1
|
Dogan M. Analysis of the mechanisms underlying the anticancer and biological activity of retinoic acid and chitosan nanoparticles containing retinoic acid. Med Oncol 2024; 41:251. [PMID: 39320578 DOI: 10.1007/s12032-024-02512-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Retinoic acid (RA) has been shown in earlier investigations to have anticancer properties in various cancer cells. RA's effect on breast cancer treatment remains uncertain, though. This study investigated whether RA and chitosan nanoparticles (NPs) loaded with RA could be harmful to the MCF-7 cell line. In this study, NPs with RA were used in characterization tests. Using ELISA kits, the amounts of 8-okso-2'-deoksiguanozin (8-oxo-dG), BCL-2, Bcl-2-Associated X-protein (Bax), cleaved Poly (ADP-ribose) polymerases (PARP), total oxidant and antioxidant, and cleaved caspase-3 capacities were determined. The analysis of chitosan NPs showed that their drug-release profile, encapsulation efficiency (EE), and particle size were suitable for cell culture experiment. The EE value of NPs including RA was calculated as 83.32 ± 0.04%. The IC50 value for RA was 2.89 ± 0.03 µg/mL, while the IC50 value for RA-loaded NPs was significantly lower at 2.28 ± 0.02 µg/mL. In ELISA testing, RA and chitosan NPs containing RA at a concentration of 2 µg/mL dramatically increased the concentrations of total oxidant, cleaved caspase-3. Cleaved caspase-3 levels were quantified as 614.90 ± 3.40 pg/mg protein in the control group, 826.37 ± 5.82 pg/mg protein in RA-treated cells, and 863.52 ± 4.32 pg/mg protein in RA-NP-treated cells. Interestingly, no substantial variations were observed in the levels of the anti-apoptotic protein BCL-2. Overall, studies revealed that RA and RA-NPs promoted apoptosis in MCF-7 cells by upregulating the expression of pro-apoptotic proteins Bax, cleaved caspase-3, and cleaved PARP.
Collapse
Affiliation(s)
- Murat Dogan
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, Sivas Cumhuriyet University, 58140, Sivas, Turkey.
- Feinberg Faculty of Medicine, Robert H. Lurie Cancer Research Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
2
|
Polat EB, Hazar-Yavuz AN, Guler E, Ozcan GS, Taskin T, Duruksu G, Elcioglu HK, Yazır Y, Cam ME. Sublingual Administration of Teucrium Polium-Loaded Nanofibers with Ultra-Fast Release in the Treatment of Diabetes Mellitus: In Vitro and In Vivo Evaluation. J Pharm Sci 2024; 113:1068-1087. [PMID: 38123068 DOI: 10.1016/j.xphs.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
In this study, Teucrium polium (TP) methanolic extract, which has antidiabetic activity and protects the β-cells of the pancreas, was loaded in polyethylene oxide/sodium alginate nanofibers by electrospinning and administered sublingually to evaluate their effectiveness in type-2 diabetes mellitus (T2DM) by cell culture and in vivo studies. The gene expressions of insulin, glucokinase, GLUT-1, and GLUT-2 improved in TP-loaded nanofibers (TPF) on human beta cells 1.1B4 and rat beta cells BRIN-BD11. Fast-dissolving (<120 s) sublingual TPF exhibited better sustainable anti-diabetic activity than the suspension form, even in the twenty times lower dosage in streptozotocin/nicotinamide-induced T2DM rats. The levels of GLP-1, GLUT-2, SGLT-2, PPAR-γ, insulin, and tumor necrosis factor-alpha were improved. TP and TPF treatments ameliorated morphological changes in the liver, pancreas, and kidney. The fiber diameter increased, tensile strength decreased, and the working temperature range enlarged by loading TP in fibers. Thus, TPF has proven to be a novel supportive treatment approach for T2DM with the features of being non-toxic, easy to use, and effective.
Collapse
Affiliation(s)
- Elif Beyzanur Polat
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkiye
| | - Ayse Nur Hazar-Yavuz
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkiye
| | - Ece Guler
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkiye; Department of Pharmacology, Faculty of Pharmacy, Istanbul Kent University, Istanbul 34406, Türkiye; Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Turkiye; MecNano Technologies, Cube Incibation, Teknopark Istanbul, Istanbul 34906, Türkiye
| | - Gul Sinemcan Ozcan
- MecNano Technologies, Cube Incibation, Teknopark Istanbul, Istanbul 34906, Türkiye; Stem Cell and Gene Therapies Research and Applied Center, Medical Faculty, Kocaeli University, Kocaeli 41380, Turkiye
| | - Turgut Taskin
- Department of Pharmacognosy, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkiye
| | - Gokhan Duruksu
- Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul 34722, Turkiye
| | - Hatice Kubra Elcioglu
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkiye
| | - Yusufhan Yazır
- Stem Cell and Gene Therapies Research and Applied Center, Medical Faculty, Kocaeli University, Kocaeli 41380, Turkiye
| | - Muhammet Emin Cam
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkiye; Department of Pharmacology, Faculty of Pharmacy, Istanbul Kent University, Istanbul 34406, Türkiye; Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Turkiye; MecNano Technologies, Cube Incibation, Teknopark Istanbul, Istanbul 34906, Türkiye; Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul 34722, Turkiye; Biomedical Engineering Department, University of Aveiro, Aveiro 3810-193, Portugal; SFA R&D Laboratories, Teknopark Istanbul, Istanbul 34906, Türkiye; ATA BIO Technology, Teknopol Istanbul, Istanbul 34930, Türkiye.
| |
Collapse
|
3
|
Golabiazar R, Alee AR, Mala SF, Omar ZA, Abdulmanaf HS, Khalid KM. Investigating Kinetic, Thermodynamic, Isotherm, Antibacterial Activity and Paracetamol Removal from Aqueous Solution Using AgFe3O4 Nanocomposites Synthesized with Sumac Plant extract. J CLUST SCI 2023. [DOI: 10.1007/s10876-023-02406-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
4
|
Dogan M. Assessment of mechanism involved in the apoptotic and anti-cancer activity of Quercetin and Quercetin-loaded chitosan nanoparticles. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:176. [PMID: 35999475 DOI: 10.1007/s12032-022-01820-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/06/2022] [Indexed: 10/15/2022]
Abstract
In prior studies, Quercetin was revealed to exhibit anti-cancer features in a variety of cancer cell lines. However, the impact of Quercetin on neuroblastoma is unknown. This study looked into the potential cytotoxic effects of Quercetin and Quercetin-loaded chitosan nanoparticles (NPs) on the SH-SY5Y cell line. In this study, NPs containing Quercetin was prepared and characterization studies were performed. The vitality of the cells was measured using the XTT test after 24 h of treatment with various concentrations of Quercetin (0.5, 1, 2, 4, and 8 µg/mL). ELISA kits were used to detect the amounts of cleaved PARP, BCL-2, 8-Hydroxy-deoxyguanosine (8-oxo-dG), cleaved caspase 3, Bax, total oxidant status, and total antioxidant status in the cells. The results of the chitosan NPs characterization investigation revealed that the particle size, encapsulation effectiveness, and drug release profile of NPs were all appropriate for cell culture studies. Quercetin and Quercetin-loaded chitosan NPs significantly reduced cell viability in SH-SY5Y cells at different concentrations (**p < 0.05). 2 µg/mL Quercetin and Quercetin-loaded chitosan NPs significantly enhanced the levels of 8-oxo-dG, cleaved caspase 3, Bax, cleaved PARP, and total oxidant in ELISA testing. However, treatment with 2 µg/mL of Quercetin and Quercetin-loaded chitosan NPs did not affect the amount of BCL-2 protein. Overall, Quercetin and Quercetin-loaded chitosan NPs caused significant cytotoxicity in SH-SY5Y cells via producing oxidative stress, DNA damage, and eventually apoptosis.
Collapse
Affiliation(s)
- Murat Dogan
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140, Sivas, Turkey.
| |
Collapse
|
5
|
Chemical Profiling and In Vitro Antiurolithiatic Activity of Pleurolobus gangeticus (L.) J. St.- Hil. ex H. Ohashi & K. Ohashi Along with Its Antioxidant and Antibacterial Properties. Appl Biochem Biotechnol 2022; 194:5037-5059. [PMID: 35687306 DOI: 10.1007/s12010-022-04017-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
Pleurolobus gangeticus (L.) J. St.- Hil. ex H. Ohashi & K. Ohashi (Fabaceae) is an important medicinal plant used to treat various ailments. In this study, we report the antiurolithiatic, antioxidant, and antibacterial potential of chloroform fraction (CF) from P. gangeticus roots. For the chemical profiling, HPTLC, FT-IR, and GC-MS techniques of the CF were carried out, and phytochemical investigation was revealed that stigmasterol (45.06%) is one of the major components present in the fraction. The nucleation and aggregation assays were used to evaluate the in vitro antiurolithiatic activity at various concentration (2-10 mg/mL) of the CF. The results showed that the chloroform fraction had dose-dependent effects on Calcium Oxalate (CaOx) crystal formation. In both the assays, the maximum concentration of 10 mg/mL has shown better results. This concentration resulted significant increase in CaOx crystal nucleation along with the reduction of crystal size and the inhibition of crystal aggregation. Further, the CF showed stronger antioxidant (DPPH, NO, SOD, TRC) potential with an IC50 values of 415.9327, 391.729, 275.971, and 419.14 µg/mL, respectively. The antibacterial evaluation displayed effective results in the Agar well diffusion assay against selective urinary tract infection (UTI) pathogens (Escherichia coli, Klebsiella pneumonia, and Staphylococcus aureus). A maximum zone of inhibition (ZOI) 12.33 ± 1.05 mm for K pneumonia and minimum ZOI of 8.46 ± 0.27 mm for S. aureus were obtained. Further, the ADME-PK property of the stigmasterol was investigated, and it was found to pass the Lipinski and Ghose rules, supporting the drug-likeliness. This is the first record of the antiurolithiatic potential of P. gangeticus along with antioxidant and antibacterial activities. These findings give an insight into the effective drug development and treatment for kidney stones in future.
Collapse
|
6
|
DOĞAN M, KOÇYİĞİT ÜM, GEZEGEN H. Synthesis of Nanoparticles Loading Indenopyrazole Derivatives and Evaluation of Biological Features. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2022. [DOI: 10.33808/clinexphealthsci.1055921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Objective: In this study, it was aimed to prepare nanoparticle formulations using chitosan, a cationic natural polymer, and tripoly phosphate, and to perform mechanical characterization and in vitro cell culture studies. In addition, the cytotoxic effects of nanoparticles containing indenopyrazol derivatives against human glioma cells (C6) and human cervical cancer cells (HeLa) were investigated.
Methods: Within the scope of the study, nanoparticles containing indenopyrazole derivative were prepared and characterization of particle size, zeta potential and morphological properties were performed. XTT cytotoxicity test was applied to evaluate the antiproliferative activities of nanoparticles containing these components.
Results: Particle size, zeta potential and morphological properties of nanoparticles were observed to be suitable for application. In vitro cell culture studies showed that nanoparticles containing indenopyrazol derivatives showed better cytotoxic effects in both cell lines.
Conclusion: The results showed that the mechanical properties of nanoparticles containing indenopyrazol derivatives are suitable and can be applied in anticancer activity studies.
Collapse
Affiliation(s)
- Murat DOĞAN
- SİVAS CUMHURİYET ÜNİVERSİTESİ, ECZACILIK FAKÜLTESİ
| | | | | |
Collapse
|
7
|
Taskin D, Ozdemir M, Yalcin B. LC-ESI-tandem MS and in silico ADMET analysis of polyphenols from Rhus coriaria L. and Micromeria fruticosa (L.) Druce ssp. brachycalyx P. H. Davis. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00317-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Micromeria fruticosa (L.) Druce ssp. brachycalyx P. H. Davis and Rhus coriaria L., which are Lamiaceae species, are used both as spices in food and medicinally. Lamiaceae species are known to contain high amounts of polyphenols. In this study, liquid chromatography–quadrupole time-of-flight–tandem mass spectrometry (LC-QTOF-MS/MS) was used for analysis of polyphenols in the plants. Under gradient elution with using 0.1% aqueous acetic acid solution and acetonitrile mobile phases, an Agilent Poroshell C18 reversed phase column was used for the simultaneous determination of 18 polyphenols, and separation was performed in 30 min. Pharmacokinetic properties of these polyphenols such as drug-like and toxicity were estimated using open-source software, pkCSM and SwissADME.
Results
These compounds were determined to represent different classes of polyphenols, including phenolic acids, flavonoids, coumarin and tannins. ADMET predictions of polyphenols indicated that these compounds are easily absorbed and do not have toxic effects.
Conclusion
While the Rhus coriaria L. includes anthocyanidins, tannins, phenolic acid and flavonoids, the Micromeria fruticosa (L.) Druce ssp. brachycalyx P. H. Davis has phenolic acid, coumarin and flavonoids, according to these results. In silico ADME/Tox predictions revealed that these bioactive components are to be drug-like and non-mutagenic. These data are supportive for future analysis that can lead to their therapeutic use of the plants, suggesting that this species may be used as a natural medicinal source in the future after detailed analysis tests.
Graphical abstract
Collapse
|
8
|
Pharmacological and Antioxidant Activities of Rhus coriaria L. (Sumac). Antioxidants (Basel) 2021; 10:antiox10010073. [PMID: 33430013 PMCID: PMC7828031 DOI: 10.3390/antiox10010073] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
Rhus coriaria L. (Anacardiaceae), commonly known as sumac, is a commonly used spice, condiment, and flavoring agent, especially in the Mediterranean region. Owing to its bountiful beneficial values, sumac has been used in traditional medicine for the management and treatment of many ailments including hemorrhoids, wound healing, diarrhea, ulcer, and eye inflammation. This plant is rich in various classes of phytochemicals including flavonoids, tannins, polyphenolic compounds, organic acids, and many others. By virtue of its bioactive, Rhus coriaria possesses powerful antioxidant capacities that have ameliorative and therapeutic benefits for many common diseases including cardiovascular disease, diabetes, and cancer. This review describes the phytochemical properties of R. coriaria and then focuses on the potent antioxidant capacities of sumac. We then dissect the cellular and molecular mechanisms of sumac’s action in modulating many pathophysiological instigators. We show how accumulating evidence supports the antibacterial, antinociceptive, antidiabetic, cardioprotective, neuroprotective, and anticancer effects of this plant, especially that toxicity studies show that sumac is very safe to consume by humans and has little toxicity. Taken together, the findings we summarize here support the utilization of this plant as an attractive target for drug discovery.
Collapse
|