1
|
Gao W, Liu J, Zhang P, Zeng XA, Han Z, Teng Y. Physicochemical, structural and functional properties of pomelo peel pectin extracted by combination of pulsed electric field and cellulase hydrolysis. Int J Biol Macromol 2024; 278:134469. [PMID: 39102911 DOI: 10.1016/j.ijbiomac.2024.134469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
In this study, pectin extracted from pomelo peel was investigated using three different combination methods of pulsed electric field (PEF) and cellulase. Three action sequences were performed, including PEF treatment followed by enzymatic hydrolysis, enzymatic hydrolysis followed by PEF treatment, and enzymatic hydrolysis simultaneously treated by PEF. The three corresponding pectins were namely PEP, EPP and SP. The physiochemical, molecular structural and functional properties of the three pectins were determined. The results showed that PEP had excellent physiochemical properties, with the highest yield (12.08 %), total sugar (80.17 %) and total phenol content (38.20 %). The monosaccharide composition and FT-IR analysis indicated that the three pectins were similar. The molecular weights of PEP, EPP and SP were 51.13, 88.51 and 40.00 kDa, respectively. PEP showed the best gel properties, emulsification stability and antioxidant capacity among the three products, due to its high galacturonic acid and total phenol content, appropriate protein and low molecular weight. The mechanism of PEF-assisted cellulase hydrolysis of pomelo peel was also revealed by SEM analysis. These results suggested that PEF pretreatment was the best method, which not only improved the efficiency of enzymatic extraction, but also reduced resource waste and increased financial benefits.
Collapse
Affiliation(s)
- Wenhong Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jiajing Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Peilin Zhang
- Guangdong Polytechnic Normal University, Guangzhou 510665, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Zhong Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yongxin Teng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
2
|
Elizondo Sada OM, Hiemstra IS, Chorhirankul N, Eppink M, Wijffels RH, Janssen AE, Kazbar A. Pressure-driven membrane processes for the recovery and recycling of deep eutectic solvents: A seaweed biorefinery case study. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 43:e00849. [PMID: 39050881 PMCID: PMC11268199 DOI: 10.1016/j.btre.2024.e00849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/28/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Deep eutectic solvents (DES) are green alternatives for conventional solvents. They have gained attention for their potential to extract valuable compounds from biomass, such as seaweed. In this framework, a case study was developed to assess the feasibility of pressure-driven membrane processes as an efficient tool for the recovery of deep eutectic solvents and targeted biomolecules. For this purpose, a mixture composed of the DES choline chloride - ethylene glycol (ChCl-EG) 1:2, water and alginate was made to mimic a DES extraction from seaweed. An integrated separation process design was proposed where ultrafiltration-diafiltration-nanofiltration (UF-DF-NF) was coupled. UF and DF were found to be effective for the separation of alginate with an 85 % yield. DES was likewise recovered by 93 %, proving the membrane filtrations' technical feasibility. The NF performance to separate the DES from the water, for its recycling, laid by a 45 %-50 % retention and a final concentrated DES solution of 18 %(v/v).
Collapse
Affiliation(s)
- Oscar M. Elizondo Sada
- Bioprocess Engineering, Wageningen University & Research, PO Box 16 Wageningen 6700 AA, the Netherlands
| | - Isa S.A. Hiemstra
- Bioprocess Engineering, Wageningen University & Research, PO Box 16 Wageningen 6700 AA, the Netherlands
| | - Nattawan Chorhirankul
- Food Process Engineering, Wageningen University & Research, PO Box 16 Wageningen 6700 AA, the Netherlands
| | - Michel Eppink
- Bioprocess Engineering, Wageningen University & Research, PO Box 16 Wageningen 6700 AA, the Netherlands
| | - Rene H. Wijffels
- Bioprocess Engineering, Wageningen University & Research, PO Box 16 Wageningen 6700 AA, the Netherlands
- Nord University, Faculty of Biosciences and Aquaculture, N8049, Bodo, Norway
| | - Anja E.M. Janssen
- Food Process Engineering, Wageningen University & Research, PO Box 16 Wageningen 6700 AA, the Netherlands
| | - Antoinette Kazbar
- Bioprocess Engineering, Wageningen University & Research, PO Box 16 Wageningen 6700 AA, the Netherlands
| |
Collapse
|
3
|
Li L, Jin Z, Wang C, Wang YC. Valorization of Food Waste: Utilizing Natural Porous Materials Derived from Pomelo-Peel Biomass to Develop Triboelectric Nanogenerators for Energy Harvesting and Self-Powered Sensing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37806-37817. [PMID: 38988002 DOI: 10.1021/acsami.4c02319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Food waste is an enormous challenge, with implications for the environment, society, and economy. Every year around the world, 1.3 billion tons of food are wasted or lost, and food waste-associated costs are around $2.6 trillion. Waste upcycling has been shown to mitigate these negative impacts. This study's optimized pomelo-peel biomass-derived porous material-based triboelectric nanogenerator (PP-TENG) had an open circuit voltage of 58 V and a peak power density of 254.8 mW/m2. As porous structures enable such triboelectric devices to respond sensitively to external mechanical stimuli, we tested our optimized PP-TENG's ability to serve as a self-powered sensor of biomechanical motions. As well as successfully harvesting sufficient mechanical energy to power light-emitting diodes and portable electronics, our PP-TENGs successfully monitored joint motions, neck movements, and gait patterns, suggesting their strong potential for use in healthcare monitoring and physical rehabilitation, among other applications. As such, the present work opens up various new possibilities for transforming a prolific type of food waste into value-added products and thus could enhance long-term sustainability while reducing such waste.
Collapse
Affiliation(s)
- Longwen Li
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zhenhui Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Chenxin Wang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi-Cheng Wang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Center for Digital Agriculture, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Liu X, Wang B, Tang S, Yue Y, Xi W, Tan X, Li G, Bai J, Huang L. Modification, biological activity, applications, and future trends of citrus fiber as a functional component: A comprehensive review. Int J Biol Macromol 2024; 269:131798. [PMID: 38677689 DOI: 10.1016/j.ijbiomac.2024.131798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/29/2024]
Abstract
Citrus fiber, a by-product of citrus processing that has significant nutritional and bioactive properties, has gained attention as a promising raw material with extensive developmental potential in the food, pharmaceutical, and feed industries. However, the lack of in-depth understanding regarding citrus fiber, including its structure, modification, mechanism of action, and potential applications is holding back its development and utilization in functional foods and drugs. This review explores the status of extraction methods and modifications applied to citrus fiber to augment its health benefits. With the aim of introducing readers to the potential health benefits of citrus fibers, we have placed special emphasis on their regulatory mechanisms in the context of various conditions, including type 2 diabetes mellitus, cardiovascular disease, obesity, and cancer. Furthermore, this review highlights the applications and prospects of citrus fiber, aiming to provide a theoretical basis for the utilization and exploration of this valuable resource.
Collapse
Affiliation(s)
- Xin Liu
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China
| | - Botao Wang
- Bloomage Biotechnology CO, LTD., Jinan 250000, China
| | - Sheng Tang
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China
| | - Yuanyuan Yue
- Citrus Research Institute, Southwest University, Chongqing 400700, China; School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Wenxia Xi
- Citrus Research Institute, Southwest University, Chongqing 400700, China; School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Xiang Tan
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China
| | - Guijie Li
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China
| | - Junying Bai
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China.
| | - Linhua Huang
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China.
| |
Collapse
|
5
|
Yu Y, Lu P, Yang Y, Ji H, Zhou H, Chen S, Qiu Y, Chen H. Differences in physicochemical properties of pectin extracted from pomelo peel with different extraction techniques. Sci Rep 2024; 14:9182. [PMID: 38649422 PMCID: PMC11035564 DOI: 10.1038/s41598-024-59760-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
In order to obtain high yield pomelo peel pectin with better physicochemical properties, four pectin extraction methods, including hot acid extraction (HAE), microwave-assisted extraction (MAE), ultrasound-assisted extraction, and enzymatic assisted extraction (EAE) were compared. MAE led to the highest pectin yield (20.43%), and the lowest pectin recovery was found for EAE (11.94%). The physicochemical properties of pomelo peel pectin obtained by different methods were also significantly different. Pectin samples obtained by MAE had the highest methoxyl content (8.35%), galacturonic acid content (71.36%), and showed a higher apparent viscosity, thermal and emulsion stability. The pectin extracted by EAE showed the highest total phenolic content (12.86%) and lowest particle size (843.69 nm), showing higher DPPH and ABTS scavenging activities than other extract methods. The pectin extracted by HAE had the highest particle size (966.12 nm) and degree of esterification (55.67%). However, Fourier-transform infrared spectroscopy showed that no significant difference occurred among the different methods in the chemical structure of the extracted pectin. This study provides a theoretical basis for the industrial production of pomelo peel pectin.
Collapse
Affiliation(s)
- Yangyang Yu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ping Lu
- China Tobacco Fujian Industrial Co., Ltd, Xiamen, 361012, China
| | - Yongfeng Yang
- China Tobacco Henan Industrial Co., Ltd, Zhengzhou, 450000, China
| | - Huifu Ji
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hang Zhou
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Siyuan Chen
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yao Qiu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hongli Chen
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
6
|
Caprin B, Gobard M, Hoesch A, Da Cruz-Boisson F, Fleury E, Charlot A. Fructose/glycerol/water as a biosourced LTTM solvent to design a variety of sodium alginate-based soft materials with enhanced rheological properties. Carbohydr Polym 2024; 330:121804. [PMID: 38368096 DOI: 10.1016/j.carbpol.2024.121804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 02/19/2024]
Abstract
Sodium alginate was associated to a ternary solvent composed of fructose, glycerol, and water in a 1:1:5 M ratio (FGW), classified as a natural Low Transition Temperature Mixture (LTTM), to generate various soft materials. The rheological properties of mixtures composed of sodium alginate and FGW were thoroughly analyzed and compared to their aqueous analogues. FGW-based solutions present a pronounced shear-thinning character combined to high viscosity, up to 8000 Pa.s. The overlap concentrations and intrinsic viscosities values evidence a good solvent character of FGW for alginate polymer chains. The increase of alginate concentration in FGW leads to materials with enhanced elasticity (up to 6000 Pa) and high energy of activation (55 kJ/mol). Interestingly, the addition of divalent calcium cations in FGW according to two optimized experimental protocols, allows for the generation of never described ionotropic gels in FGW under various shapes as bulk gels or beads of gels able to encapsulate extracted vegetal actives that are used in the cosmetic industry. Thus, FGW appears as a well-suited solvent of alginate to design a broad range of new biobased soft materials.
Collapse
Affiliation(s)
- Benoit Caprin
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, Ingénierie des Matériaux Polymères, F-69621 Villeurbanne Cedex, France; Gattefossé SAS, 36 chemin de Genas, 69804 Saint-Priest Cedex, France
| | - Maelle Gobard
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, Ingénierie des Matériaux Polymères, F-69621 Villeurbanne Cedex, France
| | - Amélie Hoesch
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, Ingénierie des Matériaux Polymères, F-69621 Villeurbanne Cedex, France
| | - Fernande Da Cruz-Boisson
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, Ingénierie des Matériaux Polymères, F-69621 Villeurbanne Cedex, France
| | - Etienne Fleury
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, Ingénierie des Matériaux Polymères, F-69621 Villeurbanne Cedex, France
| | - Aurélia Charlot
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, Ingénierie des Matériaux Polymères, F-69621 Villeurbanne Cedex, France.
| |
Collapse
|
7
|
Pereira DTV, Méndez-Albiñana P, Mendiola JA, Villamiel M, Cifuentes A, Martínez J, Ibáñez E. An eco-friendly extraction method to obtain pectin from passion fruit rinds (Passiflora edulis sp.) using subcritical water and pressurized natural deep eutectic solvents. Carbohydr Polym 2024; 326:121578. [PMID: 38142064 DOI: 10.1016/j.carbpol.2023.121578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 12/25/2023]
Abstract
This work evaluated the efficiency of Subcritical Water Extraction (SWE) and Pressurized Natural Deep Eutectic Solvents (P-NaDESs) under different temperatures (100, 120, 140 and 160 °C) in obtaining pectin from Passion Fruit Rinds (PFR) and its residual biomass (PFR - UAPLE), and compare the results with those of Conventional Extraction (CE). The highest pectin yields, 19.1 and 27.6 %, were achieved using P-NaDES (Citric Acid:Glucose:Water) at 120 °C for PFR and its PFR-UAPLE, respectively. Regarding the Degree of Esterification (DE), pectin obtained with SWE and CE had DE below 50 %, while with P-NaDES (Citric Acid: Glucose:Water), DE was above 50 %. Higher Molecular Weights (MW) (98 and 81 kDa) were obtained with SWE and P-NaDES from PFR compared to PFR-UAPLE and CE. Galacturonic acid was the most abundant (74 to 78 %) monosaccharide obtained by SWE. In terms of morphology, water extraction provided pectin with more uniform textures, whereas extraction with acidified mixtures led to more heterogeneous surfaces. Overall, comparing SWE and P-NaDES, the obtained pectins differed in terms of monomeric composition, MW and DE. These results indicate that pectins obtained by both methods can have different applications depending on their structural characteristics.
Collapse
Affiliation(s)
- Débora Tamires Vitor Pereira
- State University of Campinas (Unicamp), School of Food Engineering, Department of Engineering and Food Technology, Laboratory of High Pressure in Food Engineering, Campinas, SP 13083 - 862, Brazil; Foodomics Laboratory, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Pablo Méndez-Albiñana
- Grupo de Química y Funcionalidad de Carbohidratos y Derivados, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain; Department of Physiology, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Jose A Mendiola
- Foodomics Laboratory, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Mar Villamiel
- Grupo de Química y Funcionalidad de Carbohidratos y Derivados, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Alejandro Cifuentes
- Foodomics Laboratory, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Julian Martínez
- State University of Campinas (Unicamp), School of Food Engineering, Department of Engineering and Food Technology, Laboratory of High Pressure in Food Engineering, Campinas, SP 13083 - 862, Brazil
| | - Elena Ibáñez
- Foodomics Laboratory, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
8
|
Radmard J, Mohamadi Sani A, Arianfar A, Mahmoodzadeh Vaziri B. Efficient extraction of oleoresin from Ferula gummosa roots by natural deep eutectic solvent and its structure and chemical characterizations. Sci Rep 2024; 14:148. [PMID: 38167968 PMCID: PMC10762197 DOI: 10.1038/s41598-023-46198-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/29/2023] [Indexed: 01/05/2024] Open
Abstract
Deep eutectic solvents in the extraction of plant metabolites have found many advantages, such as low toxicity, biodegradability, low cost and ease of preparation over the conventional methods. This work aims to compare natural deep eutectic solvents in extraction and optimization of oleoresin from Ferula gummosa and determining its chemical and structure properties. Box-Behnken design was applied to optimize the extraction of oleoresin from Ferula gummosa using eutectic solvents. The variables of extraction were extraction time, temperature, and ratio of eutectic solvents. Six mixtures of eutectic solvents including choline chloride/urea, acetic acid, lactic acid, formic acid, formamide and glycerol at ratios of 2:1 and 3:1 were evaluated. The highest yields were obtained for choline chloride/formic acid, choline chloride/formamide. The quadratic regression equation was set up as a predictive model with an R2 value of 0.85. The optimum condition was 6 h, 40 °C, and ratio 12.5% (w/v). No significant difference was found between the predicted and experimental yield. The main components of the oleoresin were β-pinene (40.27%), cylcofenchen (11.93%) and α-pinene (7.53%) as characterized by gas chromatography-mass spectrometry. The chemical structure study by spectroscopy showed that no solvents remained in the oleoresin. Therefore, F. gummosa oleoresin can be explored as a novel promising natural pharmaceutical ingredient extracted with eutectic solvents.
Collapse
Affiliation(s)
- Javad Radmard
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
| | - Ali Mohamadi Sani
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran.
| | - Akram Arianfar
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
| | | |
Collapse
|
9
|
Ni J, Shangguan Y, Jiang L, He C, Ma Y, Xiong H. Pomelo peel dietary fiber ameliorates alterations in obesity-related features and gut microbiota dysbiosis in mice fed on a high-fat diet. Food Chem X 2023; 20:100993. [PMID: 38144811 PMCID: PMC10740135 DOI: 10.1016/j.fochx.2023.100993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/12/2023] [Accepted: 11/08/2023] [Indexed: 12/26/2023] Open
Abstract
Pomelo peel has abundance of dietary fiber and various biological activities but is often discarded as waste. This study evaluated the biological activities of pomelo peel dietary fiber (PPDF) in preventing obesity and regulating intestinal microbiota in obese mouse model induced using a high-fat diet (HFD). As for the composition, the prepared PPDF contained 89.64% of total dietary fiber, 53.27% of insoluble dietary fiber, and 36.37% of soluble dietary fiber. PPDF treatment significantly reduced weight gain and fat accumulation in the liver and epididymal tissues of obese mice; significantly alleviated HFD-induced dyslipidemia; and restored the levels of triglycerides, low-density lipoprotein-cholesterol, and high-density lipoprotein--cholesterol to control levels, and the PPDF 5% dose restored total cholesterol to the control level. Furthermore, PPDF ameliorated HFD-induced gut microbiota dysbiosis by increasing intestinal microbial diversity, decreasing the Firmicutes/Bacteroidetes ratio, increasing beneficial bacteria (Bifidobacterium, Alloprevotella, and Lactobacillus), and decreasing harmful bacteria (Staphylococcus and Corynebacterium_1). This study provided a new idea to use PPDF as functional food to prevent obesity, alleviate dyslipidemia, or a potential probiotic to ameliorate gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Jing Ni
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China
| | - Yuchen Shangguan
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Jiangle County Agricultural Products Quality and Safety Inspection Station, Sanming 353300, China
| | - Lili Jiang
- Xiamen Municipal Southern Ocean Testing Co., L, Xiamen 361021, China
| | - Chuanbo He
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Ying Ma
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China
| | - Hejian Xiong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| |
Collapse
|
10
|
Riyamol, Gada Chengaiyan J, Rana SS, Ahmad F, Haque S, Capanoglu E. Recent Advances in the Extraction of Pectin from Various Sources and Industrial Applications. ACS OMEGA 2023; 8:46309-46324. [PMID: 38107881 PMCID: PMC10723649 DOI: 10.1021/acsomega.3c04010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 12/19/2023]
Abstract
Pectin is a structural polysaccharide present in plants that primarily consists of galacturonic acid units. This Review discusses the chemistry of pectin, including its composition and molecular weight. Pectin is conventionally extracted from agricultural waste (fruit and vegetable peels) using an acidic or basic aqueous medium at high temperatures. These processes are time- and energy-consuming and also result in severe environmental problems due to the production of acidic effluents and equipment corrosion. As pectin usage is increasing in food industries for developing different products and it is also used as an excipient in pharmaceutical products, better extraction procedures are required to maximize the yield and purity. The Review encompasses various alternate green approaches for the extraction of pectin, including traditional acid extraction and various emerging technologies such as deep eutectic solvent-based extraction, enzyme-assisted extraction, subcritical fluid extraction, ultrasound-assisted extraction, and microwave-based extraction, and evaluates the yield and physicochemical characteristics of the extracted pectin. This work aims to provide a platform for attracting more thorough research focused on the engineering of novel and more efficient green methods for the extraction of pectin and its utilization for various biotechnological purposes.
Collapse
Affiliation(s)
- Riyamol
- Department
of Biosciences, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Jeevitha Gada Chengaiyan
- Department
of Biosciences, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Sandeep Singh Rana
- Department
of Biosciences, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Faraz Ahmad
- Department
of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014India
| | - Shafiul Haque
- Research
and Scientific Studies Unit, College of Nursing and Allied Health
Sciences, Jazan University, Jizan 45142, Saudi Arabia
- Centre
of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Gilbert
and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 1102-2801, Lebanon
| | - Esra Capanoglu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| |
Collapse
|
11
|
Bermúdez-Oria A, Castejón ML, Fernández-Prior Á, Rodríguez-Gutiérrez G, Fernández-Bolaños J. An Acid-Free Alternative to Pectin Production from the Cell Walls of Olive Oil Waste and Different Fruits Using Choline Chloride. Foods 2023; 12:4166. [PMID: 38002223 PMCID: PMC10670671 DOI: 10.3390/foods12224166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The pectin from the cell walls of olive waste (alperujo) and apple, orange and strawberry fruits was extracted using choline chloride (ChCl) and the yield and chemical and structural compositions were compared to pectin extracted using citric acid (CA) and ammonium oxalate/oxalic acid (AOOA). According to the results, the alperujo pectin extracted using ChCl from alcohol-insoluble residue (AIR) showed a higher yield (2.20-2.88% on the basis of dry weight of AIR) than using CA (0.65-1.22%) but lower than using AOOA (3.92-5.42%). For fruit pectin, the highest yield was obtained using CA (8.81-16%), followed by AOOA (5.4-6.63%), although for apple pectin, ChCl gave a similar yield (5.36%) to AOOA. The uronic acid contents in all ChCl pectins (45.9-70.6% dry basis AIR) were higher or similar to that of the other extracting agents (30.6-65.2%), although a lower level of neutral sugar side chains was detected, with a lower degree of branching and degree of methylation. The NMR and FT-IR spectroscopy of the pectin isolated using ChCl confirmed its slightly different structural composition with respect to CA and AOOA pectin. Therefore, depending on the source material and functionality, pectin isolated using ChCl could be an acid-free alternative to pectin production.
Collapse
Affiliation(s)
| | | | | | | | - Juan Fernández-Bolaños
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Pablo Olavide University, Building 46, Ctra de Utrera km 1, 41013 Seville, Spain; (A.B.-O.); (M.L.C.); (Á.F.-P.); (G.R.-G.)
| |
Collapse
|
12
|
Zhou L, Luo J, Xie Q, Huang L, Shen D, Li G. Dietary Fiber from Navel Orange Peel Prepared by Enzymatic and Ultrasound-Assisted Deep Eutectic Solvents: Physicochemical and Prebiotic Properties. Foods 2023; 12:foods12102007. [PMID: 37238825 DOI: 10.3390/foods12102007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Dietary fiber (DF) was extracted from navel orange peel residue by enzyme (E-DF) and ultrasound-assisted deep eutectic solvent (US-DES-DF), and its physicochemical and prebiotic properties were characterized. Based on Fourier-transform infrared spectroscopy, all DF samples exhibited typical polysaccharide absorption spectra, indicating that DES could separate lignin while leaving the chemical structure of DF unchanged, yielding significantly higher extraction yields (76.69 ± 1.68%) compared to enzymatic methods (67.27 ± 0.13%). Moreover, ultrasound-assisted DES extraction improved the properties of navel orange DFs by significantly increasing the contents of soluble dietary fiber and total dietary fiber (3.29 ± 1.33% and 10.13 ± 0.78%, respectively), as well as a notable improvement in the values of water-holding capacity, oil-holding capacity, and water swelling capacity. US-DES-DF outperformed commercial citrus fiber in stimulating the proliferation of probiotic Bifidobacteria strains in vitro. Overall, ultrasound-assisted DES extraction exhibited potential as an industrial extraction method, and US-DES-DF could serve as a valuable functional food ingredient. These results provide a new perspective on the prebiotic properties of dietary fibers and the preparation process of prebiotics.
Collapse
Affiliation(s)
- Liling Zhou
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Jiaqian Luo
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Qiutao Xie
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Lvhong Huang
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Dan Shen
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Gaoyang Li
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| |
Collapse
|
13
|
Evaluating the status quo of deep eutectic solvent in food chemistry. Potentials and limitations. Food Chem 2023; 406:135079. [PMID: 36463595 DOI: 10.1016/j.foodchem.2022.135079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Conventional organic solvents (e.g., methanol, ethanol, ethyl acetate) are widely used for extraction, reaction, and separation of valuable compounds. Although these solvents are effective, they have disadvantages, including flammability, toxicity, and persistence in the environment. Deep eutectic solvents (DESs) are valued for their biodegradability/low impact on the environment, low cost, and ease of manufacture. The objective of this review was to provide an overview of applications of DES in food chemistry, specifically in regard of extraction of polyphenols (e.g., anthocyanin, rutin, kaempferol, quercetin, resveratrol), protein, carbohydrates (e.g., chitin, pectins), lipids and lipid-soluble compounds (e.g., free fatty acids, astaxanthin, β-carotene, terpenoids), biosensor development, and use in food safety (pyrethroids, Sudan I, bisphenol A, Pb2+, Cd2+, etc.) over the past five years. A comprehensive analysis and discussion of DES types, preparation, structures, and influencing factors is provided. Furthermore, the potential and disadvantages of using DESs to extract biomolecules were assessed. We concluded that DES is a viable alternative for extracting polyphenols, carbohydrates, and lipids as well as use in food safety monitoring and biosensor development. However, more work is needed to address shortcomings, and determine whether using compounds extracted with DES can be consumed safely.
Collapse
|
14
|
Kumar S, Konwar J, Purkayastha MD, Kalita S, Mukherjee A, Dutta J. Current progress in valorization of food processing waste and by-products for pectin extraction. Int J Biol Macromol 2023; 239:124332. [PMID: 37028618 DOI: 10.1016/j.ijbiomac.2023.124332] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/15/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023]
Abstract
Food processing waste and by-products such as peel of citrus fruit, melon, mango, pineapple, etc. and fruit pomace can be utilized for manufacturing of several high-value products. Valorization of these waste and by-products for extraction of pectin, can help offset growing environmental concerns, facilitate value-addition of by-products and their sustainable uses. Pectin has many applications in food industries such as gelling, thickening, stabilizing, and emulsifying agent, and as a dietary fibre. This review elaborates on various conventional and advanced, sustainable pectin extraction techniques, and paints a comparative picture between them considering extraction efficiency, quality, and functionality of the pectin. Conventional acid, alkali, and chelating agents-assisted extraction have been profusely used for pectin extraction, but advanced extraction technologies e.g., enzyme, microwave, supercritical water, ultrasonication, pulse electric field and high-pressure extraction are preferred due to less energy consumption, better quality product, higher yield, and minimal or no generation of harmful effluent.
Collapse
|
15
|
Kumar S, Reddy ARL, Basumatary IB, Nayak A, Dutta D, Konwar J, Purkayastha MD, Mukherjee A. Recent progress in pectin extraction and their applications in developing films and coatings for sustainable food packaging: A review. Int J Biol Macromol 2023; 239:124281. [PMID: 37001777 DOI: 10.1016/j.ijbiomac.2023.124281] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/04/2023] [Accepted: 03/28/2023] [Indexed: 03/30/2023]
Abstract
Perishable foods like fruits and vegetables, meat, fish, and dairy products have short shelf-life that causes significant postharvest losses, which poses a major challenge for food supply chains. Biopolymers have been extensively studied as sustainable alternatives to synthetic plastics, and pectin is one such biopolymer that has been used for packaging and preservation of foods. Pectin is obtained from abundantly available low-cost sources such as agricultural or food processing wastes and by products. This review is a complete account of pectin extraction from agro-wastes, development of pectin-based composite films and coatings, their characterizations, and their applications in food packaging and preservation. Compared to conventional chemical extraction, supercritical water, ultrasound, and microwave assisted extractions are a few examples of modern and more efficient pectin extraction processes that generate almost no hazardous effluents, and thus, such extraction techniques are more environment friendly. Pectin-based films and coatings can be functionalized with natural active agents such as essential oils and other phytochemicals to improve their moisture barrier, antimicrobial and antioxidant properties. Application of pectin-based active films and coatings effectively improved shelf-life of fresh cut-fruits, vegetables, meat, fish, poultry, milk, and other food perishable products.
Collapse
|
16
|
Liu Y, Weng P, Liu Y, Wu Z, Wang L, Liu L. Citrus pectin research advances: Derived as a biomaterial in the construction and applications of micro/nano-delivery systems. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Benvenutti L, Zielinski AAF, Ferreira SRS. Subcritical water extraction (SWE) modified by deep eutectic solvent (DES) for pectin recovery from a Brazilian berry by-product. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Duan H, Yan X, Azarakhsh N, Huang X, Wang C. Effects of high‐pressure pretreatment on acid extraction of pectin from pomelo peel. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Hanying Duan
- Department of Food Science and Technology Jinan University Guangzhou 510632 China
| | - Xu Yan
- Department of Food Science and Technology Jinan University Guangzhou 510632 China
| | - Nima Azarakhsh
- International School Jinan University Guangzhou 510632 China
| | - Xuesong Huang
- Department of Food Science and Technology Jinan University Guangzhou 510632 China
| | - Chao Wang
- Department of Food Science and Technology Jinan University Guangzhou 510632 China
| |
Collapse
|
19
|
Chen S, Xiao L, Li S, Meng T, Wang L, Zhang W. The effect of sonication-synergistic natural deep eutectic solvents on extraction yield, structural and physicochemical properties of pectins extracted from mango peels. ULTRASONICS SONOCHEMISTRY 2022; 86:106045. [PMID: 35617886 PMCID: PMC9136184 DOI: 10.1016/j.ultsonch.2022.106045] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 05/21/2023]
Abstract
In this study, eco-friendly deep eutectic solvents (DESs) were used as extracting agents for the first time in the extraction of pectins from mango peel. Two novel green solvents including betaine-citric acid (Bet-CA) and choline chloride-malic acid (ChCl-MaA) were screened, and the extraction conditions were further optimized by full factor design experimental along with RSM. In addition, ultrasound treatment also had an influence on extraction yield, structural and physicochemical properties of extracted pectins. Two DES-extracted pectins had significantly higher yield, larger molecular weight and particles size than HCl-extracted pectin. High intensity ultrasound power enhanced the yield of low-ester pectins, but decreased the molecular weight and particles size of the pectins extracted. Monosaccharide compositions analysis showed that higher content of galacturonic acid (GalA) and larger HG region were observed in two DESs-extracted pectins. Fourier transform infrared spectra (FT-IR) of all pectins extracted were similar, with slight differences. Two DESs-extracted pectins exhibited higher DE values than HCl-extracted pectin. Thermal analysis and zeta potential results showed that HCl-extracted pectin had better stability than ChCl-MaA-extracted pectin. Additionally, HCl-extracted pectin had higher viscosity properties than two DESs-extracted pectins or commercial pectin (CP). Moreover, it was found that HCl-extracted pectin was in a colloid state, while two DESs-extracted pectins or CP were in a flow state. Ultrasound treatment significantly improved the yields of pectin/low-ester pectin. Additionally, ultrasound treatment remarkably decreased the viscosity and viscoelastic properties of the pectins extracted. The results were conducive to our understanding of the relationship between extraction conditions and physicochemical properties of the pectins extracted, which provides theoretical basis for the functional application of mango peel pectins in the food and pharmaceutical industry.
Collapse
Affiliation(s)
- Sijun Chen
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Leyan Xiao
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Songjie Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Tingyu Meng
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Lu Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China.
| | - Weimin Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
20
|
Tien NNT, Le NL, Khoi TT, Richel A. Characterisation of dragon fruit peel pectin extracted with natural deep eutectic solvent and sequential microwave‐ultrasound‐assisted approach. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Nguyen Ngoc Thanh Tien
- Laboratory of Biomass and Green Technologies University of Liege – Gembloux Argo‐Bio Tech Passage des Desportés 2 Gembloux B‐5030 Belgium
- Department of Environmental Engineering International University Quarter 6, Linh Trung Ward, Thu Duc City Ho Chi Minh City 700000 Vietnam
- Vietnam National University Linh Trung Ward, Thu Duc City Ho Chi Minh City 700000 Vietnam
| | - Ngoc Lieu Le
- Vietnam National University Linh Trung Ward, Thu Duc City Ho Chi Minh City 700000 Vietnam
- School of Biotechnology International University Quarter 6, Linh Trung Ward, Thu Duc City Ho Chi Minh City 700000 Vietnam
| | - Tran Tien Khoi
- Department of Environmental Engineering International University Quarter 6, Linh Trung Ward, Thu Duc City Ho Chi Minh City 700000 Vietnam
- Vietnam National University Linh Trung Ward, Thu Duc City Ho Chi Minh City 700000 Vietnam
| | - Aurore Richel
- Laboratory of Biomass and Green Technologies University of Liege – Gembloux Argo‐Bio Tech Passage des Desportés 2 Gembloux B‐5030 Belgium
| |
Collapse
|
21
|
Najari Z, Khodaiyan F, Yarmand MS, Hosseini SS. Almond hulls waste valorization towards sustainable agricultural development: Production of pectin, phenolics, pullulan, and single cell protein. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 141:208-219. [PMID: 35149477 DOI: 10.1016/j.wasman.2022.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/16/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
This research aimed to valorize almond hulls based on a zero-waste strategy towards sustainable agricultural developments for the recovery and production of valuable compounds. For this purpose, the potential to produce four products, including pectin (AHP), phenolic compounds (AHPC), pullulan (PUL), and single-cell protein (SCP), was examined. The acidic extraction factors were optimized using a Box-Behnken design for the simultaneous extraction of AHP and AHPC, and the obtained results showed that the maximum AHP (26.32% w/w) and AHPC (6.97% w/w) yields were achieved at 90 °C, pH of 1.4, 58.65 min, and liquid-solid ratio (LSR) of 20.13 v/w as the optimum point. In the next step, the solid residues that remained from the AHP and AHPC extraction process (PESR) were treated with cellulase enzyme and ultrasound and were used for simultaneous microbial production of PUL (34.29-24.56 g/L) and biomass containing SCP (19.31-13.44% w/w). Furthermore, the obtained results showed that AHP was low methylated (26.40%), rich in galacturonic acid (67.88%), and high in molecular weight (595.299 kDa). Also, the investigations of structural properties of AHP and PUL confirmed the presence of chemical structures of these polysaccharides in the formed supernatants. In addition, the AHPC showed considerable antioxidant activity compared with ascorbic acid (ASC) and BHA.
Collapse
Affiliation(s)
- Zahra Najari
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| | - Faramarz Khodaiyan
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran.
| | - Mohammad Saeid Yarmand
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| | - Seyed Saeid Hosseini
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| |
Collapse
|
22
|
Tien NNT, Le NL, Khoi TT, Richel A. Optimization of microwave‐ultrasound‐assisted extraction (MUAE) of pectin from dragon fruit peels using natural deep eutectic solvents (NADES). J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Nguyen Ngoc Thanh Tien
- Laboratory of Biomass and Green Technologies University of Liege—Gembloux Argo‐Bio Tech Gembloux Belgium
- Department of Environmental Engineering International University Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Ngoc Lieu Le
- Vietnam National University Ho Chi Minh City Vietnam
- School of Biotechnology International University Ho Chi Minh City Vietnam
| | - Tran Tien Khoi
- Department of Environmental Engineering International University Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Aurore Richel
- Laboratory of Biomass and Green Technologies University of Liege—Gembloux Argo‐Bio Tech Gembloux Belgium
| |
Collapse
|
23
|
Saini R, Kumar S, Sharma A, Kumar V, Sharma R, Janghu S, Suthar P. Deep eutectic solvents: The new generation sustainable and safe extraction systems for bioactive compounds in agri food sector: An update. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rajni Saini
- Department of Food Science & Technology Punjab Agricultural University Ludhiana India
| | - Satish Kumar
- Department of Food Science & Technology Dr. Y. S. Parmar University of Horticulture and Forestry Solan India
| | - Ajay Sharma
- Department of Chemistry Career Point University Hamirpur India
| | - Vikas Kumar
- Department of Food Science & Technology Punjab Agricultural University Ludhiana India
| | - Rakesh Sharma
- Department of Food Science & Technology Dr. Y. S. Parmar University of Horticulture and Forestry Solan India
| | - Sandeep Janghu
- Department of Food Product Development Indian Institute of Food Processing Technology Thanjavur India
| | - Priyanka Suthar
- Food Technology and Nutrition School of Agriculture Lovely Professional University Phagwara India
| |
Collapse
|
24
|
Tran TTB, Saifullah M, Nguyen NH, Nguyen MH, Vuong QV. Comparison of ultrasound-assisted and conventional extraction for recovery of pectin from Gac (Momordica cochinchinensis) pulp. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
25
|
Rico X, Nuutinen EM, Gullón B, Pihlajaniemi V, Yáñez R. Application of an eco-friendly sodium acetate/urea deep eutectic solvent in the valorization of melon by-products. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Deep eutectic systems: An overview of fundamental aspects, current understanding and drug delivery applications. Int J Pharm 2021; 610:121203. [PMID: 34673164 DOI: 10.1016/j.ijpharm.2021.121203] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/24/2021] [Accepted: 10/07/2021] [Indexed: 01/03/2023]
Abstract
The deep eutectic system (DES) is a relatively new concept in the field of drug delivery science. DES is a class of eutectic mixtures comprised of two or more components, with a eutectic point far below than the melting temperature of the pure components. The strong hydrogen bonding interactions between DES constituents are responsible for significant lowering of melting point in DES. A significant number of molecules cannot reach from drug discovery phase to drug development phase because of poor biopharmaceutical attributes, such as solubility and permeability. DES can be a novel alternative to overcome these issues. In last few years DESs have been widely used in different pharmaceutical and chemical processes. However, comprehensive information regarding their drug delivery potential is not available. This review deals with fundamental aspects such as types, preparation, thermodynamics, toxicity, biodegradability and their applications in the field of drug delivery. Current challenges, future prospects and translational aspects of DES as drug delivery system have also been discussed.
Collapse
|
27
|
Gerschenson LN, Fissore EN, Rojas AM, Idrovo Encalada AM, Zukowski EF, Higuera Coelho RA. Pectins obtained by ultrasound from agroindustrial by-products. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106799] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Sequential natural deep eutectic solvent pretreatments of apple pomace: A novel way to promote water extraction of pectin and to tailor its main structural domains. Carbohydr Polym 2021; 266:118113. [PMID: 34044930 DOI: 10.1016/j.carbpol.2021.118113] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022]
Abstract
To establish a "green" biorefinery extraction of apple pomace pectin, a sequential pretreatment with three natural deep eutectic solvents (NADES, choline chloride (CC): glycerol (G); CC: lactic acid (LA); potassium carbonate (K): G) was used prior to hot water extraction. A synergistic effect of CC:G and CC:LA pretreatments was observed and led to the highest recovery of pectin. The sequential NADES/water extraction process also provided a mean to tailor pectin main structure. It was explained as resulting from ion exchange and individual NADES components effects. The 13C solid state NMR T1ρH and THH parameters indicated a reorganization of cellulose in the residues following extraction of pectin, notably after alkaline K:G pretreatment/water extraction. Hence, sequential NADES pretreatments/water extraction represents a "green" alternative to mild mineral acid to extract pectin and to tailor its main structures, while the residual pomace can be further sources of valuable compounds and polymers.
Collapse
|
29
|
Structure and Applications of Pectin in Food, Biomedical, and Pharmaceutical Industry: A Review. COATINGS 2021. [DOI: 10.3390/coatings11080922] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pectin is a biocompatible polysaccharide with intrinsic biological activity, which may exhibit different structures depending on its source or extraction method. The extraction of pectin from various industrial by-products presents itself as a green option for the valorization of agro-industrial residues by producing a high commercial value product. Pectin is susceptible to physical, chemical, and/or enzymatic changes. The numerous functional groups present in its structure can stimulate different functionalities, and certain modifications can enable pectin for countless applications in food, agriculture, drugs, and biomedicine. It is currently a trend to use pectin to produce edible coating to protect foodstuff, antimicrobial bio-based films, nanoparticles, healing agents, and cancer treatment. Advances in methodology, use of different sources of extraction, and knowledge about structural modification have significantly expanded the properties, yields, and applications of this polysaccharide. Recently, structurally modified pectin has shown better functional properties and bioactivities than the native one. In addition, pectin can be used in conjunction with a wide variety of biopolymers with differentiated properties and specific functionalities. In this context, this review presents the structural characteristics and properties of pectin and information on the modification of this polysaccharide, its respective applications, perspectives, and future challenges.
Collapse
|
30
|
Strategies to Increase the Biological and Biotechnological Value of Polysaccharides from Agricultural Waste for Application in Healthy Nutrition. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115937. [PMID: 34205897 PMCID: PMC8198840 DOI: 10.3390/ijerph18115937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/14/2021] [Accepted: 05/27/2021] [Indexed: 12/31/2022]
Abstract
Nowadays, there is a growing interest in the extraction and identification of new high added-value compounds from the agro-food industry that will valorize the great amount of by-products generated. Many of these bioactive compounds have shown beneficial effects for humans in terms of disease prevention, but they are also of great interest in the food industry due to their effect of extending the shelf life of foods by their well-known antioxidant and antimicrobial activity. For this reason, an additional research objective is to establish the best conditions for obtaining these compounds from complex by-product structures without altering their activity or even increasing it. This review highlights recent work on the identification and characterization of bioactive compounds from vegetable by-products, their functional activity, new methodologies for the extraction of bioactive compounds from vegetables, possibly increasing their biological activity, and the future of the global functional food and nutraceuticals market.
Collapse
|
31
|
Natural deep eutectic solvents pretreatment as an aid for pectin extraction from apple pomace. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106601] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
32
|
Assessing Green Methods for Pectin Extraction from Waste Orange Peels. Molecules 2021; 26:molecules26061766. [PMID: 33801127 PMCID: PMC8004147 DOI: 10.3390/molecules26061766] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/09/2021] [Accepted: 03/19/2021] [Indexed: 12/22/2022] Open
Abstract
In this work, we assess three different methods for the extraction of pectin from waste orange peels, using water as extracting solvent. “Hot-water”, Rapid Solid Liquid Dynamic (RSLD) and microwave-assisted extractions have been compared and evaluated in terms of amount and quality of extracted pectin, as well as embodied energy. This analysis provides useful guidelines for pectin production from food waste according to green procedures, enabling the identification of acidic “hot-water” as the most sustainable extraction route.
Collapse
|
33
|
Lignin extraction from waste biomass with deep eutectic solvents: Molecular weight and heating value. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101949] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Ali Redha A. Review on Extraction of Phenolic Compounds from Natural Sources Using Green Deep Eutectic Solvents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:878-912. [PMID: 33448847 DOI: 10.1021/acs.jafc.0c06641] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
For more sustainable and environmentally friendly scientific research, it is essential to apply green chemistry principles in all areas of science. A possible area in which green chemistry principles can significantly influence the productivity and the quality of the outcome is extraction of natural products. The conventional toxic solvents can be replaced by environmentally friendly solvents known as deep eutectic solvents, which fortunately, due to their unique properties, can significantly improve extraction efficiency. In this literature review, the extraction of a specific class of natural products, phenolic compounds, using different types of green deep eutectic solvents has been reviewed. Within this review, the composition of those solvents used to extract different types of phenolic compounds has been discussed. In addition, the factors affecting their extraction, extracting solvent component structure, molar ratio of extracting solvent components, extraction temperature, solid to extraction solvent ratio, and water content, have been evaluated.
Collapse
Affiliation(s)
- Ali Ali Redha
- Chemistry Department, School of Science, Loughborough University, Loughborough LE11 3TU, United Kingdom
| |
Collapse
|
35
|
NADES as potential solvents for anthocyanin and pectin extraction from Myrciaria cauliflora fruit by-product: In silico and experimental approaches for solvent selection. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113761] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Sunlight-Driven Synthesis of Silver Nanoparticles Using Pomelo Peel Extract and Antibacterial Testing. J CHEM-NY 2020. [DOI: 10.1155/2020/6407081] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A green approach, including using phytochemicals in pomelo peel extract (PPE) and direct sunlight, was used to synthesize silver nanoparticles (AgNPs). PPE was prepared by treating pomelo peel with a citric acid solution at 85°C for 2 h. PPE was then mixed with AgNO3 and exposed to sunlight to induce the formation of AgNPs. Time-dependent UV-vis spectra of the reaction mixture demonstrated that AgNPs are formed under sunlight irradiation faster than underheating at 90°C. Characterization techniques, including X-ray diffraction, transmission electron microscopy, and scanning electron microscopy, confirmed the formation of AgNPs with sizes of 20–30 nm. AgNPs synthesized in PPE were more stable toward electrolyte-induced aggregation than those synthesized using the conventional NaBH4/citrate method. The AgNPs synthesized in PPE showed antibacterial activities comparable to those of AgNO3 at the same silver concentration against four pathogenic bacterial strains. The obtained PPE containing AgNPs, pectin, and other phytochemicals can be utilized further to produce antibacterial and antioxidant films in food packaging and medical applications.
Collapse
|
37
|
Phytomass Valorization by Deep Eutectic Solvents—Achievements, Perspectives, and Limitations. CRYSTALS 2020. [DOI: 10.3390/cryst10090800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In recent years, a plethora of extraction processes have been performed by a novel class of green solvents known as deep eutectic solvents (DESs), possessing several environmental, operational, and economic advantages proven by experience when compared to organic solvents and ionic liquids. The present review provides an organized overview of the use of DESs as extraction agents for the recovery of valuable substances and compounds from the original plant biomass, waste from its processing, and waste from the production and consumption of plant-based food. For the sake of simplicity and speed of orientation, the data are, as far as possible, arranged in a table in alphabetical order of the extracted substances. However, in some cases, the isolation of several substances is described in one paper and they are, therefore, listed together. The table further contains a description of the extracted phytomass, DES composition, extraction conditions, and literature sources. With regard to extracted value-added substances, this review addresses their pharmacological, therapeutic, and nutritional aspects. The review also includes an evaluation of the possibilities and limitations of using DESs to obtain value-added substances from phytomass.
Collapse
|
38
|
FREITAS CMP, SOUSA RCS, DIAS MMS, COIMBRA JSR. Extraction of Pectin from Passion Fruit Peel. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09254-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Morais ES, Lopes AMDC, Freire MG, Freire CSR, Coutinho JAP, Silvestre AJD. Use of Ionic Liquids and Deep Eutectic Solvents in Polysaccharides Dissolution and Extraction Processes towards Sustainable Biomass Valorization. Molecules 2020; 25:E3652. [PMID: 32796649 PMCID: PMC7465760 DOI: 10.3390/molecules25163652] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
A shift to a bioeconomy development model has been evolving, conducting the scientific community to investigate new ways of producing chemicals, materials and fuels from renewable resources, i.e., biomass. Specifically, technologies that provide high performance and maximal use of biomass feedstocks into commodities with reduced environmental impact have been highly pursued. A key example comprises the extraction and/or dissolution of polysaccharides, one of the most abundant fractions of biomass, which still need to be improved regarding these processes' efficiency and selectivity parameters. In this context, the use of alternative solvents and the application of less energy-intensive processes in the extraction of polysaccharides might play an important role to reach higher efficiency and sustainability in biomass valorization. This review debates the latest achievements in sustainable processes for the extraction of polysaccharides from a myriad of biomass resources, including lignocellulosic materials and food residues. Particularly, the ability of ionic liquids (ILs) and deep eutectic solvents (DESs) to dissolve and extract the most abundant polysaccharides from natural sources, namely cellulose, chitin, starch, hemicelluloses and pectins, is scrutinized and the efficiencies between solvents are compared. The interaction mechanisms between solvent and polysaccharide are described, paving the way for the design of selective extraction processes. A detailed discussion of the work developed for each polysaccharide as well as the innovation degree and the development stage of dissolution and extraction technologies is presented. Their advantages and disadvantages are also identified, and possible synergies by integrating microwave- and ultrasound-assisted extraction (MAE and UAE) or a combination of both (UMAE) are briefly described. Overall, this review provides key information towards the design of more efficient, selective and sustainable extraction and dissolution processes of polysaccharides from biomass.
Collapse
Affiliation(s)
| | | | | | | | | | - Armando J. D. Silvestre
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (E.S.M.); (A.M.d.C.L.); (M.G.F.); (C.S.R.F.); (J.A.P.C.)
| |
Collapse
|
40
|
Smart advanced solvents for bioactive compounds recovery from agri-food by-products: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
Shafie MH, Gan CY. A comparison of properties between the citric acid monohydrate and deep eutectic solvent extracted Averrhoa bilimbi pectins. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00533-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
42
|
Tocmo R, Pena‐Fronteras J, Calumba KF, Mendoza M, Johnson JJ. Valorization of pomelo (
Citrus grandis
Osbeck) peel: A review of current utilization, phytochemistry, bioactivities, and mechanisms of action. Compr Rev Food Sci Food Saf 2020; 19:1969-2012. [DOI: 10.1111/1541-4337.12561] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/11/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Restituto Tocmo
- Deparment of Pharmacy PracticeUniversity of Illinois‐Chicago Chicago Illinois
| | - Jennifer Pena‐Fronteras
- Deparment of Food Science and ChemistryUniversity of the Philippines‐Mindanao Tugbok District Davao City Philippines
| | - Kriza Faye Calumba
- Deparment of Food Science and ChemistryUniversity of the Philippines‐Mindanao Tugbok District Davao City Philippines
| | - Melanie Mendoza
- Deparment of Food Science and ChemistryUniversity of the Philippines‐Mindanao Tugbok District Davao City Philippines
| | | |
Collapse
|
43
|
Investigation of Total Phenolic Content and Antioxidant Activities of Spruce Bark Extracts Isolated by Deep Eutectic Solvents. CRYSTALS 2020. [DOI: 10.3390/cryst10050402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Extracts from spruce bark obtained using different deep eutectic solvents were screened for their total phenolic content (TPC) and antioxidant activities. Water containing choline chloride-based deep eutectic solvents (DESs) with lactic acid and 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and 1,5-pentanediol, with different molar ratios, were used as extractants. Basic characteristics of the DESs (density, viscosity, conductivity, and refractive index) were determined. All the DESs used behave as Newtonian liquids. The extractions were performed for 2 h at 60 °C under continuous stirring. TPC was determined spectrophotometrically, using the Folin-Ciocalteu reagent, and expressed as gallic acid equivalent (GAE). The antioxidant activity was determined spectrophotometrically by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. The TPC varied from 233.6 to 596.2 mg GAE/100 g dry bark; radical scavenging activity (RSA) ranged between 81.4% and 95%. This study demonstrated that deep eutectic solvents are suitable solvents for extracting phenolic compounds from spruce bark.
Collapse
|
44
|
The influence of extraction pH on the chemical compositions, macromolecular characteristics, and rheological properties of polysaccharide: The case of okra polysaccharide. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105586] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
A green and integrated strategy for enhanced phenolic compounds extraction from mulberry (Morus alba L.) leaves by deep eutectic solvent. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104598] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
46
|
|
47
|
Tan YT, Chua ASM, Ngoh GC. Deep eutectic solvent for lignocellulosic biomass fractionation and the subsequent conversion to bio-based products - A review. BIORESOURCE TECHNOLOGY 2020; 297:122522. [PMID: 31818720 DOI: 10.1016/j.biortech.2019.122522] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
Since the introduction of deep eutectic solvent (DES) in biomass processing field, the efficiency of DES in lignocellulosic biopolymer model compounds' (cellulose, hemicellulose and lignin) solubilisation and conversion was widely recognized. Nevertheless, DES's potential for biorefinery application can be reflected more accurately through their performance in raw lignocellulosic biomass processing rather than model compound conversion. Therefore, this review examines the studies on raw lignocellulosic biomass fractionation using DES and the subsequent conversion of DES-fractionated products into bio-based products. The review stresses on three key parts: performance of varying types of DESs and pretreatment schemes for biopolymer fractionation, properties and conversion of fractionated saccharides as well as DES-extracted lignin. The prospects and challenges of DES implementation in biomass processing will also be discussed. This review provides a front-to-end view on the DES's performance, starting from pretreatment to DES-fractionated products conversion, which would be helpful in devising a comprehensive biomass utilization process.
Collapse
Affiliation(s)
- Yee Tong Tan
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Adeline Seak May Chua
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Gek Cheng Ngoh
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
48
|
Panwar D, Panesar PS, Chopra HK. Recent Trends on the Valorization Strategies for the Management of Citrus By-products. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1695834] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Divyani Panwar
- Food Biotechnology Research Laboratory, Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, India
| | - Parmjit S. Panesar
- Food Biotechnology Research Laboratory, Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, India
| | - Harish K. Chopra
- Department of Chemistry, Sant Longowal Institute of Engineering and Technology, Longowal, India
| |
Collapse
|
49
|
Kalhor P, Ghandi K. Deep Eutectic Solvents for Pretreatment, Extraction, and Catalysis of Biomass and Food Waste. Molecules 2019; 24:E4012. [PMID: 31698717 PMCID: PMC6891572 DOI: 10.3390/molecules24224012] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022] Open
Abstract
Valorization of lignocellulosic biomass and food residues to obtain valuable chemicals is essential to the establishment of a sustainable and biobased economy in the modern world. The latest and greenest generation of ionic liquids (ILs) are deep eutectic solvents (DESs) and natural deep eutectic solvents (NADESs); these have shown great promise for various applications and have attracted considerable attention from researchers who seek versatile solvents with pretreatment, extraction, and catalysis capabilities in biomass- and biowaste-to-bioenergy conversion processes. The present work aimed to review the use of DESs and NADESs in the valorization of biomass and biowaste as pretreatment or extraction solvents or catalysis agents.
Collapse
Affiliation(s)
- Payam Kalhor
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China;
| | - Khashayar Ghandi
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
50
|
Cai C, Yu W, Wang C, Liu L, Li F, Tan Z. Green extraction of cannabidiol from industrial hemp (Cannabis sativa L.) using deep eutectic solvents coupled with further enrichment and recovery by macroporous resin. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.110957] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|