From Lab to Farm: Elucidating the Beneficial Roles of Photosynthetic Bacteria in Sustainable Agriculture.
Microorganisms 2021;
9:microorganisms9122453. [PMID:
34946055 PMCID:
PMC8707939 DOI:
10.3390/microorganisms9122453]
[Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Photosynthetic bacteria (PSB) possess versatile metabolic abilities and are widely applied in environmental bioremediation, bioenergy production and agriculture. In this review, we summarize examples of purple non-sulfur bacteria (PNSB) through biofertilization, biostimulation and biocontrol mechanisms to promote plant growth. They include improvement of nutrient acquisition, production of phytohormones, induction of immune system responses, interaction with resident microbial community. It has also been reported that PNSB can produce an endogenous 5-aminolevulinic acid (5-ALA) to alleviate abiotic stress in plants. Under biotic stress, these bacteria can trigger induced systemic resistance (ISR) of plants against pathogens. The nutrient elements in soil are significantly increased by PNSB inoculation, thus improving fertility. We share experiences of researching and developing an elite PNSB inoculant (Rhodopseudomonas palustris PS3), including strategies for screening and verifying beneficial bacteria as well as the establishment of optimal fermentation and formulation processes for commercialization. The effectiveness of PS3 inoculants for various crops under field conditions, including conventional and organic farming, is presented. We also discuss the underlying plant growth-promoting mechanisms of this bacterium from both microbial and plant viewpoints. This review improves our understanding of the application of PNSB in sustainable crop production and could inspire the development of diverse inoculants to overcome the changes in agricultural environments created by climate change.
Collapse