1
|
Gufe C, Jambwa P, Marumure J, Makuvara Z, Khunrae P, Kayoka-Kabongo PN. Are phenolic compounds produced during the enzymatic production of prebiotic xylooligosaccharides (XOS) beneficial: a review. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:867-882. [PMID: 38594834 DOI: 10.1080/10286020.2024.2328723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/05/2024] [Indexed: 04/11/2024]
Abstract
Phenolics produced during xylooligosaccharide production might inhibit xylanases and enhance the antioxidant and antimicrobial activities of XOS. The effects of phenolic compounds on xylanases may depend on the type and concentration of the compound, the plant biomass used, and the enzyme used. Understanding the effects of phenolic compounds on xylanases and their impact on XOS is critical for developing viable bioconversion of lignocellulosic biomass to XOS. Understanding the complex relationship between phenolic compounds and xylanases can lead to the development of strategies that improve the efficiency and cost-effectiveness of XOS manufacturing processes and optimise enzyme performance.
Collapse
Affiliation(s)
- Claudious Gufe
- Department of Veterinary Technical Services, Central Veterinary Laboratories, Borrowdale Road, Harare, Zimbabwe
| | - Prosper Jambwa
- Department of Veterinary Biosciences, Faculty of Veterinary Science, University of Zimbabwe, Mount Pleasant, Harare, Zimbabwe
| | - Jerikias Marumure
- School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe
| | - Zakio Makuvara
- School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe
| | - Pongsak Khunrae
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bang Mod, Thung Khru, Bangkok, Thailand
| | | |
Collapse
|
2
|
Mueller A, Xu L, Heine C, Flach T, Mäkelä MR, de Vries RP. Genome Mining Reveals a Surprising Number of Sugar Reductases in Aspergillus niger. J Fungi (Basel) 2023; 9:1138. [PMID: 38132739 PMCID: PMC10744612 DOI: 10.3390/jof9121138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Metabolic engineering of filamentous fungi has received increasing attention in recent years, especially in the context of creating better industrial fungal cell factories to produce a wide range of valuable enzymes and metabolites from plant biomass. Recent studies into the pentose catabolic pathway (PCP) in Aspergillus niger have revealed functional redundancy in most of the pathway steps. In this study, a closer examination of the A. niger genome revealed five additional paralogs for the three original pentose reductases (LarA, XyrA, XyrB). Analysis of these genes using phylogeny, in vitro and in vivo functional analysis of the enzymes, and gene expression revealed that all can functionally replace LarA, XyrA, and XyrB. However, they are also active on several other sugars, suggesting a role for them in other pathways. This study therefore reveals the diversity of primary carbon metabolism in fungi, suggesting an intricate evolutionary process that distinguishes different species. In addition, through this study, the metabolic toolkit for synthetic biology and metabolic engineering of A. niger and other fungal cell factories has been expanded.
Collapse
Affiliation(s)
- Astrid Mueller
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (A.M.); (L.X.); (C.H.); (T.F.)
| | - Li Xu
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (A.M.); (L.X.); (C.H.); (T.F.)
| | - Claudia Heine
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (A.M.); (L.X.); (C.H.); (T.F.)
| | - Tila Flach
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (A.M.); (L.X.); (C.H.); (T.F.)
| | - Miia R. Mäkelä
- Department of Microbiology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland;
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (A.M.); (L.X.); (C.H.); (T.F.)
| |
Collapse
|
3
|
Egbune EO, Ezedom T, Odeghe OB, Orororo OC, Egbune OU, Ehwarieme AD, Aganbi E, Ebuloku CS, Chukwuegbo AO, Bogard E, Ayomanor E, Chisom PA, Edafetano FL, Destiny A, Alebe PA, Aruwei TK, Anigboro AA, Tonukari NJ. Solid-state fermentation production of L-lysine by Corynebacterium glutamicum (ATCC 13032) using agricultural by-products as substrate. World J Microbiol Biotechnol 2023; 40:20. [PMID: 37996724 DOI: 10.1007/s11274-023-03822-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/29/2023] [Indexed: 11/25/2023]
Abstract
To meet the growing demand for L-lysine, an essential amino acid with various applications, it is crucial to produce it on a large scale locally instead of relying solely on imports. This study aimed to evaluate the potential of using Corynebacterium glutamicum ATCC 13032 for L-lysine production from agricultural by-products such as palm kernel cake, soybean cake, groundnut cake, and rice bran. Solid-state fermentation was conducted at room temperature for 72 h, with the addition of elephant grass extract as a supplement. The results revealed that these agricultural by-products contain residual amounts of L-lysine. By employing solid-state fermentation with C. glutamicum (106 CFU/ml) in 100 g of various agricultural by-products, L-lysine production was achieved. Interestingly, the addition of elephant grass extract (1 g of elephant grass: 10 ml of water) further enhanced L-lysine production. Among the tested substrates, 100 g of groundnut cake moistened with 500 ml of elephant grass extract yielded the highest L-lysine concentration of 3.27 ± 0.02 (mg/gds). Furthermore, fermentation led to a substantial rise (p < 0.05) in soluble protein, with solid-state fermented soybean cake moistened with 500 ml of elephant grass extract exhibiting the highest amount of 7.941 ± 0.05 mg/gds. The activities of xylanase, amylase and protease were also significantly enhanced. This study demonstrates a viable biotechnological approach for locally producing L-lysine from agricultural by-products using solid-state fermentation with C. glutamicum. The findings hold potential for both health and industrial applications, providing a sustainable and economically feasible method for L-lysine production.
Collapse
Affiliation(s)
- Egoamaka O Egbune
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria.
- Tonukari Biotechnology Laboratory, Sapele, Delta State, Nigeria.
| | - Theresa Ezedom
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Otuke B Odeghe
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Osuvwe C Orororo
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Olisemeke U Egbune
- Department of Human Physiology, Faculty of Basic Medical Sciences, University of Jos, Jos, Nigeria
| | - Ayobola D Ehwarieme
- Department of Microbiology, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
| | - Eferhire Aganbi
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
- J. Mack Robinson College of Business, Georgia State University, 3348 Peachtree Rd NE, Atlanta, GA, 30326, USA
| | - Chijindu S Ebuloku
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
| | - Alma O Chukwuegbo
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
| | - Ebiyeiferu Bogard
- Department of Science Laboratory Technology, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
| | - Edesiri Ayomanor
- Department of Science Laboratory Technology, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
| | - Patricia A Chisom
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
| | - Fejiro L Edafetano
- Department of Science Laboratory Technology, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
| | - Albert Destiny
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
| | - Peace A Alebe
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
| | - Toboke-Keme Aruwei
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
| | - Akpovwehwee A Anigboro
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
| | - Nyerhovwo J Tonukari
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
- Tonukari Biotechnology Laboratory, Sapele, Delta State, Nigeria
| |
Collapse
|
4
|
Raina D, Kumar V, Saran S. A critical review on exploitation of agro-industrial biomass as substrates for the therapeutic microbial enzymes production and implemented protein purification techniques. CHEMOSPHERE 2022; 294:133712. [PMID: 35081402 DOI: 10.1016/j.chemosphere.2022.133712] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Annually, a huge amount of waste is generated by the industries that use agricultural biomass. Researchers have looked into employing this cheap and renewable agro-biomass as a substrate for enzyme production via fermentation processes to meet the ever-increasing worldwide need. Although there are a number of sources for enzyme extraction, microbial sources have dominated industrial sectors due to their easy availability and rapid growth. Microbial enzymes are currently used in a variety of industries, including pharmaceuticals, food, biofuels, textiles, paper, detergents, and so on, and using these nutritious feedstocks not only reduces production costs but also helps to reduce environmental concerns. The present review focuses on the therapeutic microbial enzymes produced using different agro-industrial biomass as raw materials, with down-streaming techniques for obtaining a final pure product. Additionally, the article also discussed biomass pretreatment processes, including physical, chemical and biological. The type of pretreatment method to be used is mostly governed by the intended use of the major molecular components of biomass (cellulose, hemicelluloses and lignin). Finally, purification challenges are included. All of this information will be useful in the industrial synthesis of high-purity targeted enzymes if the crucial aspects that have been discussed are taken into account.
Collapse
Affiliation(s)
- Diksha Raina
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vinod Kumar
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Saurabh Saran
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Response-Surface Statistical Optimization of Submerged Fermentation for Pectinase and Cellulase Production by Mucor circinelloides and M. hiemalis. FERMENTATION 2022. [DOI: 10.3390/fermentation8050205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cellulase and pectinase are degrading cellulosic and pectic substances that form plant cell walls and, thereby, they have a wide range of applications in the agro-industrial by-products recycling and food industries. In the current research, Mucor circinelloides and M. hiemalis strains were tested for their ability to produce cellulase and pectinase from tangerine peel by submerged fermentation. Experiments on five variables: temperature, pH, incubation period, inoculum size, and substrate concentration, were designed with a Box–Behnken design, as well as response surface methodology (RSM), and analysis of variance was performed. In addition, cellulase and pectinase were partially purified and characterized. At their optimum parameters, M. circinelloides and M. hiemalis afforded high cellulase production (37.20 U/mL and 33.82 U/mL, respectively) and pectinase (38.02 U/mL and 39.76 U/mL, respectively). The partial purification of M. circinelloides and M. hiemalis cellulase produced 1.73- and 2.03-fold purification with 31.12 and 32.02% recovery, respectively; meanwhile, 1.74- and 1.99-fold purification with 31.26 and 31.51% recovery, respectively, were obtained for pectinase. Partially purified cellulase and pectinase from M. circinelloides and M. hiemalis demonstrated the highest activity at neutral pH, and 70 and 50 °C, for cellulase and 50 and 60 °C, for pectinase, respectively. Moreover, 10 mM of K+ increased M. circinelloides enzymatic activity. The production of cellulase and pectinase from M. circinelloides and M. hiemalis utilizing RSM is deemed profitable for the decomposition of agro-industrial wastes.
Collapse
|
6
|
Harnessing Mucor spp. for Xylanase Production: Statistical Optimization in Submerged Fermentation Using Agro-Industrial Wastes. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3816010. [PMID: 35496057 PMCID: PMC9045992 DOI: 10.1155/2022/3816010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 11/18/2022]
Abstract
Xylan is the primary hemicellulosic polymer found in lignocellulosic agricultural wastes and can be degraded by xylanase. In the current research, Mucor circinelloides and M. hiemalis were tested for their ability to produce xylanase from tangerine peel by submerged fermentation. Experiments on five variables were designed with Box–Behnken design and response surface methodology. Analysis of variance was exercised, the xylanase output was demonstrated with a mathematical equation as a function of the five factors, and the quixotic states for xylanase biosynthesis was secured. In addition, xylanase was partially purified, characterized, and immobilized on calcium alginate beads. The optimum parameters for xylanase production by M. circinelloides and M. hiemalis were consisted of incubation temperature (30 and 20°C), pH value (9 and 7) incubation period (9 and 9 days), inoculum size (3 and 3 mL), and substrate concentration (3 and 3 g/100 mL), respectively. M. circinelloides and M. hiemalis demonstrated the highest xylanase activities after RSM optimization, with 42.23 and 35.88 U/mL, respectively. The influence of single, interchange, and quadratic factors on xylanase output was investigated using nonlinear regression equations with significant R2 and p values. The partial purification of M. circinelloides and M. hiemalis xylanase yielded 1.69- and 1.97-fold purification, and 30.74 and 31.34% recovery with 292.08 and 240.15 U/mg specific activity, respectively. Partially purified xylanase from M. circinelloides and M. hiemalis demonstrated the highest activity at neutral pH and 60 and 50°C, respectively. The immobilized M. circinelloides and M. hiemalis xylanase retained 84.02 and 79.43% activity, respectively. The production of xylanase from M. circinelloides and M. hiemalis utilizing RSM is deemed profitable for the decomposition of the agro-industrial wastes.
Collapse
|
7
|
Evaluation and mechanism of glucose production through acid hydrolysis process: Statistical approach. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Gufe C, Sutthibutpong T, Muhammad A, Ngenyoung A, Rattanarojpong T, Khunrae P. Role of F124 in the inhibition of Bacillus firmus K-1 Xyn11A by monomeric aromatic phenolic compounds. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Food Waste Biorefinery: Pathway towards Circular Bioeconomy. Foods 2021; 10:foods10061174. [PMID: 34073698 PMCID: PMC8225055 DOI: 10.3390/foods10061174] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Food waste biorefineries for the production of biofuels, platform chemicals and other bio-based materials can significantly reduce a huge environmental burden and provide sustainable resources for the production of chemicals and materials. This will significantly contribute to the transition of the linear based economy to a more circular economy. A variety of chemicals, biofuels and materials can be produced from food waste by the integrated biorefinery approach. This enhances the bioeconomy and helps toward the design of more green, ecofriendly, and sustainable methods of material productions that contribute to sustainable development goals. The waste biorefinery is a tool to achieve a value-added product that can provide a better utilization of materials and resources while minimizing and/or eliminating environmental impacts. Recently, food waste biorefineries have gained momentum for the production of biofuels, chemicals, and bio-based materials due to the shifting of regulations and policies towards sustainable development. This review attempts to explore the state of the art of food waste biorefinery and the products associated with it.
Collapse
|
10
|
Otero DM, Cavalcante Braga AR, Kalil SJ. Diversification of nitrogen sources as a tool to improve endo-xylanase enzyme activity produced by Cryptococcus laurentii. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Ng HS, Kee PE, Yim HS, Chen PT, Wei YH, Chi-Wei Lan J. Recent advances on the sustainable approaches for conversion and reutilization of food wastes to valuable bioproducts. BIORESOURCE TECHNOLOGY 2020; 302:122889. [PMID: 32033841 DOI: 10.1016/j.biortech.2020.122889] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 05/28/2023]
Abstract
The increasing amounts of food wastage and accumulation generated per annum due to the growing human population worldwide often associated with environmental pollution issues and scarcity of natural resources. In view of this, science community has worked towards in finding sustainable approaches to replace the common practices for food waste management. The agricultural and food processing wastes rich in nutrients are often the attractive substrates for the bioconversion for valuable bioproducts such as industrial enzymes, biofuel and bioactive compounds. The sustainable approaches on the re-utilization of food wastes as the industrial substrates for production of valuable bioproducts has meet the goals of circular bioeconomy, results in the diversify applications and increasing market demands for the bioproducts. This review discusses the current practice and recent advances on reutilization of food waste for bioconversion of valuable bioproducts from agricultural and food processing wastes.
Collapse
Affiliation(s)
- Hui Suan Ng
- Faculty of Applied Sciences, UCSI University, UCSI Heights, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Phei Er Kee
- Faculty of Applied Sciences, UCSI University, UCSI Heights, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Hip Seng Yim
- Faculty of Applied Sciences, UCSI University, UCSI Heights, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Po-Ting Chen
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan
| | - Yu-Hong Wei
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan 320, Taiwan
| | - John Chi-Wei Lan
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan 320, Taiwan.
| |
Collapse
|
12
|
Arumugam N, Boobalan T, Saravanan S, Jothi Basu M, Arun A, Suganya Devi T, Kavitha T. In silico and in vitro comparison of nicotinamide adenine dinucleotide phosphate dependent xylose reductase rossmaan fold in Debaryomycetaceae yeast family. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|