1
|
Dwivedi S, Yadav K, Gupta S, Tanveer A, Yadav S, Yadav D. Fungal pectinases: an insight into production, innovations and applications. World J Microbiol Biotechnol 2023; 39:305. [PMID: 37691054 DOI: 10.1007/s11274-023-03741-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
The fungal system holds morphological plasticity and metabolic versatility which makes it unique. Fungal habitat ranges from the Arctic region to the fertile mainland, including tropical rainforests, and temperate deserts. They possess a wide range of lifestyles behaving as saprophytic, parasitic, opportunistic, and obligate symbionts. These eukaryotic microbes can survive any living condition and adapt to behave as extremophiles, mesophiles, thermophiles, or even psychrophile organisms. This behaviour has been exploited to yield microbial enzymes which can survive in extreme environments. The cost-effective production, stable catalytic behaviour and ease of genetic manipulation make them prominent sources of several industrially important enzymes. Pectinases are a class of pectin-degrading enzymes that show different mechanisms and substrate specificities to release end products. The pectinase family of enzymes is produced by microbial sources such as bacteria, fungi, actinomycetes, plants, and animals. Fungal pectinases having high specificity for natural sources and higher stabilities and catalytic activities make them promising green catalysts for industrial applications. Pectinases from different microbial sources have been investigated for their industrial applications. However, their relevance in the food and textile industries is remarkable and has been extensively studied. The focus of this review is to provide comprehensive information on the current findings on fungal pectinases targeting diverse sources of fungal strains, their production by fermentation techniques, and a summary of purification strategies. Studies on pectinases regarding innovations comprising bioreactor-based production, immobilization of pectinases, in silico and expression studies, directed evolution, and omics-driven approaches specifically by fungal microbiota have been summarized.
Collapse
Affiliation(s)
- Shruti Dwivedi
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Kanchan Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Supriya Gupta
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Aiman Tanveer
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Sangeeta Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Dinesh Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India.
| |
Collapse
|
2
|
Cai Y, Yang G. Enzyme cocktail with hyperactive lipase through solid-state fermentation by the novel strain Penicillium sp. Y-21. Sci Rep 2023; 13:14527. [PMID: 37667063 PMCID: PMC10477218 DOI: 10.1038/s41598-023-41912-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 09/01/2023] [Indexed: 09/06/2023] Open
Abstract
Lipase is a kind of industrial enzyme preparation with various catalytic abilities and is widely used in food, energy, medicine and other fields. To increase lipase and enzyme cocktail activity through solid-state fermentation, the novel strain Penicillium sp. Y-21 was obtained through ethyl methanesulfonate (EMS) mutation from the novel strain Y, which was isolated from soils. Solid-state fermentation by strain Y-21 using agricultural byproducts was carried out in tray bioreactors. The optimum culture composition for enzyme cocktail fermentation was soybean meal 20 g, 3% (w/w) glucose, 1% (w/w) peptone, 5% (w/w) lard, 0.04% (w/w) CaCl2, 0.04% (w/w) FeCl3, 28 °C for 72 h. The enzyme cocktail produced by strain Y-21 is a kind of multienzyme complex, containing xylanase, glucanase, acidic protease, pectinase, cellulase and lipase, and their enzymatic activities (unit: U g-1) were 8000, 6000, 8000, 2000, 3000 and 120, respectively. During the fermentation process, the lipase coding genes pel, pha, and p12 were also studied and amplified from the RNA of Penicillium sp. Y-21 by RT-PCR. The results showed that the pel gene played an important role in enzyme production. Afterwards, an enzyme cocktail can be added to chicken feed as an additive, which improves animal growth and feed efficiency.
Collapse
Affiliation(s)
- Yang Cai
- College of Food Science and Technology, Nanjing Agricultural University, Weigang #1, Nanjing, 210095, Jiangsu Province, China
| | - Guanghua Yang
- College of Biological and Food Engineering, Changzhou University, Gehu Middle Road 21, Changzhou, 213164, Jiangsu Province, China.
| |
Collapse
|
3
|
Multi-Objective Statistical Optimization of Pectinolytic Enzymes Production by an Aspergillus sp. on Dehydrated Coffee Residues in Solid-State Fermentation. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8040170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pectinolytic enzymes are a group of enzymes widely used in the food industry. They can be obtained through a wide range of by-products and agricultural and agro-industrial waste by the action of fungi, such as Aspergillus spp., by solid-state fermentation (SSF). A wild strain of an Aspergillus sp. isolated in the Universidad Técnica del Norte (UTN) was used to obtain pectinolytic enzymes from dehydrated coffee waste (pulp and husk) derived from coffee cherries cultivated in the Ecuadorian Andean regions. It was possible to find a condition in which the production of pectinases (expressed as Enzymatic Activity (EA)) and the concentration of spores (S) were simultaneously maximized, using the response surface methodology, in a 3-level factorial design, by SSF in simple tray-type bioreactors. After the analysis and optimization of quadratic models, three confirmatory experiments were performed in the unique optimal condition recommended (35 °C and 79% relative humidity), obtaining 29.9 IU/g and 2.64 × 106 #Sp./g for EA and S, respectively; these values coincided with those predicted by the quadratic models, demonstrating their validity. The values obtained in this study are similar to those previously obtained by other authors.
Collapse
|
4
|
Nath S, Kango N. Recent Developments in Industrial Mycozymes: A Current Appraisal. Mycology 2022; 13:81-105. [PMID: 35711326 PMCID: PMC9196846 DOI: 10.1080/21501203.2021.1974111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fungi, being natural decomposers, are the most potent, ubiquitous and versatile sources of industrial enzymes. About 60% of market share of industrial enzymes is sourced from filamentous fungi and yeasts. Mycozymes (myco-fungus; zymes-enzymes) are playing a pivotal role in several industrial applications and a number of potential applications are in the offing. The field of mycozyme production, while maintaining the old traditional methods, has also witnessed a sea change due to advents in recombinant DNA technology, optimisation protocols, fermentation technology and systems biology. Consolidated bioprocessing of abundant lignocellulosic biomass and complex polysaccharides is being explored at an unprecedented pace and a number of mycozymes of diverse fungal origins are being explored using suitable platforms. The present review attempts to revisit the current status of various mycozymes, screening and production strategies and applications thereof.
Collapse
Affiliation(s)
- Suresh Nath
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| |
Collapse
|
5
|
Reginatto C, Posso dos Santos G, Costa Ramos K, Borges Folle A, Campos de Souza B, Meneghel L, Carra S, Polidoro TA, Moura da Silveira M, Valduga E, Malvessi E. Inoculation conditions improved the pectinase productivity in Aspergillus niger LB-02-SF solid-state cultivation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Cavalieri de Alencar Guimarães N, Glienke NN, Silva Galeano RM, Ruller R, Zanoelo FF, Masui DC, Giannesi GC. Polygalacturonase from Aspergillus japonicus (PGAj): Enzyme production using low-cost carbon source, biochemical properties and application in clarification of fruit juices. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Sodhi AS, Sharma N, Bhatia S, Verma A, Soni S, Batra N. Insights on sustainable approaches for production and applications of value added products. CHEMOSPHERE 2022; 286:131623. [PMID: 34346348 DOI: 10.1016/j.chemosphere.2021.131623] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The increasing demand for the development of sustainable strategies to utilize and process agro-industrial residues paves new paths for exploring innovative approaches in this area. Biotechnology based microbial transformations provide efficient, low cost and sustainable approaches for the production of value added products. The use of organic rich residues opens new avenues for the production of enzymes, pigments, biofuels, bioactive compounds, biopolymers etc. with vast industrial and therapeutic applications. Innovative technologies like strain improvement, enzyme immobilization, genome editing, morphological engineering, ultrasound/supercritical fluid/pulse electric field extraction, etc. can be employed. These will be helpful in achieving significant improvement in qualitative and quantitative parameters of the finished products. The global trend for the valorisation of biowaste has boosted the commercialization of these products which has transformed the markets by providing new investment opportunities. The upstream processing of raw materials using microbes poses a limitation in terms of product development and recovery which can be overcome by modifying the bioreactor design, physiological parameters or employing alternate technologies which will be discussed in this review. The other problems related to the processes include product stability, industrial applicability and cost competitiveness which needs to be addressed. This review comprehensively discusses the recent progress, avenues and challenges in the approaches aimed at valorisation of agro-industrial wastes along with possible opportunities in the bioeconomy.
Collapse
Affiliation(s)
- Abhinashi Singh Sodhi
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh, 160030, India
| | - Neetu Sharma
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh, 160030, India
| | - Sonu Bhatia
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh, 160030, India
| | - Anoop Verma
- School of Energy and Environment, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Sajeev Soni
- Department of Chemistry, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh, 160030, India
| | - Navneet Batra
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh, 160030, India.
| |
Collapse
|
8
|
Abstract
The generation of pomaces from juice and olive oil industries is a major environmental issue. This review aims to provide an overview of the strategies to increase the value of pomaces by fermentation/biotransformation and explore the different aspects reported in scientific studies. Fermentation is an interesting solution to improve the value of pomaces (especially from grape, apple, and olive) and produce high-added value compounds. In terms of animal production, a shift in the fermentation process during silage production seems to happen (favoring ethanol production rather than lactic acid), but it can be controlled with starter cultures. The subsequent use of silage with pomace in animal production slightly reduces growth performance but improves animal health status. One of the potential applications in the industrial context is the production of enzymes (current challenges involve purification and scaling up the process) and organic acids. Other emerging applications are the production of odor-active compounds to improve the aroma of foods as well as the release of bound polyphenols and the synthesis of bioactive compounds for functional food production.
Collapse
|
9
|
Production of Cocktail Enzymes by Three Cladosporium Isolates and Bioconversion of Orange Peel Wastes into Valuable Enzymes. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.58] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The current research demonstrates the biotechnological economization of accumulated and inefficiently used agro-industrial orange peel wastes to generate amylase, endoglucanase, exoglucanase, pectinase, and xylanase, industrially essential enzymes with growing demands in enzyme markets, from three Cladosporium isolates. In submerged fermentation (SmF) at 10°C, the isolate AUMC 10865 produced the highest level of amylase (4164 IU/gram dry substrate). Endoglucanase, exoglucanase and xylanase had development peaks (923 IU/gds, 2280 IU/gds, and 1646 IU/gds, respectively in case of Cladosporium sp. AUMC 11366. Pectinase produced the most (7840 IU/gds) in the strain AUMC 11340. At 30°C, the strain AUMC 11340 secretes the most amylase (4120 IU/gds), endoglucanase (2700 IU/gds) and xylanase (3220 IU/gds). Exoglucanase development reached the peak (8750 IU/gds) in the isolate AUMC 10865. The overall production (5570 IU/gds) was instead enhanced by pectinase in the AUMC 11366 isolate. In solid-state fermentation (SSF) at 10°C, the isolate AUMC 10865 outperformed the other two isolates producing 640.0 IU/gds amylase, 763.3 IU/gds endoglucanase, 771.0 IU/gds exoglucanase, 1273.23 IU/gds pectinase and 1062.0 IU/gds xylanase, while the isolate AUMC 11366 produced the least amount of 399.7 IU/gds, 410.0 IU/gds, 413.3 IU/gds, 558.7 IU/gds, and 548.0 IU/gds, respectively. At 30°C, the isolate AUMC 11340 was superiorly producing higher levels of amylase (973.3 IU/gds), endoglucanase (746.0 IU/gds), exoglucanase (1052.0 IU/gds), pectinase (1685.3 IU/gds) and xylanase (1340.0 IU/gds), whereas isolate AUMC 10865 generated the least amounts of amylase (556.7 IU/gds) and exoglucanase (452.7 IU/gfs), and the isolate AUMC 11366 produced the least endoglucanase (256.3 IU/gds), pectinase (857.7 IU/gfs) and xylanase (436.3 IU/gds) amounts.
Collapse
|
10
|
Kumar V, Ahluwalia V, Saran S, Kumar J, Patel AK, Singhania RR. Recent developments on solid-state fermentation for production of microbial secondary metabolites: Challenges and solutions. BIORESOURCE TECHNOLOGY 2021; 323:124566. [PMID: 33390315 DOI: 10.1016/j.biortech.2020.124566] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Microbial secondary metabolites (SMs) are the intermediate or the product of metabolism produced during fermentation process. SMs are produced during stationary phase and play a major role in competition, antagonism and self defence mechanisms. These metabolites finds application in the pharmaceuticals, food, cosmetics etc. These are produced besides primary key metabolites (e.g., amino acids, lipids, carbohydrates etc.). Growth condition in solid-state fermentation (SSF) resembles microorganism's own native environment allowing the microorganisms to adapt best. Recent developments in bioprocessing has identified specific SSF practices that have a significant impact on SMs production. The practice of SSF, representing new opportunities to design better bioprocessing with potential genetic development goals for expanding the list of exciting SMs. Current updates cover advanced techniques on SSF to improve microbial SMs production and their ease of operation and cost-effective production strategies. Various factors affecting the SSF have been discussed with respect to sustainable development of novel SSF strategies for SMs production.
Collapse
Affiliation(s)
- Vinod Kumar
- Fermentation Technology Division, Indian Institute of Integrative Medicine, Post Bag No. 3, Canal Road, Jammu-180001, India
| | - Vivek Ahluwalia
- Institute of Pesticide Formulation Technology, Gurugram, Haryana 122 016, India
| | - Saurabh Saran
- Fermentation Technology Division, Indian Institute of Integrative Medicine, Post Bag No. 3, Canal Road, Jammu-180001, India
| | - Jitendra Kumar
- Institute of Pesticide Formulation Technology, Gurugram, Haryana 122 016, India
| | - Anil Kumar Patel
- Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | | |
Collapse
|