1
|
Ma D, Liu S, Liu K, He Q, Hu L, Shi W, Cao Y, Zhang G, Xin Q, Wang Z, Wu J, Jiang C. CuET overcomes regorafenib resistance by inhibiting epithelial-mesenchymal transition through suppression of the ERK pathway in hepatocellular carcinoma. Transl Oncol 2024; 47:102040. [PMID: 38954975 PMCID: PMC11267041 DOI: 10.1016/j.tranon.2024.102040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/11/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND AND PURPOSE Regorafenib was approved by the US Food and Drug Administration (FDA) for hepatocellular carcinoma (HCC) patients showing progress on sorafenib treatment. However, there is an inevitably high rate of drug resistance associated with regorafenib, which reduces its effectiveness in clinical treatment. Thus, there is an urgent need to find a potential way to solve the problem of regorafenib resistance. The metabolite of disulfiram complexed with copper, the Diethyldithiocarbamate-copper complex (CuET), has been found to be an effective anticancer drug candidate. In the present study, we aimed to evaluate the effect of CuET on regorafenib resistance in HCC and uncover the associated mechanism. EXPERIMENTAL APPROACH Regorafenib-resistant HCC strains were constructed by applying an increasing concentration gradient. This study employed a comprehensive range of methodologies, including the cell counting kit-8 (CCK-8) assay, colony formation assay, cell cycle analysis, wound healing assay, Transwell assay, tumor xenograft model, and immunohistochemical analysis. These methods were utilized to investigate the antitumor activity of CuET, assess the combined effect of regorafenib and CuET, and elucidate the molecular mechanism underlying CuET-mediated regorafenib resistance. KEY RESULTS The inhibitory effect of regorafenib on cell survival, proliferation and migration was decreased in regorafenib-resistant MHCC-97H (MHCC-97H/REGO) cells compared with parental cells. CuET demonstrated significant inhibitory effects on cell survival, proliferation, and migration of various HCC cell lines. CuET restored the sensitivity of MHCC-97H/REGO HCC cells to regorafenib in vitro and in vivo. Mechanistically, CuET reverses regorafenib resistance in HCC by suppressing epithelial-mesenchymal transition (EMT) through inhibition of the ERK signaling pathway. CONCLUSION AND IMPLICATIONS Taken together, the results of this study demonstrated that CuET inhibited the activation of the ERK signaling pathway, leading to the suppression of the epithelial-mesenchymal transition (EMT) and subsequently reversing regorafenib resistance in HCC both in vivo and in vitro. This study provides a new idea and potential strategy to improve the treatment of regorafenib-resistant HCC.
Collapse
Affiliation(s)
- Ding Ma
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China; Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuwen Liu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Kua Liu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Qinyu He
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Lili Hu
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Weiwei Shi
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yin Cao
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Guang Zhang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Qilei Xin
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China
| | - Zhongxia Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Junhua Wu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China.
| | - Chunping Jiang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.
| |
Collapse
|
2
|
Xu X, Han Y, Deng J, Wang S, Zhuo S, Zhao K, Zhou W. Repurposing disulfiram with CuET nanocrystals: Enhancing anti-pyroptotic effect through NLRP3 inflammasome inhibition for treating inflammatory bowel diseases. Acta Pharm Sin B 2024; 14:2698-2715. [PMID: 38828135 PMCID: PMC11143773 DOI: 10.1016/j.apsb.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/29/2024] [Indexed: 06/05/2024] Open
Abstract
Drug repurposing offers a valuable strategy for identifying new therapeutic applications for existing drugs. Recently, disulfiram (DSF), a drug primarily used for alcohol addiction treatment, has emerged as a potential treatment for inflammatory diseases by inhibiting pyroptosis, a form of programmed cell death. The therapeutic activity of DSF can be further enhanced by the presence of Cu2+, although the underlying mechanism of this enhancement remains unclear. In this study, we investigated the mechanistic basis of Cu2+-induced enhancement and discovered that it is attributed to the formation of a novel copper ethylthiocarbamate (CuET) complex. CuET exhibited significantly stronger anti-pyroptotic activity compared to DSF and employed a distinct mechanism of action. However, despite its potent activity, CuET suffered from poor solubility and limited permeability, as revealed by our druggability studies. To overcome these intrinsic limitations, we developed a scalable method to prepare CuET nanocrystals (CuET NCs) using a metal coordination-driven self-assembly approach. Pharmacokinetic studies demonstrated that CuET NCs exhibited a 6-fold improvement in bioavailability. Notably, CuET NCs exhibited high biodistribution in the intestine, suggesting their potential application for the treatment of inflammatory bowel diseases (IBDs). To evaluate their therapeutic efficacy in vivo, we employed a murine model of DSS-induced colitis and observed that CuET NCs effectively attenuated inflammation and ameliorated colitis symptoms. Our findings highlight the discovery of CuET as a potent anti-pyroptotic agent, and the development of CuET NCs represents a novel approach to enhance the druggability of CuET.
Collapse
Affiliation(s)
- Xueming Xu
- Hematology and Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yuanfeng Han
- Hematology and Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Jiali Deng
- Hematology and Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Chidren's Hospital, Changsha 410007, China
| | - Shengfeng Wang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Shijie Zhuo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Kai Zhao
- Hematology and Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Changsha 410008, China
| |
Collapse
|
3
|
Ni K, Montesdeoca N, Karges J. Highly cytotoxic Cu(II) terpyridine complexes as chemotherapeutic agents. Dalton Trans 2024; 53:8223-8228. [PMID: 38652088 DOI: 10.1039/d4dt00759j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Cancer is considered as the biggest medicinal challenge worldwide. During a typical treatment, the tumorous tissue is removed in a surgical procedure and the patient further treated by chemotherapy. One of the most frequently applied drugs are platinum complexes. Despite their clinical success, these compounds are associated with severe side effects and low therapeutic efficiency. To overcome these limitations, herein, the synthesis and biological evaluation of Cu(II) terpyridine complexes as chemotherapeutic drug candidates is suggested. The compounds were found to be highly cytotoxic in the nanomolar range against various cancer cell lines. Mechanistic insights revealed that the compounds primarily accumulated in the cytoplasm and generated reactive oxygen species in this organelle, triggering cell death by apoptosis. Based on their high therapeutic effect, these metal complexes could serve as a starting point for further drug development.
Collapse
Affiliation(s)
- Kaixin Ni
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| | - Nicolás Montesdeoca
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| |
Collapse
|
4
|
Xiao P, Li C, Liu Y, Gao Y, Liang X, Liu C, Yang W. The role of metal ions in the occurrence, progression, drug resistance, and biological characteristics of gastric cancer. Front Pharmacol 2024; 15:1333543. [PMID: 38370477 PMCID: PMC10869614 DOI: 10.3389/fphar.2024.1333543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
Metal ions exert pivotal functions within the human body, encompassing essential roles in upholding cell structure, gene expression regulation, and catalytic enzyme activity. Additionally, they significantly influence various pathways implicated in divergent mechanisms of cell death. Among the prevailing malignant tumors of the digestive tract worldwide, gastric cancer stands prominent, exhibiting persistent high mortality rates. A compelling body of evidence reveals conspicuous ion irregularities in tumor tissues, encompassing gastric cancer. Notably, metal ions have been observed to elicit distinct contributions to the progression, drug resistance, and biological attributes of gastric cancer. This review consolidates pertinent literature on the involvement of metal ions in the etiology and advancement of gastric cancer. Particular attention is directed towards metal ions, namely, Na, K, Mg, Ca, Fe, Cu, Zn, and Mn, elucidating their roles in the initiation and progression of gastric cancer, cellular demise processes, drug resistance phenomena, and therapeutic approaches.
Collapse
Affiliation(s)
- Pengtuo Xiao
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuanda Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yan Gao
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaojing Liang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chang Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
5
|
Balewski Ł, Plech T, Korona-Głowniak I, Hering A, Szczesio M, Olczak A, Bednarski PJ, Kokoszka J, Kornicka A. Copper(II) Complexes with 1-(Isoquinolin-3-yl)heteroalkyl-2-ones: Synthesis, Structure and Evaluation of Anticancer, Antimicrobial and Antioxidant Potential. Int J Mol Sci 2023; 25:8. [PMID: 38203181 PMCID: PMC10779222 DOI: 10.3390/ijms25010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Four copper(II) complexes, C1-4, derived from 1-(isoquinolin-3-yl)heteroalkyl-2-one ligands L1-4 were synthesized and characterized using an elemental analysis, IR spectroscopic data as well as single crystal X-ray diffraction data for complex C1. The stability of complexes C1-4 under conditions mimicking the physiological environment was estimated using UV-Vis spectrophotometry. The antiproliferative activity of both ligands L1-4 and copper(II) compounds C1-4 were evaluated using an MTT assay on four human cancer cell lines, A375 (melanoma), HepG2 (hepatoma), LS-180 (colon cancer) and T98G (glioblastoma), and a non-cancerous cell line, CCD-1059Sk (human normal skin fibroblasts). Complexes C1-4 showed greater potency against HepG2, LS180 and T98G cancer cell lines than etoposide (IC50 = 5.04-14.89 μg/mL vs. IC50 = 43.21->100 μg/mL), while free ligands L1-4 remained inactive in all cell lines. The prominent copper(II) compound C2 appeared to be more selective towards cancer cells compared with normal cells than compounds C1, C3 and C4. The treatment of HepG2 and T98G cells with complex C2 resulted in sub-G1 and G2/M cell cycle arrest, respectively, which was accompanied by DNA degradation. Moreover, the non-cytotoxic doses of C2 synergistically enhanced the cytotoxic effects of chemotherapeutic drugs, including etoposide, 5-fluorouracil and temozolomide, in HepG2 and T98G cells. The antimicrobial activities of ligands L2-4 and their copper(II) complexes C2-4 were evaluated using different types of Gram-positive bacteria, Gram-negative bacteria and yeast species. No correlation was found between the results of the antiproliferative and antimicrobial experiments. The antioxidant activities of all compounds were determined using the DPPH and ABTS radical scavenging methods. Antiradical tests revealed that among the investigated compounds, copper(II) complex C4 possessed the strongest antioxidant properties. Finally, the ADME technique was used to determine the physicochemical and drug-likeness properties of the obtained complexes.
Collapse
Affiliation(s)
- Łukasz Balewski
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (Ł.B.); (J.K.)
| | - Tomasz Plech
- Department of Pharmacology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland;
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Anna Hering
- Department of Biology and Pharmaceutical Botany, Faculty of Pharmacy, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdańsk, Poland;
| | - Małgorzata Szczesio
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland; (M.S.); (A.O.)
| | - Andrzej Olczak
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland; (M.S.); (A.O.)
| | - Patrick J. Bednarski
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, F.-L. Jahn Strasse 17, D-17489 Greifswald, Germany;
| | - Jakub Kokoszka
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (Ł.B.); (J.K.)
| | - Anita Kornicka
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (Ł.B.); (J.K.)
| |
Collapse
|
6
|
Cheng FT, Geng YD, Liu YX, Nie X, Zhang XG, Chen ZL, Tang LQ, Wang LH, You YZ, Zhang L. Co-delivery of a tumor microenvironment-responsive disulfiram prodrug and CuO 2 nanoparticles for efficient cancer treatment. NANOSCALE ADVANCES 2023; 5:3336-3347. [PMID: 37325521 PMCID: PMC10262962 DOI: 10.1039/d3na00004d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/08/2023] [Indexed: 06/17/2023]
Abstract
Disulfiram (DSF) has been used as a hangover drug for more than seven decades and was found to have potential in cancer treatment, especially mediated by copper. However, the uncoordinated delivery of disulfiram with copper and the instability of disulfiram limit its further applications. Herein, we synthesize a DSF prodrug using a simple strategy that could be activated in a specific tumor microenvironment. Poly amino acids are used as a platform to bind the DSF prodrug through the B-N interaction and encapsulate CuO2 nanoparticles (NPs), obtaining a functional nanoplatform Cu@P-B. In the acidic tumor microenvironment, the loaded CuO2 NPs will produce Cu2+ and cause oxidative stress in cells. At the same time, the increased reactive oxygen species (ROS) will accelerate the release and activation of the DSF prodrug and further chelate the released Cu2+ to produce the noxious copper diethyldithiocarbamate complex, which causes cell apoptosis effectively. Cytotoxicity tests show that the DSF prodrug could effectively kill cancer cells with only a small amount of Cu2+ (0.18 μg mL-1), inhibiting the migration and invasion of tumor cells. In vitro and in vivo experiments have demonstrated that this functional nanoplatform could kill tumor cells effectively with limited toxic side effects, showing a new perspective in DSF prodrug design and cancer treatment.
Collapse
Affiliation(s)
- Fen-Ting Cheng
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China Hefei Anhui 230001 China
| | - Ya-Di Geng
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China Hefei Anhui 230001 China
| | - Yun-Xiao Liu
- Institute of Clinical Pharmacology, Anhui Medical University Hefei Anhui 230032 China
| | - Xuan Nie
- Department of Polymer Science and Engineering, University of Science and Technology of China Hefei Anhui 230026 China
| | - Xin-Ge Zhang
- Institute of Clinical Pharmacology, Anhui Medical University Hefei Anhui 230032 China
| | - Zhao-Lin Chen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China Hefei Anhui 230001 China
| | - Li-Qin Tang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China Hefei Anhui 230001 China
| | - Long-Hai Wang
- Department of Polymer Science and Engineering, University of Science and Technology of China Hefei Anhui 230026 China
| | - Ye-Zi You
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China Hefei Anhui 230001 China
- Department of Polymer Science and Engineering, University of Science and Technology of China Hefei Anhui 230026 China
| | - Lei Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China Hefei Anhui 230001 China
- Institute of Clinical Pharmacology, Anhui Medical University Hefei Anhui 230032 China
| |
Collapse
|
7
|
Kang X, Jadhav S, Annaji M, Huang CH, Amin R, Shen J, Ashby CR, Tiwari AK, Babu RJ, Chen P. Advancing Cancer Therapy with Copper/Disulfiram Nanomedicines and Drug Delivery Systems. Pharmaceutics 2023; 15:1567. [PMID: 37376016 DOI: 10.3390/pharmaceutics15061567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Disulfiram (DSF) is a thiocarbamate based drug that has been approved for treating alcoholism for over 60 years. Preclinical studies have shown that DSF has anticancer efficacy, and its supplementation with copper (CuII) significantly potentiates the efficacy of DSF. However, the results of clinical trials have not yielded promising results. The elucidation of the anticancer mechanisms of DSF/Cu (II) will be beneficial in repurposing DSF as a new treatment for certain types of cancer. DSF's anticancer mechanism is primarily due to its generating reactive oxygen species, inhibiting aldehyde dehydrogenase (ALDH) activity inhibition, and decreasing the levels of transcriptional proteins. DSF also shows inhibitory effects in cancer cell proliferation, the self-renewal of cancer stem cells (CSCs), angiogenesis, drug resistance, and suppresses cancer cell metastasis. This review also discusses current drug delivery strategies for DSF alone diethyldithocarbamate (DDC), Cu (II) and DSF/Cu (II), and the efficacious component Diethyldithiocarbamate-copper complex (CuET).
Collapse
Affiliation(s)
- Xuejia Kang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Sanika Jadhav
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Manjusha Annaji
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Chung-Hui Huang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Rajesh Amin
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Jianzhong Shen
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy, St. John's University, Queens, NY 11431, USA
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Pengyu Chen
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
8
|
Wang X, Oyane A, Inose T, Nakamura M. In Situ Synthesis of a Tumor-Microenvironment-Responsive Chemotherapy Drug. Pharmaceutics 2023; 15:pharmaceutics15041316. [PMID: 37111800 PMCID: PMC10141230 DOI: 10.3390/pharmaceutics15041316] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Current chemotherapy still suffers from unsatisfactory therapeutic efficacy, multi-drug resistance, and severe adverse effects, thus necessitating the development of techniques to confine chemotherapy drugs in the tumor microenvironment. Herein, we fabricated nanospheres of mesoporous silica (MS) doped with Cu (MS-Cu) and polyethylene glycol (PEG)-coated MS-Cu (PEG-MS-Cu) as exogenous copper supply systems to tumors. The synthesized MS-Cu nanospheres showed diameters of 30-150 nm with Cu/Si molar ratios of 0.041-0.069. Only disulfiram (DSF) and only MS-Cu nanospheres showed little cytotoxicity in vitro, whereas the combination of DSF and MS-Cu nanospheres showed significant cytotoxicity against MOC1 and MOC2 cells at concentrations of 0.2-1 μg/mL. Oral DSF administration in combination with MS-Cu nanospheres intratumoral or PEG-MS-Cu nanospheres intravenous administration showed significant antitumor efficacy against MOC2 cells in vivo. In contrast to traditional drug delivery systems, we herein propose a system for the in situ synthesis of chemotherapy drugs by converting nontoxic substances into antitumor chemotherapy drugs in a specific tumor microenvironment.
Collapse
Affiliation(s)
- Xiupeng Wang
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Ibaraki, Japan
| | - Ayako Oyane
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan
| | - Tomoya Inose
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan
| | - Maki Nakamura
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan
| |
Collapse
|
9
|
Ji P, Wang P, Chen H, Xu Y, Ge J, Tian Z, Yan Z. Potential of Copper and Copper Compounds for Anticancer Applications. Pharmaceuticals (Basel) 2023; 16:234. [PMID: 37259382 PMCID: PMC9960329 DOI: 10.3390/ph16020234] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 08/01/2023] Open
Abstract
Inducing cancer cell death has always been a research hotspot in life sciences. With the continuous deepening and diversification of related research, the potential value of metal elements in inducing cell death has been explored. Taking iron as an example, ferroptosis, mainly characterized by increasing iron load and driving the production of large amounts of lipid peroxides and eventually leading to cell death, has recently attracted great interest in the cancer research community. After iron, copper, a trace element, has received extensive attention in cell death, especially in inducing tumor cell death. Copper and its complexes can induce autophagy or apoptosis in tumor cells through a variety of different mechanisms of action (activation of stress pathways, arrest of cell cycle, inhibition of angiogenesis, cuproptosis, and paraptosis), which are promising in cancer therapy and have become new hotspots in cancer treatment research. This article reviews the main mechanisms and potential applications of novel copper and copper compound-induced cell death, focusing on copper compounds and their anticancer applications.
Collapse
Affiliation(s)
- Peng Ji
- Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Peng Wang
- Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Hao Chen
- Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Yajing Xu
- Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Jianwen Ge
- Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Zechong Tian
- Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Zhirong Yan
- Fujian Key Laboratory of Women and Children’s Critical Diseases Research, Department of Anesthesiology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| |
Collapse
|
10
|
Zhong S, Shengyu Liu, Xin Shi, Zhang X, Li K, Liu G, Li L, Tao S, Zheng B, Sheng W, Ye Z, Xing Q, Zhai Q, Ren L, Wu Y, Bao Y. Disulfiram in glioma: Literature review of drug repurposing. Front Pharmacol 2022; 13:933655. [PMID: 36091753 PMCID: PMC9448899 DOI: 10.3389/fphar.2022.933655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Gliomas are the most common malignant brain tumors. High-grade gliomas, represented by glioblastoma multiforme (GBM), have a poor prognosis and are prone to recurrence. The standard treatment strategy is tumor removal combined with radiotherapy and chemotherapy, such as temozolomide (TMZ). However, even after conventional treatment, they still have a high recurrence rate, resulting in an increasing demand for effective anti-glioma drugs. Drug repurposing is a method of reusing drugs that have already been widely approved for new indication. It has the advantages of reduced research cost, safety, and increased efficiency. Disulfiram (DSF), originally approved for alcohol dependence, has been repurposed for adjuvant chemotherapy in glioma. This article reviews the drug repurposing method and the progress of research on disulfiram reuse for glioma treatment.
Collapse
|
11
|
Zanoni M, Bravaccini S, Fabbri F, Arienti C. Emerging Roles of Aldehyde Dehydrogenase Isoforms in Anti-cancer Therapy Resistance. Front Med (Lausanne) 2022; 9:795762. [PMID: 35299840 PMCID: PMC8920988 DOI: 10.3389/fmed.2022.795762] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/10/2022] [Indexed: 12/19/2022] Open
Abstract
Aldehyde dehydrogenases (ALDHs) are a family of detoxifying enzymes often upregulated in cancer cells and associated with therapeutic resistance. In humans, the ALDH family comprises 19 isoenzymes active in the majority of mammalian tissues. Each ALDH isoform has a specific differential expression pattern and most of them have individual functional roles in cancer. ALDHs are overexpressed in subpopulations of cancer cells with stem-like features, where they are involved in several processes including cellular proliferation, differentiation, detoxification and survival, participating in lipids and amino acid metabolism and retinoic acid synthesis. In particular, ALDH enzymes protect cancer cells by metabolizing toxic aldehydes in less reactive and more soluble carboxylic acids. High metabolic activity as well as conventional anticancer therapies contribute to aldehyde accumulation, leading to DNA double strand breaks (DSB) through the generation of reactive oxygen species (ROS) and lipid peroxidation. ALDH overexpression is crucial not only for the survival of cancer stem cells but can also affect immune cells of the tumour microenvironment (TME). The reduction of ROS amount and the increase in retinoic acid signaling impairs immunogenic cell death (ICD) inducing the activation and stability of immunosuppressive regulatory T cells (Tregs). Dissecting the role of ALDH specific isoforms in the TME can open new scenarios in the cancer treatment. In this review, we summarize the current knowledge about the role of ALDH isoforms in solid tumors, in particular in association with therapy-resistance.
Collapse
Affiliation(s)
- Michele Zanoni
- Biosciences Laboratory,IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | | | | | - Chiara Arienti
- Biosciences Laboratory,IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| |
Collapse
|
12
|
ALDH1A1 Gene Expression and Cellular Copper Levels between Low and Highly Metastatic Osteosarcoma Provide a Case for Novel Repurposing with Disulfiram and Copper. Sarcoma 2022; 2022:7157507. [PMID: 35125923 PMCID: PMC8816591 DOI: 10.1155/2022/7157507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/07/2022] [Indexed: 12/24/2022] Open
Abstract
Aldehyde dehydrogenase 1A1 (ALDH) is a cancer stem cell marker highly expressed in metastatic cells. Disulfiram (Dis) is an FDA-approved antialcoholism drug that inhibits ALDH and has been studied as a candidate for drug repurposing in multiple neoplasia. Dis cytotoxicity in cancer cells has been shown to be copper-dependent, in part due to Dis's ability to function as a bivalent metal ion chelator of copper (Cu). The objectives of this research were to test ALDH expression levels and Cu concentrations in sarcoma patient tumors and human osteosarcoma (OS) cell lines with differing metastatic phenotypes. We also sought to evaluate Dis + Cu combination therapy in human OS cells. Intracellular Cu was inversely proportional to the metastatic phenotype in human OS cell lines (SaOS2 > LM2 > LM7). Nonmetastatic human sarcoma tumors demonstrated increased Cu concentrations compared with metastatic tumors. qPCR demonstrated that ALDH expression was significantly increased in highly metastatic LM2 and LM7 human OS cell lines compared with low metastatic SaOS2. Tumor cells from sarcoma patients with metastatic disease displayed significantly increased ALDH expression compared with tumor cells from patients without metastatic disease. Serum Cu concentration in canine OS versus normal canine patients demonstrated similar trends. Dis demonstrated selective cytotoxicity compared with human multipotential stromal cells (MSCs): Dis-treated OS cells demonstrated increased apoptosis, whereas MSCs did not. CuCl2 combined with Dis and low-dose doxorubicin resulted in a superior cytotoxic effect in both SaOS2 and LM7 cell lines. In summary, ALDH gene expression and Cu levels are altered between low and highly metastatic human OS cells, canine samples, and patient tumors. Our findings support the feasibility of a repurposed drug strategy for Dis and Cu in combination with low-dose anthracycline to specifically target metastatic OS cells.
Collapse
|
13
|
Kelley KC, Grossman KF, Brittain-Blankenship M, Thorne KM, Akerley WL, Terrazas MC, Kosak KM, Boucher KM, Buys SS, McGregor KA, Werner TL, Agarwal N, Weis JR, Sharma S, Ward JH, Kennedy TP, Sborov DW, Shami PJ. A Phase 1 dose-escalation study of disulfiram and copper gluconate in patients with advanced solid tumors involving the liver using S-glutathionylation as a biomarker. BMC Cancer 2021; 21:510. [PMID: 33957901 PMCID: PMC8103752 DOI: 10.1186/s12885-021-08242-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/15/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Disulfiram and metals inactivate key oncoproteins resulting in anti-neoplastic activity. The goal of this study was to determine the maximum tolerated dose of copper when administered with disulfiram in patients with advanced solid tumors and liver involvement. METHODS Disulfiram 250 mg was administered daily in 28-day cycles. Four doses of copper gluconate were tested (2, 4, 6, and 8 mg of elemental copper) in a standard 3 + 3 dose escalation design. Patients were evaluated for dose limiting toxicities and response. Protein S-glutathionylation was evaluated as a pharmacodynamic marker. RESULTS Twenty-one patients were enrolled and 16 patients were evaluable for dose limiting toxicities. Among the 21 patients, there was a median of 4 lines of prior chemotherapy. Five Grade 3 toxicities were observed (anorexia, elevated aspartate aminotransferase or AST, elevated alkaline phosphatase, fever, and fatigue). Response data was available for 15 patients. Four patients had stable disease with the longest duration of disease control being 116 days. The median duration of treatment for evaluable patients was 55 days (range 28-124). Reasons for discontinuation included functional decline, disease progression, and disease-associated death. Increased S-glutathionylation of serum proteins was observed with treatment. CONCLUSION Disulfiram 250 mg daily with copper gluconate (8 mg of elemental copper) was well-tolerated in patients with solid tumors involving the liver and was not associated with dose limiting toxicities. While temporary disease stabilization was noted in some patients, no objective responses were observed. Treatment was associated with an increase in S-glutathionylation suggesting that this combination could exert a suppressive effect on cellular growth and protein function. TRIAL REGISTRATION NCT00742911 , first posted 28/08/2008.
Collapse
Affiliation(s)
- Kristen C Kelley
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Kenneth F Grossman
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | | | - Kelli M Thorne
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Wallace L Akerley
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Moises C Terrazas
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, Utah, USA
| | - Ken M Kosak
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, Utah, USA
| | - Kenneth M Boucher
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Saundra S Buys
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Kimberly A McGregor
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Theresa L Werner
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Neeraj Agarwal
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - John R Weis
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Sunil Sharma
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - John H Ward
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Thomas P Kennedy
- Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University, New Orleans, USA
| | - Douglas W Sborov
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, Utah, USA
| | - Paul J Shami
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, Utah, USA.
| |
Collapse
|
14
|
The NLRP3 Inflammasome and Its Role in the Pathogenicity of Leukemia. Int J Mol Sci 2021; 22:ijms22031271. [PMID: 33525345 PMCID: PMC7865748 DOI: 10.3390/ijms22031271] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammation contributes to the development and progression of various tumors. Especially where the inflammation is mediated by cells of the innate immune system, the NLRP3 inflammasome plays an important role, as it senses and responds to a variety of exogenous and endogenous pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). The NLRP3 inflammasome is responsible for the maturation and secretion of the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18 and for the induction of a type of inflammatory cell death known as pyroptosis. Overactivation of the NLRP3 inflammasome can be a driver of various diseases. Since leukemia is known to be an inflammation-driven cancer and IL-1β is produced in elevated levels by leukemic cells, research on NLRP3 in the context of leukemia has increased in recent years. In this review, we summarize the current knowledge on leukemia-promoting inflammation and, in particular, the role of the NLRP3 inflammasome in different types of leukemia. Furthermore, we examine a connection between NLRP3, autophagy and leukemia.
Collapse
|
15
|
Abstract
BACKGROUND The worldwide increase in the occurrence of cancer associated with the limitations of immunotherapy and the emergence of resistance have impaired the prognosis of cancer patients, which leads to the search for alternative treatment methods. Drug repositioning, a well-established process approved by regulatory agencies, is considered an alternative strategy for the fast identification of drugs, because it is relatively less costly and represents lower risks for patients. AREAS OF UNCERTAINTY We report the most relevant studies about drug repositioning in oncology, emphasizing that its implementation faces financial and regulatory obstacles, making the creation of incentives necessary to stimulate the involvement of the pharmaceutical industry. DATA SOURCES We present 63 studies in which 52 non-anticancer drugs with anticancer activity against a number of malignancies are described. THERAPEUTIC INNOVATIONS Some have already been the target of phase III studies, such as the Add-Aspirin trial for nonmetastatic solid tumors, as well as 9 other drugs (aprepitant, artesunate, auranofin, captopril, celecoxib, disulfiram, itraconazole, ritonavir, and sertraline) in the CUSP9* clinical trial for the treatment of recurrent glioblastoma. Others have already been successful in repositioning such as thalidomide, zoledronic acid, celecoxib, methotrexate, and gemcitabine. CONCLUSIONS Therefore, drug repositioning represents a promising alternative for the treatment of oncological disorders; however, the support from funding agencies and from the government is still needed, the latter regarding regulatory issues.
Collapse
|
16
|
Disulfiram as a Therapeutic Agent for Metastatic Malignant Melanoma-Old Myth or New Logos? Cancers (Basel) 2020; 12:cancers12123538. [PMID: 33260923 PMCID: PMC7760689 DOI: 10.3390/cancers12123538] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 12/29/2022] Open
Abstract
Simple Summary In recent years, disulfiram has gained in attention as an anticancer drug due to its broad activity against various cancers, and its mechanisms and molecular targets have been deciphered in vitro and in vivo. One of these cancers is melanoma. Initial data from human studies show some benefit, but do not confirm its broad efficacy as a monotherapy. However, combination approaches could pave the way for exploiting the beneficial effects of disulfiram for cancer patients, including those with melanoma. Abstract New therapeutic concepts such as anti-PD-1-based immunotherapy or targeted therapy with BRAF and MEK inhibitors have significantly improved the survival of melanoma patients. However, about 20% of patients with targeted therapy and up to 50% with immunotherapies do not respond to their first-line treatment or rapidly develop resistance. In addition, there is no approved targeted therapy for certain subgroups, namely BRAF wild-type melanomas, although they often bear aggressive tumor biology. A repurposing of already approved drugs is a promising strategy to fill this gap, as it will result in comparatively low costs, lower risks and time savings. Disulfiram (DSF), the first drug to treat alcoholism, which received approval from the US Food and Drug Administration more than 60 years ago, is such a drug candidate. There is growing evidence that DSF has great potential for the treatment of various human cancers, including melanoma. Several mechanisms of its antitumor activity have been identified, amongst them the inhibition of the ubiquitin-proteasome system, the induction of reactive oxygen species and various death signaling pathways. This article provides an overview of the application of DSF in humans, its molecular mechanisms and targets in cancer therapy with a focus on melanoma. The results of clinical studies and experimental combination approaches of DSF with various cancer therapies are discussed, with the aim of exploring the potential of DSF in melanoma therapy.
Collapse
|
17
|
Li H, Wang J, Wu C, Wang L, Chen ZS, Cui W. The combination of disulfiram and copper for cancer treatment. Drug Discov Today 2020; 25:1099-1108. [PMID: 32320854 DOI: 10.1016/j.drudis.2020.04.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/31/2020] [Accepted: 04/09/2020] [Indexed: 12/20/2022]
Abstract
Disulfiram (DSF) is a thiuram derivative that was developed to treat alcoholism but was also found to have antitumor activity. Copper (Cu), as a trace metal, has important roles in the body. Numerous studies have shown that the combination of DSF and copper (DSF/Cu) greatly enhances its antitumor efficacy. Given that the efficacy of DSF is well established and its safety profile is understood, repurposing DSF as a new anticancer drug is a promising strategy. Here, we summarize the pharmacological effects of DSF and the role of Cu in cancer, and focus on the antitumor effect of DSF/Cu, especially the mechanisms involved in enhancing drug sensibility by targeting specific molecules. We also provide rational strategies for using DSF as a cancer therapy.
Collapse
Affiliation(s)
- Hong Li
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Jingyu Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, NY 11439, USA.
| | - Wei Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China.
| |
Collapse
|
18
|
Coencapsulation of disulfiram and doxorubicin in liposomes strongly reverses multidrug resistance in breast cancer cells. Int J Pharm 2020; 580:119191. [DOI: 10.1016/j.ijpharm.2020.119191] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/06/2020] [Accepted: 02/28/2020] [Indexed: 12/19/2022]
|
19
|
Process of immunogenic cell death caused by disulfiram as the anti-colorectal cancer candidate. Biochem Biophys Res Commun 2019; 513:891-897. [DOI: 10.1016/j.bbrc.2019.03.192] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
|
20
|
Shah O'Brien P, Xi Y, Miller JR, Brownell AL, Zeng Q, Yoo GH, Garshott DM, O'Brien MB, Galinato AE, Cai P, Narula N, Callaghan MU, Kaufman RJ, Fribley AM. Disulfiram (Antabuse) Activates ROS-Dependent ER Stress and Apoptosis in Oral Cavity Squamous Cell Carcinoma. J Clin Med 2019; 8:jcm8050611. [PMID: 31064122 PMCID: PMC6571807 DOI: 10.3390/jcm8050611] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023] Open
Abstract
A paucity of advances in the development of novel therapeutic agents for squamous cell carcinomas of the head and neck, oral cavity (OSCC) and oropharynx, has stagnated disease free survival rates over the past two decades. Although immunotherapies targeted against checkpoint inhibitors such as PD-1 or CTLA-4 are just now entering the clinic for late stage disease with regularity the median improvement in overall survival is only about three months. There is an urgent unmet clinical need to identify new therapies that can be used alone or in combination with current approaches to increase survival by more than a few months. Activation of the apoptotic arm of the unfolded response (UPR) with small molecules and natural products has recently been demonstrated to be a productive approach in pre-clinical models of OSCC and several other cancers. The aim of current study was to perform a high throughput screen (HTS) with a diverse chemical library to identify compounds that could induce CHOP, a component of the apoptotic arm of the UPR. Disulfiram (DSF, also known as Antabuse) the well-known aversion therapy used to treat chronic alcoholism emerged as a hit that could generate reactive oxygen species, activate the UPR and apoptosis and reduce proliferation in OSCC cell cultures and xenografts. A panel of murine embryonic fibroblasts null for key UPR intermediates (e.g., Chop and Atf4) was resistant to DSF suggesting that an intact UPR is a key element of the mechanism regulating the antiproliferative effects of DSF.
Collapse
Affiliation(s)
- Priyanka Shah O'Brien
- Department of Otolaryngology⁻Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Yue Xi
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Justin R Miller
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Amy L Brownell
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Qinghua Zeng
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - George H Yoo
- Department of Otolaryngology⁻Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI 48201, USA.
- Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Danielle M Garshott
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Matthew B O'Brien
- Henry Ford Hospital, Diagnostic Radiology Residency, Detroit, MI 48202, USA.
| | - Anthony E Galinato
- Henry Ford Hospital, Diagnostic Radiology Residency, Detroit, MI 48202, USA.
| | - Peter Cai
- Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Neha Narula
- Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Michael U Callaghan
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
- Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| | - Andrew M Fribley
- Department of Otolaryngology⁻Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI 48201, USA.
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
- Wayne State University School of Medicine, Detroit, MI 48201, USA.
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
21
|
Zhu XJ, Li RF, Xu L, Yin H, Chen L, Yuan Y, Zhong W, Lin J. A Novel Self-Assembled Mitochondria-Targeting Protein Nanoparticle Acting as Theranostic Platform for Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1803428. [PMID: 30450734 DOI: 10.1002/smll.201803428] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/31/2018] [Indexed: 06/09/2023]
Abstract
Self-assembled protein nanoparticles have attracted much attention in biomedicine because of their biocompatibility and biodegradability. Protein nanoparticles have become widely utilized as diagnostic or therapeutic agents for various cancers. However, there are no reports that protein nanoparticles can specifically target mitochondria. This targeting is desirable, since mitochondria are critical in the development of cancer cells. In this study, the discovery of a novel self-assembled metal protein nanoparticle, designated GST-MT-3, is reported, which targets the mitochondria of cancer cells within 30 min in vitro and rapidly accumulates in tumors within 1 h in vivo. The nanoparticles chelate cobalt ions [GST-MT-3(Co2+ )], which induces reactive oxygen species (ROS) production and reduces the mitochondrial membrane potential. These effects lead to antitumor activity in vivo. GST-MT-3(Co2+ ) with covalently conjugated paclitaxel synergistically suppress tumors and prolong survival. Importantly, the effective dosage of paclitaxel is 50-fold lower than that utilized in standard chemotherapy (0.2 vs 10 mg kg-1 ). To the best of the authors' knowledge, GST-MT-3 is the first reported protein nanoparticle that targets mitochondria. It has the potential to be an excellent platform for combination therapies.
Collapse
Affiliation(s)
- Xin-Jie Zhu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Innovation Center for Genomics, Peking University, Beijing, 100871, China
| | - Ri-Fei Li
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, 100094, China
| | - Liang Xu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Innovation Center for Genomics, Peking University, Beijing, 100871, China
| | - Hui Yin
- Department of Radiology, Clinical College of 307th Hospital of PLA, Anhui Medical University, 307 Hospital, PLA, Beijing, 100071, China
| | - Long Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Innovation Center for Genomics, Peking University, Beijing, 100871, China
| | - Ye Yuan
- Beijing Institute of Pharmacology and Toxicology, National Beijing Center for Drug Safety Evaluation and Research, State Key Laboratory of Toxicology and Medical Countermeasures, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Wu Zhong
- Beijing Institute of Pharmacology and Toxicology, National Beijing Center for Drug Safety Evaluation and Research, State Key Laboratory of Toxicology and Medical Countermeasures, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Jian Lin
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Innovation Center for Genomics, Peking University, Beijing, 100871, China
| |
Collapse
|
22
|
Park ES, Chung YJ, Aplan PD. Disulfram Treatment of NUP98-PHF23 AML Is Not Effective In Vivo: Potential Role for Hematopoietic Stem Cells Niche. CLINICAL PEDIATRIC HEMATOLOGY-ONCOLOGY 2018. [DOI: 10.15264/cpho.2018.25.2.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Eun Sil Park
- Genetics Branch, Center for Cancer Research, National Cancer Institute/National Institute of Health, Bethesda, MD, USA
- Department of Pediatrics and Institute of Health Science, College of Medicine, Gyeongsang National University, Jinju, Korea
| | - Yang Jo Chung
- Genetics Branch, Center for Cancer Research, National Cancer Institute/National Institute of Health, Bethesda, MD, USA
| | - Peter D. Aplan
- Genetics Branch, Center for Cancer Research, National Cancer Institute/National Institute of Health, Bethesda, MD, USA
| |
Collapse
|
23
|
Tao X, Gou J, Zhang Q, Tan X, Ren T, Yao Q, Tian B, Kou L, Zhang L, Tang X. Synergistic breast tumor cell killing achieved by intracellular co-delivery of doxorubicin and disulfiram via core-shell-corona nanoparticles. Biomater Sci 2018; 6:1869-1881. [PMID: 29808221 DOI: 10.1039/c8bm00271a] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Combination therapy with different functional chemotherapeutic agents based on nano-drug delivery systems is an effective strategy for the treatment of breast cancer. However, co-delivery of drug molecules with different physicochemical properties still remains a challenge. In this study, an amphiphilic poly (ε-caprolactone)-b-poly (l-glutamic acid)-g-methoxy poly (ethylene glycol) (PCL-b-PGlu-g-mPEG) copolymer was designed and synthesized to develop a nanocarrier for the co-delivery of hydrophilic doxorubicin (DOX) and hydrophobic disulfiram (DSF). The amphiphilic copolymer self-assembled into core-shell-corona structured nanoparticles with the hydrophobic PCL core for DSF loading (hydrophobic interaction) and anionic poly (glutamic acid) shell for DOX loading (electrostatic interaction). DSF and DOX co-loaded nanoparticles (Co-NPs) resulted in high drug loading and precisely controlled DSF/DOX ratio via formulation optimization. Compared with free drug solutions, DSF and DOX delivered by the Co-NPs were found to have improved intracellular accumulation. Results of cytotoxicity assays showed that DSF/DOX delivered at the weight ratio of 0.5 and 1 could achieve a synergistic cytotoxic effect on breast cancer cell lines (MCF-7 and MDA-MB-231). In vivo imaging confirmed that the core-shell-corona nanoparticles could efficiently accumulate in tumors. In vivo anti-tumor effect results indicated that Co-NPs showed an improved drug synergistic effect on antitumor activity compared with the free drug combination. Therefore, it can be concluded that core-shell-corona nanoparticles prepared by PCL-b-PGlu-g-mPEG could be a promising co-delivery system for drug combination therapy in the treatment of breast cancer.
Collapse
Affiliation(s)
- Xiaoguang Tao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Repurposing disulfiram for cancer therapy via targeted nanotechnology through enhanced tumor mass penetration and disassembly. Acta Biomater 2018; 68:113-124. [PMID: 29294377 DOI: 10.1016/j.actbio.2017.12.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/21/2017] [Accepted: 12/18/2017] [Indexed: 01/08/2023]
Abstract
Disulfiram (DSF), an FDA approved drug for the treatment of alcoholism, degrades to therapeutically active diethyldithiocarbamate (DDTC) in the body by reduction. Hereby, we developed a redox sensitive DDTC-polymer conjugate for targeted cancer therapy. It was found that the DDTC-polymer conjugate modified with a β-d-galactose receptor targeting ligand can self-assemble into LDNP nanoparticle and efficiently enter cancer cells by receptor-mediated endocytosis. Upon cellular uptake, the LDNP nanoparticle degrades and releases DDTC due to the cleavage of disulfide bonds, and subsequently forms copper (II) DDTC complex to kill a broad spectrum of cancer cells. 3D cell culture revealed that this nanoparticle shows much stronger tumor mass penetrating and destructive capacity. Furthermore, LDNP nanoparticles exhibited much greater potency in inhibiting tumor growth in a peritoneal metastatic ovarian tumor model. STATEMENT OF SIGNIFICANCE The β-d-galactose receptor targeted disulfiram loaded nanoparticle (LDNP) is novel in the following aspects.
Collapse
|
25
|
Deng M, Jiang Z, Li Y, Zhou Y, Li J, Wang X, Yao Y, Wang W, Li P, Xu B. Effective elimination of adult B-lineage acute lymphoblastic leukemia by disulfiram/copper complex in vitro and in vivo in patient-derived xenograft models. Oncotarget 2018; 7:82200-82212. [PMID: 27203215 PMCID: PMC5347685 DOI: 10.18632/oncotarget.9413] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/28/2016] [Indexed: 11/25/2022] Open
Abstract
Disulfiram (DS), a clinically used drug to control alcoholism, has displayed promising anti-cancer activity against a wide range of tumors. Here, we demonstrated that DS/copper (Cu) complex effectively eliminated adult B-ALL cells in vitro and in vivo in patient-derived xenograft (PDX) humanized mouse models, reflected by inhibition of cell proliferation, induction of apoptosis, suppression of colony formation, and reduction of PDX tumor growth, while sparing normal peripheral blood mononuclear cells. Mechanistically, these events were associated with disruption of mitochondrial membrane potential and down-regulation of the anti-apoptotic proteins Bcl-2 and Bcl-xL. Further analysis on B-ALL patients' clinical characteristics revealed that the ex vivo efficacy of DS/Cu in primary samples was significantly correlated to p16 gene deletion and peripheral blood WBC counts at diagnosis, while age, LDH level, extramedullary infiltration, status post intensive induction therapy, immune phenotype, risk category, and Ph chromosome had no effect. Together, these findings indicate that disulfiram, particularly when administrated in combination with copper, might represent a potential repurposing agent for treatment of adult B-ALL patients, including those clinically characterized by one or more adverse prognostic factors.
Collapse
Affiliation(s)
- Manman Deng
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiwu Jiang
- Key Laboratory of Regenerative Biology, Southern China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yin Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Zhou
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jie Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiangmeng Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yao Yao
- Drug Discovery Pipeline, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Weiguang Wang
- Research Institute for Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Peng Li
- Key Laboratory of Regenerative Biology, Southern China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
26
|
Viola-Rhenals M, Patel KR, Jaimes-Santamaria L, Wu G, Liu J, Dou QP. Recent Advances in Antabuse (Disulfiram): The Importance of its Metal-binding Ability to its Anticancer Activity. Curr Med Chem 2018; 25:506-524. [PMID: 29065820 PMCID: PMC6873226 DOI: 10.2174/0929867324666171023161121] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/05/2016] [Accepted: 12/13/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Considerable evidence demonstrates the importance of dithiocarbamates especially disulfiram as anticancer drugs. However there are no systematic reviews outlining how their metal-binding ability is related to their anticancer activity. This review aims to summarize chemical features and metal-binding activity of disulfiram and its metabolite DEDTC, and discuss different mechanisms of action of disulfiram and their contributions to the drug's anticancer activity. METHODS We undertook a disulfiram-related search on bibliographic databases of peerreviewed research literature, including many historic papers and in vitro, in vivo, preclinical and clinical studies. The selected papers were carefully reviewed and summarized. RESULTS More than five hundreds of papers were obtained in the initial search and one hundred eighteen (118) papers were included in the review, most of which deal with chemical and biological aspects of Disulfiram and the relationship of its chemical and biological properties. Eighty one (81) papers outline biological aspects of dithiocarbamates, and fifty seven (57) papers report biological activity of Disulfiram as an inhibitor of proteasomes or inhibitor of aldehyde dehydrogenase enzymes, interaction with other anticancer drugs, or mechanism of action related to reactive oxygen species. Other papers reviewed focus on chemical aspects of dithiocarbamates. CONCLUSION This review confirms the importance of chemical features of compounds such as Disulfiram to their biological activities, and supports repurposing DSF as a potential anticancer agent.
Collapse
Affiliation(s)
- Maricela Viola-Rhenals
- Biochemistry and Cell Biology of Cancer Group, Exacts and Natural Science Faculty, University of Cartagena, Cartagena, Colombia
| | - Kush R. Patel
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, Detroit, United States
| | - Laura Jaimes-Santamaria
- Biochemistry and Cell Biology of Cancer Group, Exacts and Natural Science Faculty, University of Cartagena, Cartagena, Colombia
| | - Guojun Wu
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, Detroit, United States
| | - Jinbao Liu
- Guangzhou Medical University, Protein Modification and Degradation Lab, Dongfeng Xi road 195#, Guangzhou, Guangdong 510182, China
| | - Q. Ping Dou
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, Detroit, United States
- Guangzhou Medical University, Protein Modification and Degradation Lab, Dongfeng Xi road 195#, Guangzhou, Guangdong 510182, China
| |
Collapse
|
27
|
Wang NN, Wang LH, Li Y, Fu SY, Xue X, Jia LN, Yuan XZ, Wang YT, Tang X, Yang JY, Wu CF. Targeting ALDH2 with disulfiram/copper reverses the resistance of cancer cells to microtubule inhibitors. Exp Cell Res 2018; 362:72-82. [DOI: 10.1016/j.yexcr.2017.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/28/2017] [Accepted: 11/03/2017] [Indexed: 12/27/2022]
|
28
|
Li Y, Wang LH, Zhang HT, Wang YT, Liu S, Zhou WL, Yuan XZ, Li TY, Wu CF, Yang JY. Disulfiram combined with copper inhibits metastasis and epithelial-mesenchymal transition in hepatocellular carcinoma through the NF-κB and TGF-β pathways. J Cell Mol Med 2017; 22:439-451. [PMID: 29148232 PMCID: PMC5742719 DOI: 10.1111/jcmm.13334] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 06/25/2017] [Indexed: 01/01/2023] Open
Abstract
Late‐stage hepatocellular carcinoma (HCC) usually has a low survival rate because of the high risk of metastases and the lack of an effective cure. Disulfiram (DSF) has copper (Cu)‐dependent anticancer properties in vitro and in vivo. The present work aims to explore the anti‐metastasis effects and molecular mechanisms of DSF/Cu on HCC cells both in vitro and in vivo. The results showed that DSF inhibited the proliferation, migration and invasion of HCC cells. Cu improved the anti‐metastatic activity of DSF, while Cu alone had no effect. Furthermore, DSF/Cu inhibited both NF‐κB and TGF‐β signalling, including the nuclear translocation of NF‐κB subunits and the expression of Smad4, leading to down‐regulation of Snail and Slug, which contributed to phenotype epithelial–mesenchymal transition (EMT). Finally, DSF/Cu inhibited the lung metastasis of Hep3B cells not only in a subcutaneous tumour model but also in an orthotopic liver metastasis assay. These results indicated that DSF/Cu suppressed the metastasis and EMT of hepatic carcinoma through NF‐κB and TGF‐β signalling. Our study indicates the potential of DSF/Cu for therapeutic use.
Collapse
Affiliation(s)
- Yi Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| | - Li-Hui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| | - Hao-Tian Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| | - Ya-Ting Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Shuai Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| | - Wen-Long Zhou
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiang-Zhong Yuan
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Tian-Yang Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Chun-Fu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| | - Jing-Yu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
29
|
Xu B, Wang S, Li R, Chen K, He L, Deng M, Kannappan V, Zha J, Dong H, Wang W. Disulfiram/copper selectively eradicates AML leukemia stem cells in vitro and in vivo by simultaneous induction of ROS-JNK and inhibition of NF-κB and Nrf2. Cell Death Dis 2017; 8:e2797. [PMID: 28518151 PMCID: PMC5520701 DOI: 10.1038/cddis.2017.176] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 12/22/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous malignancy. Despite the advances in past decades, the clinical outcomes of AML patients remain poor. Leukemia stem cells (LSCs) is the major cause of the recurrence of AML even after aggressive treatment making, promoting development of LSC-targeted agents is an urgent clinical need. Although the antitumor activity of disulfiram (DS), an approved anti-alcoholism drug, has been demonstrated in multiple types of tumors including hematological malignancies such as AML, it remains unknown whether this agent would also be able to target cancer stem cells like LSCs. Here, we report the in vitro and in vivo activity of DS in combination with copper (Cu) against CD34+/CD38+ leukemia stem-like cells sorted from KG1α and Kasumi-1 AML cell lines, as well as primary CD34+ AML samples. DS plus Cu (DS/Cu) displayed marked inhibition of proliferation, induction of apoptosis, and suppression of colony formation in cultured AML cells while sparing the normal counterparts. DS/Cu also significantly inhibited the growth of human CD34+/CD38+ leukemic cell-derived xenografts in NOD/SCID mice. Mechanistically, DS/Cu-induced cytotoxicity was closely associated with activation of the stress-related ROS-JNK pathway as well as simultaneous inactivation of the pro-survival Nrf2 and nuclear factor-κB pathways. In summary, our findings indicate that DS/Cu selectively targets leukemia stem-like cells both in vitro and in vivo, thus suggesting a promising LSC-targeted activity of this repurposed agent for treatment of relapsed and refractory AML.
Collapse
Affiliation(s)
- Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shiyun Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rongwei Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kai Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lingli He
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Manman Deng
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Vinodh Kannappan
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Jie Zha
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Huijuan Dong
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiguang Wang
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| |
Collapse
|
30
|
Bista R, Lee DW, Pepper OB, Azorsa DO, Arceci RJ, Aleem E. Disulfiram overcomes bortezomib and cytarabine resistance in Down-syndrome-associated acute myeloid leukemia cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:22. [PMID: 28143565 PMCID: PMC5286849 DOI: 10.1186/s13046-017-0493-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/26/2017] [Indexed: 02/02/2023]
Abstract
Background Children with Down syndrome (DS) have increased risk for developing AML (DS-AMKL), and they usually experience severe therapy-related toxicities compared to non DS-AMKL. Refractory/relapsed disease has very poor outcome, and patients would benefit from novel, less toxic, therapeutic strategies that overcome resistance. Relapse/resistance are linked to cancer stem cells with high aldehyde dehydrogenase (ALDH) activity. The purpose of the present work was to study less toxic alternative therapeutic agents for relapsed/refractory DS-AMKL. Methods Fourteen AML cell lines including the DS-AMKL CMY and CMK from relapsed/refractory AML were used. Cytarabine (Ara-C), bortezomib (BTZ), disulfiram/copper (DSF/Cu2+) were evaluated for cytotoxicity, depletion of ALDH-positive cells, and resistance. BTZ-resistant CMY and CMK variants were generated by continuous BTZ treatment. Cell viability was assessed using CellTiter-Glo®, ALDH activity by ALDELUORTM, and proteasome inhibition by western blot of ubiquitinated proteins and the Proteasome-Glo™ Chymotrypsin-Like (CT-like) assay, apoptosis by Annexin V Fluos/Propidium iodide staining, and mutations were detected using PCR, cloning and sequencing. Results Ara-C-resistant AML cell lines were sensitive to BTZ and DSF/Cu2+. The Ara-C-resistant DS-AMKL CMY cells had a high percentage of ALDHbright “stem-like” populations that may underlie Ara-C resistance. One percent of these cells were still resistant to BTZ but sensitive to DSF/Cu2+. To understand the mechanism of BTZ resistance, BTZ resistant (CMY-BR) and (CMK-BR) were generated. A novel mutation PSMB5 Q62P underlied BTZ resistance, and was associated with an overexpression of the β5 proteasome subunit. BTZ-resistance conferred increased resistance to Ara-C due to G1 arrest in the CMY-BR cells, which protected the cells from S-phase damage by Ara-C. CMY-BR and CMK-BR cells were cross-resistant to CFZ and MG-132 but sensitive to DSF/Cu2+. In this setting, DSF/Cu2+ induced apoptosis and proteasome inhibition independent of CT-like activity inhibition. Conclusions We provide evidence that DSF/Cu2+ overcomes Ara-C and BTZ resistance in cell lines from DS-AMKL patients. A novel mutation underlying BTZ resistance was detected that may identify BTZ-resistant patients, who may not benefit from treatment with CFZ or Ara-C, but may be responsive to DSF/Cu2+. Our findings support the clinical development of DSF/Cu2+ as a less toxic efficacious treatment approach in patients with relapsed/refractory DS-AMKL. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0493-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ranjan Bista
- Institute of Molecular Medicine at Phoenix Children's Hospital, Phoenix, AZ, USA
| | - David W Lee
- Institute of Molecular Medicine at Phoenix Children's Hospital, Phoenix, AZ, USA.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Biosciences Partnership Building (BSPB), 5th floor, 475 N 5th Street, Phoenix, AZ, 85004, USA
| | - Oliver B Pepper
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Biosciences Partnership Building (BSPB), 5th floor, 475 N 5th Street, Phoenix, AZ, 85004, USA.,Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - David O Azorsa
- Institute of Molecular Medicine at Phoenix Children's Hospital, Phoenix, AZ, USA.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Biosciences Partnership Building (BSPB), 5th floor, 475 N 5th Street, Phoenix, AZ, 85004, USA
| | - Robert J Arceci
- Institute of Molecular Medicine at Phoenix Children's Hospital, Phoenix, AZ, USA.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Biosciences Partnership Building (BSPB), 5th floor, 475 N 5th Street, Phoenix, AZ, 85004, USA
| | - Eiman Aleem
- Institute of Molecular Medicine at Phoenix Children's Hospital, Phoenix, AZ, USA. .,Department of Child Health, University of Arizona College of Medicine-Phoenix, Biosciences Partnership Building (BSPB), 5th floor, 475 N 5th Street, Phoenix, AZ, 85004, USA. .,Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
31
|
Lin CW, Lu KY, Wang SY, Sung HW, Mi FL. CD44-specific nanoparticles for redox-triggered reactive oxygen species production and doxorubicin release. Acta Biomater 2016; 35:280-92. [PMID: 26853764 DOI: 10.1016/j.actbio.2016.02.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/10/2016] [Accepted: 02/03/2016] [Indexed: 02/04/2023]
Abstract
CD44-specific and redox-responsive nanoparticles were prepared by coating a bioreducible chitosan-based nanoparticles with hyaluronic acid for intracellular glutathione-triggered reactive oxygen species (ROS) production and doxorubicin (DOX) release. Chitosan (CS) was conjugated with a copper chelator, D-penicillamine (D-pen), to obtain a CS-SS-D-pen conjugate through the formation of a disulfide bond. D-pen release from the conjugate was triggered by intracellular glutathione (GSH) via reducing biologically reversible disulfide bonds. Self-assembled CS-SS-D-pen nanoparticles were prepared through ionotropic gelation with tripolyphosphate and subsequently coated with hyaluronic acid (HA). The HA-coated CS-SS-D-pen NPs were reduced by GSH to release free D-pen and trigger ROS production via a series of reactions involving Cu(II)-catalyzed D-pen oxidation and H2O2 generation. DOX was loaded into the HA-coated CS-SS-D-pen NPs by a method involving the complexation of DOX with Cu(II) ions. The Cu(II)-DOX complex-loaded NPs exhibited redox-responsive release properties which accelerated DOX release at a higher glutathione level (10mM). Confocal fluorescence microscopy demonstrated that the Cu(II)-DOX-loaded NPs effectively delivered DOX to human colon adenocarcinoma cells (HT-29) by active targeting via HA-CD44 interactions. Intracellular ROS generated from the HA-coated CS-SS-D-pen NPs sensitized cancer cells to DOX-induced cytotoxicity. In vitro cytotoxicity assays revealed that Cu(II)-DOX-loaded NPs sensitized cells to DOX-induced cytotoxicity in CD44-overexpressing HT-29 cells compared to CD44 low-expressing HCT-15 cells. STATEMENT OF SIGNIFICANCE In this manuscript, we develop a CD44-targetable loaded with nanoparticles Cu(II)-DOX complex. The nanoparticles exhibited redox-responsive properties, which triggered reactive oxygen species (ROS) production and accelerated DOX release. The Cu(II)-DOX-loaded nanoparticle sensitized cells to DOX-induced cytotoxicity in CD44-overexpressing HT-29 cells. To our knowledge, this is the first report showing the combination of CD44-targeting and redox-responsive property for triggering ROS production and subsequent drug release. We believe our findings would appeal to the readership of Acta Biomaterialia because the study bring new and interesting ideals in the development of specific and stimuli-responsive nanoparticles as drug carrier for cancer therapy.
Collapse
Affiliation(s)
- Cheng-Wei Lin
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kun-Ying Lu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Sin-Yu Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsing-Wen Sung
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Fwu-Long Mi
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
32
|
Zhang L, Tian B, Li Y, Lei T, Meng J, Yang L, Zhang Y, Chen F, Zhang H, Xu H, Zhang Y, Tang X. A Copper-Mediated Disulfiram-Loaded pH-Triggered PEG-Shedding TAT Peptide-Modified Lipid Nanocapsules for Use in Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2015; 7:25147-25161. [PMID: 26501354 DOI: 10.1021/acsami.5b06488] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Disulfiram, which exhibits marked tumor inhibition mediated by copper, was encapsulated in lipid nanocapsules modified with TAT peptide (TATp) and pH-triggered sheddable PEG to target cancer cells on the basis of tumor environmental specificity. PEG-shedding lipid nanocapsules (S-LNCs) were fabricated from LNCs by decorating short PEG chains with TATp (HS-PEG(1k)-TATp) to form TATp-LNCs and then covered by pH-sensitive graft copolymers of long PEG chains (PGA-g-PEG(2k)). The DSF-S-LNCs had sizes in the range of 60-90 nm and were stable in the presence of 50% plasma. DSF-S-LNCs exhibited higher intracellular uptake and antitumor activity at pH 6.5 than at pH 7.4. The preincubation of Cu showed that the DSF cytotoxicity was based on the accumulation of Cu in Hep G2 cells. Pharmacokinetic studies showed the markedly improved pharmacokinetic profiles of DSF-S-LNCs (AUC= 3921.391 μg/L·h, t(1/2z) = 1.294 h) compared with free DSF (AUC = 907.724 μg/L·h, t(1/2z) = 0.252 h). The in vivo distribution of S-LNCs was investigated using Cy5.5 as a fluorescent probe. In tumor-bearing mice, the delivery efficiency of S-LNCs was found to be 496.5% higher than that of free Cy5.5 and 74.5% higher than that of LNCs in tumors. In conclusion, DSF-S-LNCs increased both the stability and tumor internalization and further increased the cytotoxicity because of the higher copper content.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
| | - Bin Tian
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
| | - Yi Li
- Department of Pharmacology, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
| | - Tian Lei
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
| | - Jia Meng
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
| | - Liu Yang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
| | - Yan Zhang
- Normal College, Shenyang University , Shenyang, Liaoning, PR China
| | - Fen Chen
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine , Shenyang, Liaoning, PR China
| | - Haotian Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
| | - Hui Xu
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
| | - Yu Zhang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
| | - Xing Tang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
| |
Collapse
|
33
|
Antileishmanial Activity of Disulfiram and Thiuram Disulfide Analogs in an Ex Vivo Model System Is Selectively Enhanced by the Addition of Divalent Metal Ions. Antimicrob Agents Chemother 2015; 59:6463-70. [PMID: 26239994 DOI: 10.1128/aac.05131-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 07/24/2015] [Indexed: 12/17/2022] Open
Abstract
Current treatments for cutaneous and visceral leishmaniasis are toxic, expensive, difficult to administer, and limited in efficacy and availability. Disulfiram has primarily been used to treat alcoholism. More recently, it has shown some efficacy as therapy against protozoan pathogens and certain cancers, suggesting a wide range of biological activities. We used an ex vivo system to screen several thiuram disulfide compounds for antileishmanial activity. We found five compounds (compound identifier [CID] 7188, 5455, 95876, 12892, and 3117 [disulfiram]) with anti-Leishmania activity at nanomolar concentrations. We further evaluated these compounds with the addition of divalent metal salts based on studies that indicated these salts could potentiate the action of disulfiram. In addition, clinical studies suggested that zinc has some efficacy in treating cutaneous leishmaniasis. Several divalent metal salts were evaluated at 1 μM, which is lower than the normal levels of copper and zinc in plasma of healthy individuals. The leishmanicidal activity of disulfiram and CID 7188 were enhanced by several divalent metal salts at 1 μM. The in vitro therapeutic index (IVTI) of disulfiram and CID 7188 increased 12- and 2.3-fold, respectively, against L. major when combined with ZnCl2. The combination of disulfiram with ZnSO4 resulted in a 1.8-fold increase in IVTI against L. donovani. This novel combination of thiuram disulfides and divalent metal ions salts could have application as topical and/or oral therapies for treatment of cutaneous and visceral leishmaniasis.
Collapse
|
34
|
Dong Y, Yang J, Liu H, Wang T, Tang S, Zhang J, Zhang X. Site-Specific Drug-Releasing Polypeptide Nanocarriers Based on Dual-pH Response for Enhanced Therapeutic Efficacy against Drug-Resistant Tumors. Theranostics 2015; 5:890-904. [PMID: 26000060 PMCID: PMC4440445 DOI: 10.7150/thno.11821] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 03/31/2015] [Indexed: 11/05/2022] Open
Abstract
To enhance effective drug accumulation in drug-resistant tumors, a site-specific drug-releasing polypeptide system (PEG-Phis/Pasp-DOX/CA4) was exploited in response to tumor extracellular and intracellular pH. This system could firstly release the embedded tumor vascular inhibitor (CA4) to transiently 'normalize' vasculature and facilitate drug internalization to tumors efficiently, and then initiate the secondary pH-response to set the conjugated active anticancer drug (DOX) free in tumor cells. The encapsulated system (PEG-Phis/DOX/CA4), both CA4 and DOX embedding in the nanoparticles, was used as a control. Comparing with PEG-Phis/DOX/CA4, PEG-Phis/Pasp-DOX/CA4 exhibited enhanced cytotoxicity against DOX-sensitive and DOX-resistant cells (MCF-7 and MCF-7/ADR). Moreover, PEG-Phis/Pasp-DOX/CA4 resulted in enhanced therapeutic efficacy in drug-resistant tumors with reduced toxicity. These results suggested that this site-specific drug-releasing system could be exploited as a promising treatment for cancers with repeated administration.
Collapse
Affiliation(s)
- Yaqiong Dong
- 1. National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- 2. College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Jun Yang
- 1. National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongmei Liu
- 1. National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- 3. University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianyou Wang
- 4. Capital Institute of Pediatrics, Beijing, 100020, China
| | - Suoqin Tang
- 5. Department of Pediatrics, The General Hospital of People's Liberation Army, Beijing, 100853, China
| | - Jinchao Zhang
- 2. College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Xin Zhang
- 1. National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
35
|
Diethyldithiocarbamate complexes with metals used as food supplements show different effects in cancer cells. J Appl Biomed 2014. [DOI: 10.1016/j.jab.2014.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
36
|
Zha J, Chen F, Dong H, Shi P, Yao Y, Zhang Y, Li R, Wang S, Li P, Wang W, Xu B. Disulfiram targeting lymphoid malignant cell lines via ROS-JNK activation as well as Nrf2 and NF-kB pathway inhibition. J Transl Med 2014; 12:163. [PMID: 24915933 PMCID: PMC4075939 DOI: 10.1186/1479-5876-12-163] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 06/03/2014] [Indexed: 12/16/2022] Open
Abstract
Background Disulfiram (DS), an anti-alcoholism drug, demonstrates strong antitumor activity in a copper (Cu)-dependent manner. This study investigates the cytotoxicity of DS/Cu complex in lymphoid malignant cell lines in vitro and in vivo. Method Raji cells were subjected to different treatments and thereafter MTT assay, flow cytometry were used to determine IC50 and apoptotic status. We also tested the cytotoxicity of DS/Cu in acute lymphoblastic leukemia cell line Molt4 in vitro. In vivo experiments were also performed to demonstrate the anticancer efficacy of DS/Cu in Raji cells xenografted nude mice. Results In combination with a low concentration (1 μM) of Cu2+, DS induced cytotoxicity in Raji cells with an IC50 of 0.085 ± 0.015 μM and in Molt4 cells with an IC50 of 0.435 ± 0.109 μM. The results of our animal experiments also showed that the mean tumor volume in DS/Cu-treated mice was significantly smaller than that in DS or control group, indicating that DS/Cu inhibits the proliferation of Raji cells in vivo. DS/Cu also induced apoptosis in 2 lymphoid malignant cell lines. After exposure to DS (3.3 μM)/Cu (1 μM) for 24 hours, apoptosis was detected in 81.03 ± 7.91% of Raji cells. DS/Cu induced significant apoptosis in a concentration-dependent manner with the highest apoptotic proportion (DS/Cu: 89.867 ± 4.69%) at a concentration of 2 μM in Molt4 cells. After 24 h exposure, DS/Cu inhibits Nrf2 expression. Flow cytometric analysis shows that DS/Cu induced ROS generation. DS/Cu induced phosphorylation of JNK and inhibits p65 expression as well as Nrf2 expression both in vitro and in vivo. N-acetyl-L-cysteine (NAC), an antioxidant, can partially attenuate DS/Cu complex-induced apoptosis and block JNK activation in vitro. In addition, NAC is able to restore Nrf2 nuclear translocation and p65 expression. Conclusion Our study manifests that DS/Cu complex targets lymphoid malignant cells in vitro and in vivo. Generation of ROS might be one of core steps in DS/Cu induced apoptosis. Moreover, ROS-related activation of JNK pathway and inhibition of NF-κB and Nrf2 may also contribute to the DS/Cu induced apoptosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Bing Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
37
|
Abstract
Copper is an essential element in many biological processes. The critical functions associated with copper have resulted from evolutionary harnessing of its potent redox activity. This same property also places copper in a unique role as a key modulator of cell signal transduction pathways. These pathways are the complex sequence of molecular interactions that drive all cellular mechanisms and are often associated with the interplay of key enzymes including kinases and phosphatases but also including intracellular changes in pools of smaller molecules. A growing body of evidence is beginning to delineate the how, when and where of copper-mediated control over cell signal transduction. This has been driven by research demonstrating critical changes to copper homeostasis in many disorders including cancer and neurodegeneration and therapeutic potential through control of disease-associated cell signalling changes by modulation of copper-protein interactions. This timely review brings together for the first time the diverse actions of copper as a key regulator of cell signalling pathways and discusses the potential strategies for controlling disease-associated signalling processes using copper modulators. It is hoped that this review will provide a valuable insight into copper as a key signal regulator and stimulate further research to promote our understanding of copper in disease and therapy.
Collapse
|
38
|
Duan L, Shen H, Zhao G, Yang R, Cai X, Zhang L, Jin C, Huang Y. Inhibitory effect of Disulfiram/copper complex on non-small cell lung cancer cells. Biochem Biophys Res Commun 2014; 446:1010-6. [PMID: 24657266 DOI: 10.1016/j.bbrc.2014.03.047] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 03/12/2014] [Indexed: 12/11/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in both men and women worldwide. Recently, Disulfiram has been reported to be able to inhibit glioblastoma, prostate, or breast cancer cell proliferation. In this study, the synergistic effect of Disulfiram and copper on NSCLC cell growth was investigated. Inhibition of cancer cell proliferation was detected by 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) assay and cell cycle analysis. Liquid colony formation and tumor spheroid formation assays were used to evaluate their effect on cancer cell clonogenicity. Real-time PCR was performed to test the mRNA level of cancer stem cell related genes. We found that Disulfiram or copper alone did not potently inhibit NSCLC cell proliferation in vitro. However, the presence of copper significantly enhanced inhibitory effect of Disulfiram on NSCLC cell growth, indicating a synergistic effect between Disulfiram and copper. Cell cycle analysis showed that Disulfiram/copper complex caused NSCLC cell cycle arrest in G2/M phase. Furthermore, Disulfiram/copper significantly increased the sensitivity of cisplatin in NSCLC cells tested by MTT assay. Liquid colony formation assay revealed that copper dramatically increased the inhibitory effect of Disulfiram on NSCLC cell colony forming ability. Disulfiram combined with copper significantly attenuated NSCLC cell spheroid formation and recuded the mRNA expression of lung cancer stem cell related genes. Our data suggest that Disulfiram/copper complex alone or combined with other chemotherapy is a potential therapeutic strategy for NSCLC patients.
Collapse
Affiliation(s)
- Lincan Duan
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hongmei Shen
- Cancer Center of Integrative Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Guangqiang Zhao
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Runxiang Yang
- Cancer Chemotherapy Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xinyi Cai
- Colorectal Cancer Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lijuan Zhang
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Congguo Jin
- Cancer Institute, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunchao Huang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
39
|
A conceptually new treatment approach for relapsed glioblastoma: coordinated undermining of survival paths with nine repurposed drugs (CUSP9) by the International Initiative for Accelerated Improvement of Glioblastoma Care. Oncotarget 2013; 4:502-30. [PMID: 23594434 PMCID: PMC3720600 DOI: 10.18632/oncotarget.969] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To improve prognosis in recurrent glioblastoma we developed a treatment protocol based on a combination of drugs not traditionally thought of as cytotoxic chemotherapy agents but that have a robust history of being well-tolerated and are already marketed and used for other non-cancer indications. Focus was on adding drugs which met these criteria: a) were pharmacologically well characterized, b) had low likelihood of adding to patient side effect burden, c) had evidence for interfering with a recognized, well-characterized growth promoting element of glioblastoma, and d) were coordinated, as an ensemble had reasonable likelihood of concerted activity against key biological features of glioblastoma growth. We found nine drugs meeting these criteria and propose adding them to continuous low dose temozolomide, a currently accepted treatment for relapsed glioblastoma, in patients with recurrent disease after primary treatment with the Stupp Protocol. The nine adjuvant drug regimen, Coordinated Undermining of Survival Paths, CUSP9, then are aprepitant, artesunate, auranofin, captopril, copper gluconate, disulfiram, ketoconazole, nelfinavir, sertraline, to be added to continuous low dose temozolomide. We discuss each drug in turn and the specific rationale for use- how each drug is expected to retard glioblastoma growth and undermine glioblastoma's compensatory mechanisms engaged during temozolomide treatment. The risks of pharmacological interactions and why we believe this drug mix will increase both quality of life and overall survival are reviewed.
Collapse
|
40
|
Duan X, Xiao J, Yin Q, Zhang Z, Yu H, Mao S, Li Y. Smart pH-sensitive and temporal-controlled polymeric micelles for effective combination therapy of doxorubicin and disulfiram. ACS NANO 2013; 7:5858-69. [PMID: 23734880 DOI: 10.1021/nn4010796] [Citation(s) in RCA: 314] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The combination of a chemotherapeutic drug with a multidrug resistance (MDR) modulator has emerged as a promising strategy for treating MDR cancer. To ensure two drugs could be simultaneously delivered to tumor region at the optimum ratio, and the MDR modulator could be released earlier and faster than the chemotherapeutic drug to inactivate P-glycoprotein (P-gp) and subsequently inhibit the pumping out of the chemotherapeutic drug, a smart pH-sensitive polymeric micelles system with high drug loading and precise drug ratio was designed and prepared by conjugating doxorubicin (DOX) to poly(styrene-co-maleic anhydride) (SMA) derivative with adipic dihydrazide (ADH) through a acid-cleavable hydrazone bond, and then encapsulating disulfiram (DSF), a P-gp inhibitor as well as an apoptosis inducer, into the micelles formed by the self-assembly of SMA-ADH-DOX (SAD) conjugate. The pH-sensitive polymeric micelles system enabled a temporal release of two drugs: encapsulated DSF was released fast to inhibit the activity of P-gp and restore cell apoptotic signaling pathways, while conjugated DOX was released in a sustained and pH-dependent manner and highly accumulated in drug resistant cells to exert therapeutic effect, due to the inactivation of P-gp by DSF. The smart co-delivery system was very effective in enhancing the cytotoxicity by increasing the intracellular accumulation of DOX and promoting the apoptotic response, and showed the most effective inhibitory effect on the growth of drug-resistant breast cancer xenografts as compared to other combinations of both drugs. In a word, this smart co-delivery system has significant promise for the clinical therapy of MDR cancer.
Collapse
Affiliation(s)
- Xiaopin Duan
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Rappa F, Cappello F, Halatsch ME, Scheuerle A, Kast RE. Aldehyde dehydrogenase and HSP90 co-localize in human glioblastoma biopsy cells. Biochimie 2012. [PMID: 23201460 DOI: 10.1016/j.biochi.2012.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The concept of a stem cell subpopulation as understood from normal epithelial tissue or bone marrow function has been extended to our understanding of cancer tissue and is now the target of treatment efforts specifically directed to this subpopulation. In glioblastoma, as well as in other cancers, increased expression of aldehyde dehydrogenase (ALDH) has been found localized within a minority sub-population of tumor cells which demonstrate stem cell properties. A separate body of research associated increased expression of heat-shock protein-90 (HSP90) with stem cell attributes. We present here results from our initial immunohistochemistry study of human glioblastoma biopsy tissue where both ALDH and HSP90 tended to be co-expressed in high amounts in the same minority of cells. Since 12% of all cells in the six biopsies studied were ALDH positive and 17% were HSP90 positive, by chance alone 2% would have been expected to be positive for both. In fact 7% of all cells simultaneously expressed both markers-a significant difference (p = 0.037). That two previously identified proteins associated with stem cell attributes tend to be co-expressed in the same individual glioblastoma cells might have clinical utility. Disulfiram, used to treat alcoholism for half-a century now, is a potent ALDH inhibitor and the old anti-viral drug ritonavir inhibits HSP90. These should be explored for the potential to retard aspects of glioblastoma stem cells' function subserved by ALDH and HSP90.
Collapse
Affiliation(s)
- F Rappa
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | | | | | | | | |
Collapse
|
42
|
Davidson JD, Flynn EP, Kirkpatrick JB. Protein-losing enteropathy and intestinal bleeding. The role of lymphatic-venous connections. Ann Intern Med 1966; 7:58516-58530. [PMID: 27542268 PMCID: PMC5295448 DOI: 10.18632/oncotarget.11305] [Citation(s) in RCA: 76] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/26/2016] [Indexed: 01/16/2023] Open
Abstract
The existence of cancer stem cells (CSCs) in non-small cell lung cancer (NSCLC) has profound implications for cancer therapy. In this study, a disulfiram/copper (DSF/Cu) complex was evaluated in vitro and in vivo for its efficacy to inhibit CSCs, which drive recurrence of NSCLC. First, we investigated whether DSF/Cu could inhibit ALDH-positive NSCLC stem cells in vitro and tumors derived from sorted ALDH-positive CSCs in vivo. DSF/Cu (0.5/1 μmol/l) significantly inhibited the expression of stem cell transcription factors (Sox2, Oct-4 and Nanog) and reduced the capacities of NSCLC stem cells for self-renewal, proliferation and invasion in vitro. Regular injections with DSF/Cu (60/2.4 mg/kg) reduced the size of tumors derived from sorted ALDH-positive stem cells. Two other NOD/SCID xenograft models were used to determine whether DSF/Cu could target NSCLC stem cells and inhibit tumor recurrence in vivo. DSF/Cu treatment eliminated ALDH-positive cells and inhibited tumor recurrence, which was reflected by reduced tumor growth in recipient mice that were inoculated with tumor cells derived from DSF/Cu-treated cells or primary xenografts. RNA interference and overexpression of ALDH isozymes suggested that ALDH1A1, which plays a key role in ALDH-positive NSCLC stem cells, might be the target of the DSF/Cu complex. Collectively, our data demonstrate that DSF/Cu targets ALDH1A1 to inhibit NSCLC recurrence driven by ALDH-positive CSCs. Thus, the DSF/Cu complex may represent a potential therapeutic strategy for NSCLC patients.
Collapse
|