaerobic lactic acid production, and sustains mitochondrial respiration. Our results provide an insight into the physiological role of polyP in mammals, particularly in females.
Collapse
Affiliation(s)
- Akihiro Nakamura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku, Tokyo, Japan.,Department of Reproductive Biology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
| | - Natsuko Kawano
- Department of Life Sciences, School of Agriculture, Meiji University, Tama, Kawasaki, Kanagawa, Japan
| | - Kei Motomura
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Akio Kuroda
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | | | - Mami Miyado
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
| | - Woojin Kang
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
| | - Yoshitaka Miyamoto
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
| | - Maito Hanai
- Department of Life Sciences, School of Agriculture, Meiji University, Tama, Kawasaki, Kanagawa, Japan
| | - Maki Iwai
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Mitsutoshi Yamada
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Toshio Hamatani
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Takakazu Saito
- Department of Perinatal Medicine and Maternal Care, National Center for Child Health and Development, Setagaya, Tokyo, Japan
| | - Hidekazu Saito
- Department of Perinatal Medicine and Maternal Care, National Center for Child Health and Development, Setagaya, Tokyo, Japan
| | - Mamoru Tanaka
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Akihiro Umezawa
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
| | - Kenji Miyado
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
| |
Collapse
|