1
|
Kumar S, Chand S, Singh KN. Electro-oxidative coupling of Bunte salts with aryldiazonium tetrafluoroborates: a benign access to unsymmetrical sulfoxides. Org Biomol Chem 2024; 22:850-856. [PMID: 38175526 DOI: 10.1039/d3ob01955a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
An electrochemical strategy for the synthesis of unsymmetrical sulfoxides has been explored using Bunte salts and aryldiazonium tetrafluoroborates under constant current electrolysis at room temperature. In addition to being eco-safe and using mild conditions, the present protocol is free from the use of metal/oxidant, and is endowed with a broad substrate scope and good functional group tolerance.
Collapse
Affiliation(s)
- Saurabh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Shiv Chand
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Krishna Nand Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Skolia E, Gkizis PL, Kokotos CG. Aerobic Photocatalysis: Oxidation of Sulfides to Sulfoxides. Chempluschem 2022; 87:e202200008. [PMID: 35199489 DOI: 10.1002/cplu.202200008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/14/2022] [Indexed: 12/19/2022]
Abstract
Sulfoxides constitute one of the most important functional groups in organic chemistry found in numerous pharmaceuticals and natural products. Sulfoxides are usually obtained from the oxidation of the corresponding sulfides. Among various oxidants, oxygen or air are considered the greenest and most sustainable reagent. Photochemistry and photocatalysis is increasingly applied in new, as well as traditional, yet demanding, reaction, like the aerobic oxidation of sulfides to sulfoxides, since photocatalysis has provided the means to access them in mild and effective ways. In this review, we will summarize the photochemical protocols that have been developed for the oxidation of sulfides to sulfoxides, employing air or oxygen as the oxidant. The aim of this review is to present: i) a historical overview, ii) the key mechanistic studies and proposed mechanisms and iii) categorize the different catalytic systems in literature.
Collapse
Affiliation(s)
- Elpida Skolia
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis 15771, Athens, Greece
| | - Petros L Gkizis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis 15771, Athens, Greece
| | - Chistoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis 15771, Athens, Greece
| |
Collapse
|
3
|
Liu F, Shou C, Geng Q, Zhao C, Xu J, Yu H. A Baeyer-Villiger monooxygenase from Cupriavidus basilensis catalyzes asymmetric synthesis of (R)-lansoprazole and other pharmaco-sulfoxides. Appl Microbiol Biotechnol 2021; 105:3169-3180. [PMID: 33779786 DOI: 10.1007/s00253-021-11230-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 12/25/2022]
Abstract
Biocatalytic synthesis of pharmaco-chiral sulfoxides has gained interest in recent years for its environmental friendliness. However, only a few natural biocatalysts can be used for the efficient synthesis of pharmaco-sulfoxides, including (R)-lansoprazole, a chiral proton pump inhibitor used to treat gastrointestinal diseases. In this study, the sequence of BoBVMO (Baeyer-Villiger monooxygenase from Bradyrhizobium oligotrophicum) was used as a probe to identify BVMOs via genomic mining for the highly efficient synthesis of (R)-lansoprazole and other pharmaco-sulfoxides. After virtual sequence filtering, target gene cloning, heterologous expression, and activity screening for lansoprazole sulfide (LPS) monooxygenation, seven new BVMOs were identified among more than 10,000 homologous BVMOs. According to the conserved sequence and phylogenetic tree analysis, these discovered enzymes belong to the family of type I BVMOs and the ethionamide monooxygenase subtype. Among them, CbBVMO, Baeyer-Villiger monooxygenase from Cupriavidus basilensis, showed the highest efficiency and excellent enantioselectivity for converting LPS into (R)-lansoprazole. Moreover, CbBVMO showed a wide substrate spectrum toward other bulky prazole-family sulfides. The results indicate that CbBVMO is a potential enzyme for extending the application of BVMOs in pharmaceutical industry. KEY POINTS: • CbBVMO is the most efficient biocatalyst for (R)-lansoprazole biosynthesis. • CbBVMO catalyzes the conversion of various bulky prazole sulfides. • CbBVMO is a promising enzyme for the biosynthesis of pharmaco-sulfoxides.
Collapse
Affiliation(s)
- Feng Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Chao Shou
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qiang Geng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Chen Zhao
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jianhe Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Huilei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|