1
|
Hameed S, Atif M, Perveen S. Role of gibberellins, neem leaf extract, and serine in improving wheat growth and grain yield under drought-triggered oxidative stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1675-1691. [PMID: 38162918 PMCID: PMC10754809 DOI: 10.1007/s12298-023-01402-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
The foliar application of gibberellins (GA3), neem leaf extract (NLE) and serine can be proven as effective growth regulating agents to counter drought stress-related deleterious effects. The literature about the collaborative role of these substances in foliar spray application under drought stress is not available to this date. No single report is available in literature on combine foliar application of GA3, NLE, and serine in improving wheat growth and yield under drought-triggered oxidative stress. The objective of this study was to induct tolerance against drought stress in order to sustain maximum growth and yield of wheat varieties (Anaj-2017 and Galaxy-2013) with foliar applications of GA3, NLE, and serine. The current field trial was designed to disclose the protective role of these substances in wheat varieties (Anaj-2017 and Galaxy-2013) under water-deficit stress. Two irrigation levels, i.e., control (normal irrigation) and water stress (water deficit irrigation), and 5 levels of GA3, NLE and serine i.e., control (water spray), GA3 (10.0 ppm), NLE (10.0%), serine (9.5 mM), and mixture (GA3 + NLE + serine) in a 1:1:1 ratio was applied. Application of these substances improved the pigments (Chlorophyll a, b), carotenoids, growth, biomass, and grain yield traits of both wheat varieties under water-deficit stress. Activities of antioxidant enzymes (POD, CAT and SOD), and non-enzymatic antioxidants (proline, total phenolic contents, anthocyanin and free amino acids) were up-regulated under drought stress and with foliar spray treatments. The foliar applications of these substances reduced the drought triggered overproduction of lipid peroxidation (MDA) and H2O2. The study found that Galaxy-2013 variety is more tolerant to drought stress than Anaj-2017, while co-applied treatments (GA3 + NLE + serine) were shown to be the most effective among all applications. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01402-9.
Collapse
Affiliation(s)
- Sidra Hameed
- Department of Botany, Government College University, Faisalabad, 38000 Pakistan
| | - Muhammad Atif
- Department of Botany, Government College University, Faisalabad, 38000 Pakistan
| | - Shagufta Perveen
- Department of Botany, Government College University, Faisalabad, 38000 Pakistan
| |
Collapse
|
2
|
Hosseini P, Mohsenifar K, Rajaie M, Babaeinejad T. Plant growth regulators affecting canola ( Brasica Napus L.) biochemistry including oil yield under drought stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1663-1674. [PMID: 38162919 PMCID: PMC10754807 DOI: 10.1007/s12298-023-01399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 08/23/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
The objective was to test the effects of PGR on canola (Brassica napus L.) biochemistry including oil yield under drought stress. A two-year (Y1 and Y2) split plot field experiment on the basis of a randomized complete block design with three replications was conducted. The main factor was, drought stress levels, including irrigation after a reduction of 40 (D1), 60 (D2) and 80% (D3) of field capacity (FC) moisture, and the sub-factor was PGR including control (S1), soil application of humic acid (S2), foliar applications of amino acid (S3), fulvic acid (S4) or seaweed extract (S5), and the combination of all PGR (S6). Although drought stress significantly decreased plant chlorophyll contents (a, b and total), oil percentage and oil yield, PGR significantly increased them. The D3 treatment, compared with control, decreased crop oil yield by 48.67 and 35.29% in the first and second year, respectively. However, treatment Y2D3S6 significantly increased oil percentage (43.10%) compared with control (40.97%). The PGR increased seed oil yield, in D3, by a maximum of 254 kg ha-1. The PGR numerically (p ≤ 0.0886) increased proline to 6.14 mg g-1 LFW (Y1D3S6) compared with control (4.79 mg g-1 LFW). The PGR also significantly increased sugar content to 17.05 mg g-1 LFW, significantly different from the control (12.95 mg g-1 LFW). In conclusion, the tested PGR can improve the biochemical properties (quality) including oil yield of canola in drought stress conditions, which is of economic and health significance.
Collapse
Affiliation(s)
- Parviz Hosseini
- Department of Soil Science, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Kamran Mohsenifar
- Department of Soil Science, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Majid Rajaie
- Soil and Water Research Department, Fars Agricultural and Natural Resources, Research and Education Center, AREEO, Shiraz, Iran
| | - Teimour Babaeinejad
- Department of Soil Science, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| |
Collapse
|
3
|
de Oliveira KKP, de Oliveira RR, Chalfun-Junior A. Small RNAs: Promising Molecules to Tackle Climate Change Impacts in Coffee Production. PLANTS (BASEL, SWITZERLAND) 2023; 12:3531. [PMID: 37895993 PMCID: PMC10610182 DOI: 10.3390/plants12203531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023]
Abstract
Over the centuries, human society has evolved based on the ability to select and use more adapted species for food supply, which means making plant species tastier and more productive in particular environmental conditions. However, nowadays, this scenario is highly threatened by climate change, especially by the changes in temperature and greenhouse gasses that directly affect photosynthesis, which highlights the need for strategic studies aiming at crop breeding and guaranteeing food security. This is especially worrying for crops with complex phenology, genomes with low variability, and the ones that support a large production chain, such as Coffea sp. L. In this context, recent advances shed some light on the genome function and transcriptional control, revealing small RNAs (sRNAs) that are responsible for environmental cues and could provide variability through gene expression regulation. Basically, sRNAs are responsive to environmental changes and act on the transcriptional and post-transcriptional gene silencing pathways that regulate gene expression and, consequently, biological processes. Here, we first discuss the predicted impact of climate changes on coffee plants and coffee chain production and then the role of sRNAs in response to environmental changes, especially temperature, in different species, together with their potential as tools for genetic improvement. Very few studies in coffee explored the relationship between sRNAs and environmental cues; thus, this review contributes to understanding coffee development in the face of climate change and towards new strategies of crop breeding.
Collapse
Affiliation(s)
| | | | - Antonio Chalfun-Junior
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Institute of Biology, Federal University of Lavras, Lavras 3037, Brazil; (K.K.P.d.O.); (R.R.d.O.)
| |
Collapse
|
4
|
Khalid N, Noman A, Nazir A, Tufail A, Hadayat N, Alzuaibr FM, Ikram S, Akhter N, Hussain M, Aqeel M. Nerium oleander could be used for sustainable management of traffic-borne elemental-enriched roadside soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:40551-40562. [PMID: 36622593 DOI: 10.1007/s11356-023-25160-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/02/2023] [Indexed: 01/10/2023]
Abstract
Metal pollutants released from motor vehicles are deposited in roadside environments. Metals are non-biodegradable and biomagnify in the food chain causing significant health hazards at all levels of the ecosystem. Hence, management of contaminated roadside verges is critically important and should be kept in mind while planning specific management strategies of such areas. Native vegetation could help to decontaminate heavy metal polluted soils in the best sustainable way. Therefore, this study was designed to assess the potential of Nerium oleander to accumulate heavy metals commonly released by automobiles such as Pb, Cd, Ni, and Zn along with various C and N compounds from five different locations along a busy road in Punjab, Pakistan, during summer and winter seasons. N. oleander showed the ability to absorb C, N, and heavy metals Pb and Cd; the maximum concentration of Pb and Cd was 8.991 mg kg-1 and 0.599 mg kg-1, respectively. These pollutants negatively affected photosynthetic pigments, gas exchange attributes, soluble proteins, and free amino acids. But antioxidant activity of N. oleander was found to be increased in both seasons. The metal accumulation in the plant was higher in the summer though. We highly recommend that by growing N. oleander at roadside verges for decontamination of vehicular pollutants could lead to sustainable management of these corridors.
Collapse
Affiliation(s)
- Noreen Khalid
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Atia Nazir
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Aasma Tufail
- Department of Botany, Division of Science and Technology, University of Education, Lahore, 54770, Pakistan
| | - Naila Hadayat
- Department of Botany, Division of Science and Technology, University of Education, Lahore, 54770, Pakistan
| | | | - Sobia Ikram
- Department of Botany, Government College Women University, Sialkot, Pakistan
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| | - Noreen Akhter
- Department of Botany, Government College Women University, Faisalabad, 38000, Pakistan
| | - Mumtaz Hussain
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Aqeel
- Department of Botany, Government College Women University, Faisalabad, 38000, Pakistan.
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
5
|
Tripathi DK, Yadav SR, Mochida K, Tran LSP. Plant Growth Regulators: True Managers of Plant Life. PLANT & CELL PHYSIOLOGY 2023; 63:1757-1760. [PMID: 36478104 DOI: 10.1093/pcp/pcac170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Shri Ram Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045 Japan
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, Yokohama 230-0045 Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama 244-0813, Japan
- School of Information and Data Sciences, Nagasaki University, Nagasaki 852-8521 Japan
| | - Lam-Son Phan Tran
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
6
|
The growth of summer savory (Satureja hortensis) affected by fertilization and plant growth regulators in temperature stress. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Alzandi AA, Naguib DM. Effect of yeast application on soil health and root metabolic status of corn seedlings under drought stress. Arch Microbiol 2022; 204:233. [PMID: 35357585 DOI: 10.1007/s00203-022-02843-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/05/2022] [Accepted: 03/13/2022] [Indexed: 11/30/2022]
Abstract
The soil enzymes are the heart of the biochemical reactions that occur in the soil saving the soil nutrients needed for plant growth. Recently yeast's importance as plant growth-promoting microorganisms has great attention. This study evaluated the effect of yeast application on the soil enzymes activity and root metabolic status in corn plants under drought stress. A pot experiment was performed. The pots were divided into two groups; the first group was used for yeast application, the other group was used as a non-treated group. Each group was subdivided into two groups according to water treatment. One is 75%; the other is 45% of field capacity. Soil and root samples were taken at 5, 10, and 15 days after drought application for analysis. Soil samples were subjected to NPK and soil enzymes activity analysis. The root samples were subjected to determination NPK content, the osmolytes, lipid peroxidation, and antioxidant enzymes. The present results showed that yeast application upregulated the soil enzymes under drought which protected the NPK content in the soil. Therefore NPK in the treated group was significantly higher than that in the non-treated group. Also, yeast application improved the roots' osmotic status, the treated group showed significant osmolytes accumulation. Besides that the antioxidant enzymes activity status in the treated group was significantly higher than that in the non-treated group which significantly decreased the lipid peroxidation in the treated group. Yeast application can be an effective promising tool for improving the corn plant tolerance against drought stress.
Collapse
Affiliation(s)
- Abdulrhman Ali Alzandi
- Biology Department, Faculty of Arts and Science in Qilwah, Albaha University, Qilwah, Kingdom of Saudi Arabia
| | - Deyala M Naguib
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt.
- Biology Department, Faculty of Arts and Science in Qilwah, Albaha University, Qilwah, Kingdom of Saudi Arabia.
| |
Collapse
|