1
|
Chen X, Liu Y, Guo W, Wang M, Zhao J, Zhang X, Zheng W. The development and nutritional quality of Lyophyllum decastes affected by monochromatic or mixed light provided by light-emitting diode. Front Nutr 2024; 11:1404138. [PMID: 38860159 PMCID: PMC11163063 DOI: 10.3389/fnut.2024.1404138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/29/2024] [Indexed: 06/12/2024] Open
Abstract
Edible fungi has certain photo-sensitivity during the mushroom emergence stage, but there has been few relevant studies on the responses of Lyophyllum decastes to different light quality. L. decastes were planted in growth chambers with different light qualities that were, respectively, white light (CK), monochromatic red light (R), monochromatic blue light (B), mixed red and blue light (RB), and the mixture of far-red and blue light (FrB). The photo-sensitivity of L. decastes was investigated by analyzing the growth characteristics, nutritional quality, extracellular enzymes as well as the light photoreceptor genes in mushroom exposed to different light treatments. The results showed that R led to mycelium degeneration, fungal skin inactivation and failure of primordial formation in L. decastes. The stipe length, stipe diameter, pileus diameter and the weight of fruiting bodies exposed to RB significantly increased by 8.0, 28.7, 18.3, and 58.2% respectively, compared to the control (p < 0.05). B significantly decreased the stipe length and the weight of fruiting body, with a decrease of 8.5 and 20.2% respectively, compared to the control (p < 0.05). Increased color indicators and deepened simulated color were detected in L. decastes pileus treated with B and FrB in relative to the control. Meanwhile, the expression levels of blue photoreceptor genes such as WC-1, WC-2 and Cry-DASH were significantly up-regulated in mushroom exposed to B and FrB (p < 0.05). Additionally, the contents of crude protein and crude polysaccharide in pileus treated with RB were, respectively, increased by 26.5 and 9.4% compared to the control, while those in stipes increased by 5.3 and 58.8%, respectively. Meanwhile, the activities of extracellular enzyme such as cellulase, hemicellulase, laccase, manganese peroxidase, lignin peroxidase and amylase were significant up-regulated in mushroom subjected to RB (p < 0.05), which may promote the degradation of the culture materials. On the whole, the largest volume and weight as well as the highest contents of nutrients were all detected in L. decastes treated with RB. The study provided a theoretical basis for the regulation of light environment in the industrial production of high quality L. decastes.
Collapse
Affiliation(s)
- Xiaoli Chen
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yihan Liu
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Horticultural and Landscape Architecture, Tianjin Agricultural University, Tianjin, China
| | - Wenzhong Guo
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Mingfei Wang
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jiuxiao Zhao
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xin Zhang
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wengang Zheng
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
2
|
Rawal RS, Mehant A, Suman SK. Deciphering ligninolytic enzymes in the secretome of Pycnoporus sp. and their potential in degradation of 2-chlorophenol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:92830-92841. [PMID: 37495802 DOI: 10.1007/s11356-023-28932-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
Abstract
Chlorophenols and their derivatives are persistent environmental pollutants, posing a threat to terrestrial and aquatic life. The biological approach for eliminating toxic contaminants is an effective, sustainable, and environmental friendly method. In this study, the crude enzymes present in the secretome of white-rot fungus (Pycnoporus sp.) were explored for the degradation of 2-chlorophenol. The activity of ligninolytic enzymes in the secretome was analyzed and characterized for their kinetics and thermodynamic properties. Laccase and manganese peroxidase were prevalent ligninolytic enzymes and exhibited temperature stability in the range of 50-65 °C and pH 4-5, respectively. The kinetic parameters Michaelis constant (Km) and turnover number (Kcat) for Lac were 42.54 μM and 45 s-1 for 2,2'-azino-bis (3-ethylben- zothiazoline-6-sulfonic acid), and 93.56 μM and 48 s-1 towards 2,6-dimethoxyphenol whereas Km and Kcat for MnP were 2039 μM and 294 s-1 for guaiacol as substrate. Treatment with the crude enzymes laccase and manganese peroxidase results in the reduction of 2-chlorophenol concentration, confirmed by UV-visible absorption spectra and high-performance liquid chromatography analysis. The detoxification of 2-chlorophenol into less toxic forms was confirmed by the plate toxicity assay. This study demonstrated that crude enzymes produced by Pycnoporus sp. could potentially minimize the toxicity of phenolic compounds in a sustainable way.
Collapse
Affiliation(s)
- Raja Singh Rawal
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aditri Mehant
- Jamia Hamdard University, Hamdard Nagar, New Delhi, 110062, India
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Ćilerdžić J, Galić M, Stajić M. From pomiculture waste to biotechnological raw material: efficient transformation using ligninosomes and cellulosomes from Pleurotus spp. BIORESOUR BIOPROCESS 2022; 9:66. [PMID: 38647551 PMCID: PMC10991930 DOI: 10.1186/s40643-022-00555-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
The goal of this study was to determine the capacity of Pleurotus spp. lignocellulosome to transform frequent pomiculture residues (grapevine-, plum-, and raspberry sawdust) into raw materials for biotechnological processes. All three lignocellulosics induced the synthesis of ligninolytic and cellulolytic enzymes in the tested species. Laccase was dominant in the ligninolytic cocktail, with a maximum activity of 40,494.88 U L-1 observed after the cultivation of P. pulmonarius on grapevine sawdust. Grapevine sawdust also proved to be the optimal substrate for the synthesis of versatile peroxidases especially in P. eryngii (1010.10 U L-1), while raspberry sawdust favored the production of Mn-dependent peroxidase in P. pulmonarius (479.17 U L-1). P. pulmonarius was the dominant cellulolytic agent and raspberry sawdust was optimal for the synthesis of xylanases, and endo- and exo-cellulases (15,746.35 U L-1, 9741.56 U L-1, and 836.62 U L-1), while grapevine sawdust mostly induced β-glucosidase activity (166.11 U L-1). The degree of residues delignification was more substrate- than species-dependent, ranging between 6.44 and 23.72% after the fermentation of grapevine and raspberry sawdust with P. pulmonarius. On the other hand, the lowest level of cellulose consumption was also observed on raspberry sawdust after the cultivation of P. eryngii, which together with high delignification also induced the highest selectivity index (1.27). The obtained results show the exceptional lignocellulolytic potential of Pleurotus spp. enzyme cocktails which opens up many possibilities for their application in numerous biotechnological processes.
Collapse
Affiliation(s)
- Jasmina Ćilerdžić
- Faculty of Biology, University of Belgrade, Takovska 43, 11000, Belgrade, Serbia.
| | - Milica Galić
- Faculty of Biology, University of Belgrade, Takovska 43, 11000, Belgrade, Serbia
| | - Mirjana Stajić
- Faculty of Biology, University of Belgrade, Takovska 43, 11000, Belgrade, Serbia
| |
Collapse
|
4
|
Assessment of the Pretreatments and Bioconversion of Lignocellulosic Biomass Recovered from the Husk of the Cocoa Pod. ENERGIES 2022. [DOI: 10.3390/en15103544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The production of biofuels (biogas, ethanol, methanol, biodiesel, and solid fuels, etc.), beginning with cocoa pod husk (CPH), is a way for obtaining a final product from the use of the principal waste product of the cocoa industry. However, there are limitations to the bioconversion of the material due to its structural components (cellulose, hemicellulose, and lignin). Currently, CPH pretreatment methods are considered a good approach towards the improvement of both the degradation process and the production of biogas or ethanol. The present document aims to set out the different methods for pretreating lignocellulosic material, which are: physical (grinding and extrusion, among others); chemical (acids and alkaline); thermochemical (pyrolysis); ionic liquid (salts); and biological (microorganism) to improve biofuel production. The use of CPH as a substrate in bioconversion processes is a viable and promising option, despite the limitations of each pretreatment method.
Collapse
|
5
|
Kietkwanboot A, Chaiprapat S, Müller R, Suttinun O. Dephenolization of palm oil mill effluent by oil palm fiber-immobilized Trametes hirsuta AK04 in temporary immersion bioreactor for the enhancement of biogas production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:7559-7572. [PMID: 34480307 DOI: 10.1007/s11356-021-16199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The dephenolization of palm oil mill effluent (POME) with oil palm fiber-immobilized Trametes hirsuta AK 04 was conducted in a temporary immersion bioreactor to reduce the inhibitory effects of phenolics in anaerobic digestion. Longer immersion times provided greater removal of phenolics due to a higher release of manganese peroxidase. The most effective dephenolization was observed at 6 h immersed and 2 h non-immersed time (immersion ratio 6/8) with maximum removal of 85% from 1277 mg L-1 of phenolics in 4 days. The immobilized fungus maintained its high activity during multiple repeated batch treatments. The pretreated POME of 2 h showed higher methane yields compared with the untreated POME substrate. The methane yields increased with increasing pretreatment time and dephenolization levels. The results suggested that an increased abundance of methanogens was associated with the detoxification of phenolics. The fungal biomass contained crude protein, amino acids, and essential phenolics, which can be used as animal feed supplements.
Collapse
Affiliation(s)
- Anukool Kietkwanboot
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, Prince of Songkla University, Songkhla, 90112, Thailand
| | - Sumate Chaiprapat
- Department of Civil and Environmental Engineering, Faculty of Engineering, Energy Systems Research Institute (PERIN), Prince of Songkla University, Songkhla, 90112, Thailand
| | - Rudolf Müller
- Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestrasse 15, 21073, Hamburg, Germany
| | - Oramas Suttinun
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, Prince of Songkla University, Songkhla, 90112, Thailand.
- Center of Excellence on Hazardous Substance Management (HSM), Bangkok, 10330, Thailand.
| |
Collapse
|
6
|
Alkali pretreated sugarcane bagasse, rice husk and corn husk wastes as lignocellulosic biosorbents for dyes. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
7
|
Self-Sustaining Bioelectrochemical Cell from Fungal Degradation of Lignin-Rich Agrowaste. ENERGIES 2021. [DOI: 10.3390/en14082098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present work describes a self-sustaining bioelectrochemical system that adopts simple cell configurations and operates in uncontrolled ambient surroundings. The microbial fuel cell (MFC) was comprised of white-rot fungus of Phanaerochaete chrysosporium fed with oil palm empty fruit bunch (EFB) as the substrate. This fungal strain degrades lignin by producing ligninolytic enzymes such as laccase, which demonstrates a specific affinity for oxygen as its electron acceptor. By simply pairing zinc and the air electrode in a membraneless, single-chamber, 250-mL enclosure, electricity could be harvested. The microbial zinc/air cell is capable of sustaining a 1 mA discharge current continuously for 44 days (i.e., discharge capacity of 1056 mAh). The role of the metabolic activities of P. chrysosporium on EFB towards the MFC’s performance is supported by linear sweep voltammetry measurement and scanning electron microscopy observations. The ability of the MFC to sustain its discharge for a prolonged duration despite the fungal microbes not being attached to the air electrode is attributed to the formation of a network of filamentous hyphae under the submerged culture. Further, gradual lignin decomposition by fungal inocula ensures a continuous supply of laccase enzyme and radical oxidants to the MFC. These factors promote a self-sustaining MFC devoid of any control features.
Collapse
|
8
|
Microbial lignin peroxidases: Applications, production challenges and future perspectives. Enzyme Microb Technol 2020; 141:109669. [DOI: 10.1016/j.enzmictec.2020.109669] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022]
|
9
|
Stabilization of Glycosylated β-Glucosidase by Intramolecular Crosslinking Between Oxidized Glycosidic Chains and Lysine Residues. Appl Biochem Biotechnol 2020; 192:325-337. [DOI: 10.1007/s12010-020-03321-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
|
10
|
Aragão MS, Menezes DB, Ramos LC, Oliveira HS, Bharagava RN, Romanholo Ferreira LF, Teixeira JA, Ruzene DS, Silva DP. Mycoremediation of vinasse by surface response methodology and preliminary studies in air-lift bioreactors. CHEMOSPHERE 2020; 244:125432. [PMID: 31812763 DOI: 10.1016/j.chemosphere.2019.125432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/11/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
This work evaluated the degradation of sugarcane vinasse with the production of biomass by Pleurotus sajor-caju CCB020, considering the combination of temperature and pH effects, using surface response methodology (RSM). A 22 complete central factorial composite experiment was used to analyze the results. The optimum temperature and pH values were respectively 27 °C and 5.6 for maximum decolorization yield and 20 °C and 6.8 for maximum biomass production. In parallel, scale-up experiments under conditions of 30 °C and initial pH 5.0 were evaluated in two different air-lift bioreactors of 7.0 L. Under these conditions, reductions of 53% and 58% in chemical oxygen demand (COD) and 71% and 58% in biological oxygen demand (BOD) were obtained respectively with the concentric tube type air-lift bioreactor with an increased degassing zone and without an increased degassing zone. Under these conditions, this study concluded that the systematic combination of P. sajor-caju and vinasse can be applied in the biodegradation process of refractory compounds contained in vinasse, concomitant to obtaining biomass and laccase and manganese peroxidase enzymes. Due to the good performance of the air-lift bioreactors, they can be used in scale studies in future industrial vinasse applications, besides it is possible to emphasize that different configurations in the bioreactor can affect the efficiency of the process.
Collapse
Affiliation(s)
- Moniky S Aragão
- Institute of Technology and Research, Murilo Dantas Avenue 300, Campus Farolândia, 49032-490, Aracaju, SE, Brazil
| | - Diego B Menezes
- Institute of Technology and Research, Murilo Dantas Avenue 300, Campus Farolândia, 49032-490, Aracaju, SE, Brazil
| | - Larissa C Ramos
- Northeastern Biotechnology Network - RENORBIO, Federal University of Sergipe, 49100-000, São Cristóvão, Sergipe, Brazil; Center for Exact Sciences and Technology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - Helon S Oliveira
- Institute of Technology and Research, Murilo Dantas Avenue 300, Campus Farolândia, 49032-490, Aracaju, SE, Brazil
| | - Ram Naresh Bharagava
- Laboratory for Bioremediation and Metagenomics Research (LBMR), Department of Microbiology (DM), Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226 025, Uttar Pradesh, India
| | - Luiz Fernando Romanholo Ferreira
- Institute of Technology and Research, Murilo Dantas Avenue 300, Campus Farolândia, 49032-490, Aracaju, SE, Brazil; Graduate Program in Process Engineering, Tiradentes University, Murilo Dantas Avenue, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil.
| | - José A Teixeira
- Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal
| | - Denise S Ruzene
- Northeastern Biotechnology Network - RENORBIO, Federal University of Sergipe, 49100-000, São Cristóvão, Sergipe, Brazil; Center for Exact Sciences and Technology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - Daniel P Silva
- Northeastern Biotechnology Network - RENORBIO, Federal University of Sergipe, 49100-000, São Cristóvão, Sergipe, Brazil; Center for Exact Sciences and Technology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| |
Collapse
|
11
|
Huang W, Yuan H, Li X. Multi-perspective analyses of rice straw modification by Pleurotus ostreatus and effects on biomethane production. BIORESOURCE TECHNOLOGY 2020; 296:122365. [PMID: 31759858 DOI: 10.1016/j.biortech.2019.122365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
Multi-perspective analyses were carried out to investigate the effect of rice straw modification for 45 days by P. ostreatus on biomethane of production. The results showed that rice straw modified for 25 days achieved the highest biomethane yield of 269 mL·g-1 VS, which was a 26.9% improvement compared with non-modified rice straw. The multi-perspective analyses demonstrated that the improvement resulted from fungal enzymatic reactions, which led to changes in the physicochemical properties of rice straw. The porosity, surface area, acetyl group abundance, degree of polymerization, and lignin degradation selectivity of rice straw modified for 25 days were optimal for enzyme adsorption. Compared with non-modified rice straw, the adsorption of cellulase and xylanase on rice straw modified for 25 days was increased by 18.8% and 58.1%, respectively, which facilitated biomethane production. The study indicated that P. ostreatus is effective for improving biomethane production from rice straw.
Collapse
Affiliation(s)
- WenBo Huang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| | - HaiRong Yuan
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| | - XiuJin Li
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China.
| |
Collapse
|
12
|
|
13
|
Biotransformation of phenolic compounds by Bacillus aryabhattai. Bioprocess Biosyst Eng 2019; 42:1671-1679. [DOI: 10.1007/s00449-019-02163-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022]
|
14
|
Niju S, Swathika M. Delignification of sugarcane bagasse using pretreatment strategies for bioethanol production. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101263] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Srivastava N, Rathour R, Jha S, Pandey K, Srivastava M, Thakur VK, Sengar RS, Gupta VK, Mazumder PB, Khan AF, Mishra PK. Microbial Beta Glucosidase Enzymes: Recent Advances in Biomass Conversation for Biofuels Application. Biomolecules 2019; 9:E220. [PMID: 31174354 PMCID: PMC6627771 DOI: 10.3390/biom9060220] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 01/10/2023] Open
Abstract
The biomass to biofuels production process is green, sustainable, and an advanced technique to resolve the current environmental issues generated from fossil fuels. The production of biofuels from biomass is an enzyme mediated process, wherein β-glucosidase (BGL) enzymes play a key role in biomass hydrolysis by producing monomeric sugars from cellulose-based oligosaccharides. However, the production and availability of these enzymes realize their major role to increase the overall production cost of biomass to biofuels production technology. Therefore, the present review is focused on evaluating the production and efficiency of β-glucosidase enzymes in the bioconversion of cellulosic biomass for biofuel production at an industrial scale, providing its mechanism and classification. The application of BGL enzymes in the biomass conversion process has been discussed along with the recent developments and existing issues. Moreover, the production and development of microbial BGL enzymes have been explained in detail, along with the recent advancements made in the field. Finally, current hurdles and future suggestions have been provided for the future developments. This review is likely to set a benchmark in the area of cost effective BGL enzyme production, specifically in the biorefinery area.
Collapse
Affiliation(s)
- Neha Srivastava
- Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.
| | - Rishabh Rathour
- Department of Bioengineering, Integral University, Lucknow 226026, India.
| | - Sonam Jha
- Department of Botany, Banaras Hindu University, Varanasi 221005, India.
| | - Karan Pandey
- Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.
| | - Manish Srivastava
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India.
| | - Vijay Kumar Thakur
- Enhanced Composites and Structures Center, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK.
| | - Rakesh Singh Sengar
- Department of Agriculture Biotechnology, College of Agriculture, Sardar Vallabhbhai Patel, University of Agriculture and Technology, Meerut 250110, U.P., India.
| | - Vijai K Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, 12618 Tallinn, Estonia.
| | | | - Ahamad Faiz Khan
- Department of Bioengineering, Integral University, Lucknow 226026, India.
| | - Pradeep Kumar Mishra
- Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.
| |
Collapse
|
16
|
Salomão GSB, Agnezi JC, Paulino LB, Hencker LB, de Lira TS, Tardioli PW, Pinotti LM. Production of cellulases by solid state fermentation using natural and pretreated sugarcane bagasse with different fungi. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2018.10.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Hasanin MS, Darwesh OM, Matter IA, El-Saied H. Isolation and characterization of non-cellulolytic Aspergillus flavus EGYPTA5 exhibiting selective ligninolytic potential. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2018.11.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Zhang F, Bunterngsook B, Li JX, Zhao XQ, Champreda V, Liu CG, Bai FW. Regulation and production of lignocellulolytic enzymes from Trichoderma reesei for biofuels production. ADVANCES IN BIOENERGY 2019. [DOI: 10.1016/bs.aibe.2019.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Pamidipati S, Ahmed A. Cellulase stimulation during biodegradation of lignocellulosic residues at increased biomass loading. BIOCATAL BIOTRANSFOR 2018. [DOI: 10.1080/10242422.2018.1508284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sirisha Pamidipati
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani - Hyderabad campus, Jawahar Nagar, Shameerpet Mandal, Hyderabad, India
| | - Asma Ahmed
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani - Hyderabad campus, Jawahar Nagar, Shameerpet Mandal, Hyderabad, India
| |
Collapse
|
20
|
Alternatives for Chemical and Biochemical Lignin Valorization: Hot Topics from a Bibliometric Analysis of the Research Published During the 2000–2016 Period. Processes (Basel) 2018. [DOI: 10.3390/pr6080098] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A complete bibliometric analysis of the Scopus database was performed to identify the research trends related to lignin valorization from 2000 to 2016. The results from this analysis revealed an exponentially increasing number of publications and a high relevance of interdisciplinary collaboration. The simultaneous valorization of the three main components of lignocellulosic biomass (cellulose, hemicellulose, and lignin) has been revealed as a key aspect and optimal pretreatment is required for the subsequent lignin valorization. Research covers the determination of the lignin structure, isolation, and characterization; depolymerization by thermal and thermochemical methods; chemical, biochemical and biological conversion of depolymerized lignin; and lignin applications. Most methods for lignin depolymerization are focused on the selective cleavage of the β-O-4 linkage. Although many depolymerization methods have been developed, depolymerization with sodium hydroxide is the dominant process at industrial scale. Oxidative conversion of lignin is the most used method for the chemical lignin upgrading. Lignin uses can be classified according to its structure into lignin-derived aromatic compounds, lignin-derived carbon materials and lignin-derived polymeric materials. There are many advances in all approaches, but lignin-derived polymeric materials appear as a promising option.
Collapse
|