1
|
Pontes E, Viera V, Silva G, Silva Neto MD, Mendes B, Tome A, Almeida R, Santos NC, Gusmão RD, Lisboa H, Gusmão T. Effect of Malvaviscus arboreus Flower and Leaf Extract on the Functional, Antioxidant, Rheological, Textural, and Sensory Properties of Goat Yogurt. Foods 2024; 13:3942. [PMID: 39683014 DOI: 10.3390/foods13233942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
The present study aimed to evaluate the effects of incorporating different concentrations (1% and 2%) of Malvaviscus arboreus flower (FE) and leaf (LE) extracts as functional ingredients in goat milk yogurt. This study analyzed the impact of these formulations (YFE1%, YFE2%, YLE1%, and YLE2%) on the physicochemical, bioactive, antioxidant, rheological, textural, and sensory properties of goat yogurt over a 28-day storage period. Including FE and LE extracts significantly enhanced the yogurt's antioxidant activity, reaching up to 10.17 µmol TEAC/g, and strengthened its ability to inhibit lipid oxidation during storage. This study also observed a reduction in the viability of lactic acid bacteria, particularly L. delbrueckii subsp. bulgaricus, suggesting that the extracts may have antimicrobial properties. Notably, using FE, especially at a concentration of 2% (YFE2%), improved both antioxidant and textural properties while reducing syneresis by the end of the storage period. Sensory evaluations showed positive results for YFE1% and YFE2% formulations. These findings suggest that FE has significant potential as a functional food ingredient. This research lays the groundwork for future studies exploring the integration of Malvaviscus arboreus-based ingredients into functional food products, opening new possibilities for innovation in this field.
Collapse
Affiliation(s)
- Edson Pontes
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Vanessa Viera
- Laboratory of Bromatology, Education and Health Centre, Federal University of Campina Grande, Cuité 58175-000, Brazil
| | - Gezaildo Silva
- Laboratory of Bromatology, Education and Health Centre, Federal University of Campina Grande, Cuité 58175-000, Brazil
| | - Manoel da Silva Neto
- Department of Biology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Bianca Mendes
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Anna Tome
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Renata Almeida
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Newton C Santos
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Rennan de Gusmão
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Hugo Lisboa
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Thaisa Gusmão
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| |
Collapse
|
2
|
Irondi EA, Bankole AO, Awoyale W, Ajani EO, Alamu EO. Antioxidant, enzymes inhibitory, physicochemical and sensory properties of instant bio-yoghurts containing multi-purpose natural additives. Front Nutr 2024; 10:1340679. [PMID: 38274204 PMCID: PMC10808348 DOI: 10.3389/fnut.2023.1340679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
This study aimed to assess the antioxidant, enzyme inhibitory, physicochemical and sensory properties of instant bio-yoghurts containing multi-purpose natural additives. Multi-purpose natural additives were formulated with three natural additives (sweet detar seed, ginger rhizome, and hibiscus calyx flours, as a thickener, flavourant and colourant, respectively) blends at proportions derived from the Design Expert. The additives' synthetic counterparts were formulated with sodium carboxymethylcellulose, vanilla flavor, and red colourant at the same proportions. After that, yoghurt was produced and the additives blends were incorporated into it either in aqueous extract or flour form, yielding bio-yoghurts designated multi-purpose natural additive extract-containing yoghurt (MNAE-yoghurt), multi-purpose natural additive flour-added yoghurt (MNAF-yoghurt), and their multi-purpose synthetic additives-containing counterparts (MSAE-yoghurt and MSAF-yoghurt). A commercially-available bio-yoghurt served as a control. All the yoghurts were lyophilized to obtain instant bio-yoghurts. Subsequently, bioactive components (total phenolics, tannins, total flavonoids and saponins), antioxidants and enzymes [alpha-amylase, alpha-glucosidase, pancreatic lipase, and angiotensin 1-converting enzyme (ACE)] inhibitory activities, as well as proximate, physicochemical and sensory qualities of the bio-yoghurts were determined. The MNAE-yoghurt and MNAF-yoghurt had higher bioactive constituents, total titratable acid levels, and more potent antioxidant and enzyme inhibitory properties, but a lower pH than their synthetic counterparts and the control. The total phenolics, tannins, total flavonoids and saponins levels of MNAE-yoghurt and MNAF-yoghurt were 14.40 ± 0.24 and 16.54 ± 0.62 mg/g, 1.65 ± 0.04 and 1.74 ± 0.08 mg/g, 4.25 ± 0.03 and 4.40 ± 0.02 mg/g, 0.64 ± 0.01 and 0.66 ± 0.02 mg/g, respectively. Among the natural multi-purpose additives-containing bio-yoghurts, MNAF-yoghurt had higher bioactive constituents and stronger antioxidant and enzymes inhibitory properties. Its α-amylase, α-glucosidase, ACE, and pancreatic lipase IC50 values were 72.47 ± 0.47, 74.07 ± 0.02, 25.58 ± 2.58, and 33.56 ± 29.66 μg/mL, respectively. In contrast, MNAE-yoghurt had the highest protein (13.70 ± 0.85%) and the lowest fat (2.63 ± 0.71%) contents. The sensory attributes of all the bio-yoghurts fell within an acceptable likeness range. Overall, the inclusion of multi-purpose natural additives blends enhanced the instant bio-yoghurts' nutritional, health-promoting, and sensory qualities.
Collapse
Affiliation(s)
| | | | - Wasiu Awoyale
- Department of Food Science and Technology, Kwara State University, Ilorin, Nigeria
| | | | - Emmanuel Oladeji Alamu
- Food and Nutrition Sciences Laboratory, International Institute of Tropical Agriculture, Oyo, Nigeria
- Food and Nutrition Sciences Laboratory, International Institute of Tropical Agriculture, Southern Africa Research and Administration Hub (SARAH), Lusaka, Zambia
| |
Collapse
|
3
|
Bankole AO, Irondi EA, Awoyale W, Ajani EO. Application of natural and modified additives in yogurt formulation: types, production, and rheological and nutraceutical benefits. Front Nutr 2023; 10:1257439. [PMID: 38024362 PMCID: PMC10646222 DOI: 10.3389/fnut.2023.1257439] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Yogurt, a popular fermented dairy product, is of different types and known for its nutritional and nutraceutical benefits. However, incorporating additives into yogurt has been adopted to improve its functionality and nutraceutical properties. Additives incorporated in yogurt may be natural or modified. The incorporation of diverse natural additives in yogurt formulation, such as moringa, date palm, grape seeds and argel leaf extracts, cornelian cherry paste, mulberry fruit and leaf powder, lentil flour, different types of fibers, lemongrass and spearmint essential oils, and honey, has been reported. Similarly, modified additives, such as β-glucan, pectin, inulin, sodium alginate, and gelatin, are also added to enhance the physicochemical, textural, sensory, and rheological properties of yogurt. Although additives are traditionally added for their technological impact on the yogurt, studies have shown that they influence the nutritional and nutraceutical properties of yogurt, when added. Hence, yogurts enriched with functional additives, especially natural additives, have been reported to possess an improved nutritional quality and impart several health benefits to consumers. These benefits include reducing the risk of cardiovascular disease, cancer, osteoporosis, oxidative stress, and hyperglycemia. This current review highlights the common types of yogurt, the production process, and the rheological and nutraceutical benefits of incorporating natural and modified additives into yogurt.
Collapse
Affiliation(s)
| | | | - Wasiu Awoyale
- Department of Food Science and Technology, Kwara State University, Ilorin, Nigeria
| | | |
Collapse
|
4
|
Borba CM, de Moraes Soares Araújo G, Contessa CR, Dora CL, de Medeiros Burkert JF. Influence of β-Carotene Nanoemulsions on Technological Parameters and Stability in Food Matrices. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03060-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
5
|
Gautier A, Duarte CM, Sousa I. Moringa oleifera Seeds Characterization and Potential Uses as Food. Foods 2022; 11:1629. [PMID: 35681378 PMCID: PMC9180090 DOI: 10.3390/foods11111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/16/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Despite the fact Moringa oleifera (MO)-based foods present a very good and nutritionally well-balanced composition, they face some issues related to seed bitterness, which is the most challenging barrier to consumer acceptance. Different processing methods were tested to produce MO toasted seeds, MO-based beverage, and yoghurt-like products which were chemically and rheologically analyzed. The protein content ranged from 3.68% in the beverage, to 14.73% in the yoghurt and 40.21% in MO toasted seeds. A totally debittered beverage could not be accomplished, but the MO yoghurt-like showed a very nice flavor. Nutrition claims for minerals in toasted seeds could be considered for magnesium, phosphorus, iron, copper, zinc, and manganese, which confirms the M. oleifera seed richness in several minerals. The MO beverage presented less extended shear-thinning behavior (17.4 Pa·s) than commercial vegetable beverages and two pulse-based beverages developed in a previous study. The MO yoghurt-like product showed a gel structure similar to the dairy yoghurt, making it a promising new plant-based alternative. Further work must be performed in the future to debitter more efficiently the raw seeds to achieve a more pleasant MO-based beverage. The developed MO seed-based products may settle another font of high protein plant-based food.
Collapse
Affiliation(s)
| | | | - Isabel Sousa
- LEAF—Linking Landscape, Environment, Agriculture and Food, Higher Institute of Agronomy, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (A.G.); (C.M.D.)
| |
Collapse
|
6
|
Francelin MF, dos Santos IF, Claus T, Visentainer JV, Feihrmann AC, Gomes RG, Vieira AMS. Effects of
Moringa oleifera
Lam. leaves extract on physicochemical, fatty acids profile, oxidative stability, microbiological and sensory properties of chicken mortadella. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Thiago Claus
- Department of Chemical, Universidade Estadual de Maringá Paraná Brazil
| | | | | | | | | |
Collapse
|