1
|
Zhang N, Jiang N, Chen Q. Key Regulators of Parasite Biology Viewed Through a Post-Translational Modification Repertoire. Proteomics 2024:e202400120. [PMID: 39690890 DOI: 10.1002/pmic.202400120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
Parasites are the leading causes of morbidity and mortality in both humans and animals, imposing substantial socioeconomic burdens worldwide. Controlling parasitic diseases has become one of the key issues in achieving "One Health". Most parasites have sophisticated life cycles exhibiting progressive developmental stages, morphologies, and host-switching, which are controlled by various regulatory machineries including protein post-translational modifications (PTMs). PTMs have emerged as a key mechanism by which parasites modulate their virulence, developmental transitions, and environmental adaptations. PTMs are enzyme-mediated additions or removals of chemical groups that dynamically regulate the stability and functions of proteins and confer novel properties, playing vital roles in a variety of biological processes and cellular functions. In this review, we circumscribe how parasites utilize various PTMs to regulate their intricate lives, with a focus on the biological role of PTMs in parasite biology and pathogenesis.
Collapse
Affiliation(s)
- Naiwen Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| |
Collapse
|
2
|
Lohia R, Allegrini B, Berry L, Guizouarn H, Cerdan R, Abkarian M, Douguet D, Honoré E, Wengelnik K. Pharmacological activation of PIEZO1 in human red blood cells prevents Plasmodium falciparum invasion. Cell Mol Life Sci 2023; 80:124. [PMID: 37071200 PMCID: PMC10113305 DOI: 10.1007/s00018-023-04773-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
An inherited gain-of-function variant (E756del) in the mechanosensitive cationic channel PIEZO1 was shown to confer a significant protection against severe malaria. Here, we demonstrate in vitro that human red blood cell (RBC) infection by Plasmodium falciparum is prevented by the pharmacological activation of PIEZO1. Yoda1 causes an increase in intracellular calcium associated with rapid echinocytosis that inhibits RBC invasion, without affecting parasite intraerythrocytic growth, division or egress. Notably, Yoda1 treatment significantly decreases merozoite attachment and subsequent RBC deformation. Intracellular Na+/K+ imbalance is unrelated to the mechanism of protection, although delayed RBC dehydration observed in the standard parasite culture medium RPMI/albumax further enhances the resistance to malaria conferred by Yoda1. The chemically unrelated Jedi2 PIEZO1 activator similarly causes echinocytosis and RBC dehydration associated with resistance to malaria invasion. Spiky outward membrane projections are anticipated to reduce the effective surface area required for both merozoite attachment and internalization upon pharmacological activation of PIEZO1. Globally, our findings indicate that the loss of the typical biconcave discoid shape of RBCs, together with an altered optimal surface to volume ratio, induced by PIEZO1 pharmacological activation prevent efficient P. falciparum invasion.
Collapse
Affiliation(s)
- Rakhee Lohia
- LPHI, University of Montpellier, CNRS UMR5294, Montpellier, France
| | | | - Laurence Berry
- LPHI, University of Montpellier, CNRS UMR5294, Montpellier, France
| | | | - Rachel Cerdan
- LPHI, University of Montpellier, CNRS UMR5294, Montpellier, France
| | - Manouk Abkarian
- Centre de Biologie Structurale, CNRS UMR5048, INSERM U1054, University of Montpellier, Montpellier, France
| | - Dominique Douguet
- IPMC, University Côte d'Azur, CNRS, INSERM, UMR7275, Labex ICST, Valbonne, France
| | - Eric Honoré
- IPMC, University Côte d'Azur, CNRS, INSERM, UMR7275, Labex ICST, Valbonne, France.
| | - Kai Wengelnik
- LPHI, University of Montpellier, CNRS UMR5294, INSERM, Montpellier, France.
| |
Collapse
|
3
|
Satchwell TJ. Generation of red blood cells from stem cells: Achievements, opportunities and perspectives for malaria research. Front Cell Infect Microbiol 2022; 12:1039520. [PMID: 36452302 PMCID: PMC9702814 DOI: 10.3389/fcimb.2022.1039520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/21/2022] [Indexed: 06/22/2024] Open
Abstract
Parasites of the genus Plasmodium that cause malaria survive within humans by invasion of, and proliferation within, the most abundant cell type in the body, the red blood cell. As obligate, intracellular parasites, interactions between parasite and host red blood cell components are crucial to multiple aspects of the blood stage malaria parasite lifecycle. The requirement for, and involvement of, an array of red blood cell proteins in parasite invasion and intracellular development is well established. Nevertheless, detailed mechanistic understanding of host cell protein contributions to these processes are hampered by the genetic intractability of the anucleate red blood cell. The advent of stem cell technology and more specifically development of methods that recapitulate in vitro the process of red blood cell development known as erythropoiesis has enabled the generation of erythroid cell stages previously inaccessible in large numbers for malaria studies. What is more, the capacity for genetic manipulation of nucleated erythroid precursors that can be differentiated to generate modified red blood cells has opened new horizons for malaria research. This review summarises current methodologies that harness in vitro erythroid differentiation of stem cells for generation of cells that are susceptible to malaria parasite invasion; discusses existing and emerging approaches to generate novel red blood cell phenotypes and explores the exciting potential of in vitro derived red blood cells for improved understanding the broad role of host red blood cell proteins in malaria pathogenesis.
Collapse
|
4
|
Lasonder E, More K, Singh S, Haidar M, Bertinetti D, Kennedy EJ, Herberg FW, Holder AA, Langsley G, Chitnis CE. cAMP-Dependent Signaling Pathways as Potential Targets for Inhibition of Plasmodium falciparum Blood Stages. Front Microbiol 2021; 12:684005. [PMID: 34108954 PMCID: PMC8183823 DOI: 10.3389/fmicb.2021.684005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
We review the role of signaling pathways in regulation of the key processes of merozoite egress and red blood cell invasion by Plasmodium falciparum and, in particular, the importance of the second messengers, cAMP and Ca2+, and cyclic nucleotide dependent kinases. cAMP-dependent protein kinase (PKA) is comprised of cAMP-binding regulatory, and catalytic subunits. The less well conserved cAMP-binding pockets should make cAMP analogs attractive drug leads, but this approach is compromised by the poor membrane permeability of cyclic nucleotides. We discuss how the conserved nature of ATP-binding pockets makes ATP analogs inherently prone to off-target effects and how ATP analogs and genetic manipulation can be useful research tools to examine this. We suggest that targeting PKA interaction partners as well as substrates, or developing inhibitors based on PKA interaction sites or phosphorylation sites in PKA substrates, may provide viable alternative approaches for the development of anti-malarial drugs. Proximity of PKA to a substrate is necessary for substrate phosphorylation, but the P. falciparum genome encodes few recognizable A-kinase anchor proteins (AKAPs), suggesting the importance of PKA-regulatory subunit myristylation and membrane association in determining substrate preference. We also discuss how Pf14-3-3 assembles a phosphorylation-dependent signaling complex that includes PKA and calcium dependent protein kinase 1 (CDPK1) and how this complex may be critical for merozoite invasion, and a target to block parasite growth. We compare altered phosphorylation levels in intracellular and egressed merozoites to identify potential PKA substrates. Finally, as host PKA may have a critical role in supporting intracellular parasite development, we discuss its role at other stages of the life cycle, as well as in other apicomplexan infections. Throughout our review we propose possible new directions for the therapeutic exploitation of cAMP-PKA-signaling in malaria and other diseases caused by apicomplexan parasites.
Collapse
Affiliation(s)
- Edwin Lasonder
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Kunal More
- Unité de Biologie de Plasmodium et Vaccins, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Malak Haidar
- Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France.,INSERM U1016, CNRS UMR 8104, Cochin Institute, Paris, France
| | | | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, United States
| | | | - Anthony A Holder
- Malaria Parasitology Laboratory, Francis Crick Institute, London, United Kingdom
| | - Gordon Langsley
- Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France.,INSERM U1016, CNRS UMR 8104, Cochin Institute, Paris, France
| | - Chetan E Chitnis
- Unité de Biologie de Plasmodium et Vaccins, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| |
Collapse
|
5
|
Yuksel B. Investigation of morphological abnormalities in red blood cells among dental laboratory technicians. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:20650-20658. [PMID: 33405139 DOI: 10.1007/s11356-020-11935-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
A variety of materials are used in dental prosthesis laboratories (DPL), especially metal alloys and methyl methacrylate (MMA)-based monomers and polymers. These metal alloys contain elements such as cobalt, chromium, nickel, molybdenum, lead, and mercury that can have toxic effects on human health when excessive amounts of exposure occur. This study aims to investigate the cytotoxic effects of occupational exposure due to dental prosthesis manufacturing operations on erythrocyte cells. Thirty DPL workers were compared with the 30 control group and the questionnaire forms were applied including the symptoms due to their occupational exposure. Blood was taken from the experimental group and the control group into tubes with EDTA, and the erythrocyte morphologies were examined by the peripheral smear technique. Morphological anomalies determined from the experimental group and the control group are statistically significant (p < .005, p < .01). On the other hand, it was revealed that the sub-variables, namely age range, alcohol, and smoking, did not significantly affect the anomalies. With these results, it was concluded that DPL employees should strictly comply with occupational health precautions.
Collapse
Affiliation(s)
- Burcu Yuksel
- Vocational School of Kocaeli Health Sciences, Kocaeli University, Umuttepe, 41380, Izmit, Kocaeli, Turkey.
| |
Collapse
|
6
|
Chauvet M, Chhuon C, Lipecka J, Dechavanne S, Dechavanne C, Lohezic M, Ortalli M, Pineau D, Ribeil JA, Manceau S, Le Van Kim C, Luty AJF, Migot-Nabias F, Azouzi S, Guerrera IC, Merckx A. Sickle Cell Trait Modulates the Proteome and Phosphoproteome of Plasmodium falciparum-Infected Erythrocytes. Front Cell Infect Microbiol 2021; 11:637604. [PMID: 33842387 PMCID: PMC8024585 DOI: 10.3389/fcimb.2021.637604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/23/2021] [Indexed: 11/21/2022] Open
Abstract
The high prevalence of sickle cell disease in some human populations likely results from the protection afforded against severe Plasmodium falciparum malaria and death by heterozygous carriage of HbS. P. falciparum remodels the erythrocyte membrane and skeleton, displaying parasite proteins at the erythrocyte surface that interact with key human proteins in the Ankyrin R and 4.1R complexes. Oxidative stress generated by HbS, as well as by parasite invasion, disrupts the kinase/phosphatase balance, potentially interfering with the molecular interactions between human and parasite proteins. HbS is known to be associated with abnormal membrane display of parasite antigens. Studying the proteome and the phosphoproteome of red cell membrane extracts from P. falciparum infected and non-infected erythrocytes, we show here that HbS heterozygous carriage, combined with infection, modulates the phosphorylation of erythrocyte membrane transporters and skeletal proteins as well as of parasite proteins. Our results highlight modifications of Ser-/Thr- and/or Tyr- phosphorylation in key human proteins, such as ankyrin, β-adducin, β-spectrin and Band 3, and key parasite proteins, such as RESA or MESA. Altered phosphorylation patterns could disturb the interactions within membrane protein complexes, affect nutrient uptake and the infected erythrocyte cytoadherence phenomenon, thus lessening the severity of malaria symptoms.
Collapse
Affiliation(s)
- Margaux Chauvet
- Université de Paris, MERIT, IRD, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Cerina Chhuon
- Université de Paris, Proteomics Platform Necker, Structure Fédérative de Recherche Necker, Inserm US24/CNRS, UMS3633, Paris, France
| | - Joanna Lipecka
- Université de Paris, Proteomics Platform Necker, Structure Fédérative de Recherche Necker, Inserm US24/CNRS, UMS3633, Paris, France
| | - Sébastien Dechavanne
- Laboratoire d'Excellence GR-Ex, Paris, France.,Université de Paris, Inserm, BIGR, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France
| | | | | | - Margherita Ortalli
- Université de Paris, MERIT, IRD, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Damien Pineau
- Université de Paris, MERIT, IRD, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Jean-Antoine Ribeil
- Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sandra Manceau
- Laboratoire d'Excellence GR-Ex, Paris, France.,Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Caroline Le Van Kim
- Laboratoire d'Excellence GR-Ex, Paris, France.,Université de Paris, Inserm, BIGR, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France
| | | | | | - Slim Azouzi
- Laboratoire d'Excellence GR-Ex, Paris, France.,Université de Paris, Inserm, BIGR, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France
| | - Ida Chiara Guerrera
- Université de Paris, Proteomics Platform Necker, Structure Fédérative de Recherche Necker, Inserm US24/CNRS, UMS3633, Paris, France
| | - Anaïs Merckx
- Université de Paris, MERIT, IRD, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| |
Collapse
|
7
|
Adderley JD, John von Freyend S, Jackson SA, Bird MJ, Burns AL, Anar B, Metcalf T, Semblat JP, Billker O, Wilson DW, Doerig C. Analysis of erythrocyte signalling pathways during Plasmodium falciparum infection identifies targets for host-directed antimalarial intervention. Nat Commun 2020; 11:4015. [PMID: 32782246 PMCID: PMC7419518 DOI: 10.1038/s41467-020-17829-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/16/2020] [Indexed: 02/08/2023] Open
Abstract
Intracellular pathogens mobilize host signaling pathways of their host cell to promote their own survival. Evidence is emerging that signal transduction elements are activated in a-nucleated erythrocytes in response to infection with malaria parasites, but the extent of this phenomenon remains unknown. Here, we fill this knowledge gap through a comprehensive and dynamic assessment of host erythrocyte signaling during infection with Plasmodium falciparum. We used arrays of 878 antibodies directed against human signaling proteins to interrogate the activation status of host erythrocyte phospho-signaling pathways at three blood stages of parasite asexual development. This analysis reveals a dynamic modulation of many host signalling proteins across parasite development. Here we focus on the hepatocyte growth factor receptor (c-MET) and the MAP kinase pathway component B-Raf, providing a proof of concept that human signaling kinases identified as activated by malaria infection represent attractive targets for antimalarial intervention. Plasmodium infection activates signaling pathways in a-nucleated erythrocytes. Here, Adderley et al. use a comprehensive antibody microarray to show that infection extensively modulates host cell signalling and that the host receptor tyrosine kinase c-MET supports Plasmodium falciparum proliferation.
Collapse
Affiliation(s)
- Jack D Adderley
- Centre for Chronic Inflammatory and Infectious and Diseases, Biomedical Sciences Cluster, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia
| | - Simona John von Freyend
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Sarah A Jackson
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Megan J Bird
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Amy L Burns
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Burcu Anar
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Tom Metcalf
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Jean-Philippe Semblat
- Institut National de la Transfusion Sanguine, Inserm UMR S1134, 75015, Paris, France
| | - Oliver Billker
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK.,Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå, SE-901 87, Sweden
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia.,Burnet Institute, Melbourne, VIC, 3004, Australia
| | - Christian Doerig
- Centre for Chronic Inflammatory and Infectious and Diseases, Biomedical Sciences Cluster, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia.
| |
Collapse
|
8
|
Davies H, Belda H, Broncel M, Ye X, Bisson C, Introini V, Dorin-Semblat D, Semblat JP, Tibúrcio M, Gamain B, Kaforou M, Treeck M. An exported kinase family mediates species-specific erythrocyte remodelling and virulence in human malaria. Nat Microbiol 2020; 5:848-863. [PMID: 32284562 PMCID: PMC7116245 DOI: 10.1038/s41564-020-0702-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/05/2020] [Indexed: 01/31/2023]
Abstract
The most severe form of human malaria is caused by Plasmodium falciparum. Its virulence is closely linked to the increase in rigidity of infected erythrocytes and their adhesion to endothelial receptors, obstructing blood flow to vital organs. Unlike other human-infecting Plasmodium species, P. falciparum exports a family of 18 FIKK serine/threonine kinases into the host cell, suggesting that phosphorylation may modulate erythrocyte modifications. We reveal substantial species-specific phosphorylation of erythrocyte proteins by P. falciparum but not by Plasmodium knowlesi, which does not export FIKK kinases. By conditionally deleting all FIKK kinases combined with large-scale quantitative phosphoproteomics we identified unique phosphorylation fingerprints for each kinase, including phosphosites on parasite virulence factors and host erythrocyte proteins. Despite their non-overlapping target sites, a network analysis revealed that some FIKKs may act in the same pathways. Only the deletion of the non-exported kinase FIKK8 resulted in reduced parasite growth, suggesting the exported FIKKs may instead support functions important for survival in the host. We show that one kinase, FIKK4.1, mediates both rigidification of the erythrocyte cytoskeleton and trafficking of the adhesin and key virulence factor PfEMP1 to the host cell surface. This establishes the FIKK family as important drivers of parasite evolution and malaria pathology.
Collapse
Affiliation(s)
- Heledd Davies
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - Hugo Belda
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - Malgorzata Broncel
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - Xingda Ye
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Claudine Bisson
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK
| | - Viola Introini
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Dominique Dorin-Semblat
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Jean-Philippe Semblat
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Marta Tibúrcio
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - Benoit Gamain
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Myrsini Kaforou
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
9
|
Batty MB, Schittenhelm RB, Dorin-Semblat D, Doerig C, Garcia-Bustos JF. Interaction of Plasmodium falciparum casein kinase 1 with components of host cell protein trafficking machinery. IUBMB Life 2020; 72:1243-1249. [PMID: 32356940 DOI: 10.1002/iub.2294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/25/2020] [Accepted: 04/09/2020] [Indexed: 12/21/2022]
Abstract
A pool of Plasmodium falciparum casein kinase 1 (PfCK1) has been shown to localize to the host red blood cell (RBC) membrane and be secreted to the extracellular medium during trophozoite stage of development. We attempted to identify mechanisms for secretion of PfCK1 and its appearance on the RBC membrane. We found that two host proteins with established functions in membrane trafficking in higher eukaryotes, GTPase-activating protein and Vps9 domain-containing protein 1 (GAPVD1), and Sorting nexin 22, consistently co-purify with PfCK1, suggesting that the parasite utilizes trafficking pathways previously thought to be inactive in RBCs. Furthermore, reciprocal immunoprecipitation experiments with GAPVD1 identified parasite proteins suggestive of a protein recycling pathway hitherto only described in higher eukaryotes. Thus, we have identified components of a trafficking pathway involving parasite proteins that act in concert with host proteins, and which we hypothesize mediates trafficking of PfCK1 to the RBC during infection.
Collapse
Affiliation(s)
- Mitchell B Batty
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Facility, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Dominique Dorin-Semblat
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, INSERM, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France
| | - Christian Doerig
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Centre for Chronic, Inflammatory and Infectious Diseases, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Jose F Garcia-Bustos
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
10
|
Wang T, Ma G, Ang CS, Korhonen PK, Stroehlein AJ, Young ND, Hofmann A, Chang BCH, Williamson NA, Gasser RB. The developmental phosphoproteome of Haemonchus contortus. J Proteomics 2019; 213:103615. [PMID: 31846766 DOI: 10.1016/j.jprot.2019.103615] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/22/2019] [Accepted: 12/13/2019] [Indexed: 12/22/2022]
Abstract
Protein phosphorylation plays essential roles in many cellular processes. Despite recent progress in the genomics, transcriptomics and proteomics of socioeconomically important parasitic nematodes, there is scant phosphoproteomic data to underpin molecular biological discovery. Here, using the phosphopeptide enrichment-based LC-MS/MS and data-independent acquisition (DIA) quantitation, we characterised the first developmental phosphoproteome of the parasitic nematode Haemonchus contortus - one of the most pathogenic parasites of ruminant livestock. Totally, 1804 phosphorylated proteins with 4406 phosphorylation sites ('phosphosites') from different developmental stages/sexes were identified. Bioinformatic analyses of quantified 'phosphosites' exhibited distinctive stage- and sex-specific patterns during development, and identified a subset of phosphoproteins proposed to play crucial roles in processes such as spindle positioning, signal transduction and kinase activity. A sequence-based comparison of the phosphoproteome of H. contortus with those of two free-living nematode species (Caenorhabditis elegans and Pristionchus pacificus) suggested a limited number of common protein phosphorylation events among these species. Our findings infer active roles for protein phosphorylation in the adaptation of a parasitic nematode to a constantly changing external environment. The phosphoproteomic data set for H. contortus provides a basis to better understand phosphorylation and associated biological processes (e.g., regulation of signal transduction), and might enable the discovery of novel anthelmintic targets. SIGNIFICANCE: Here, we report the first phosphoproteome for a socioeconomically parasitic nematode (Haemonchus contortus). This phosphoproteome exhibits distinctive patterns during development, suggesting active roles of post-translational modification in the parasite's adaptation to changing environments within and outside of the host animal. This work sheds a light on the developmental phosphorylation in a parasitic nematode, and could enable the discovery of novel interventions against major pathogens.
Collapse
Affiliation(s)
- Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Guangxu Ma
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Ching-Seng Ang
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Andreas J Stroehlein
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Andreas Hofmann
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Bill C H Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Nicholas A Williamson
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
11
|
Hoffman JF. Reflections on the crooked timber of red blood cell physiology. Blood Cells Mol Dis 2019; 79:102354. [PMID: 31449971 DOI: 10.1016/j.bcmd.2019.102354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Joseph F Hoffman
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, United States.
| |
Collapse
|
12
|
Studying the rigidity of red blood cells induced by Plasmodium falciparum infection. Sci Rep 2019; 9:6336. [PMID: 31004094 PMCID: PMC6474899 DOI: 10.1038/s41598-019-42721-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/22/2019] [Indexed: 11/09/2022] Open
Abstract
We study the effect of different chemical moieties on the rigidity of red blood cells (RBCs) induced by Plasmodium falciparum infection, and the bystander effect previously found. The infected cells are obtained from a culture of parasite-infected RBCs grown in the laboratory. The rigidity of RBCs is measured by looking at the Brownian fluctuations of individual cells in an optical-tweezers trap. The results point towards increased intracellular cyclic adenosine monophosphate (cAMP) levels as being responsible for the increase in rigidity.
Collapse
|
13
|
Wei M, Lu L, Sui W, Liu Y, Shi X, Lv L. Inhibition of GLUTs by WZB117 mediates apoptosis in blood-stage Plasmodium parasites by breaking redox balance. Biochem Biophys Res Commun 2018; 503:1154-1159. [DOI: 10.1016/j.bbrc.2018.06.134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/24/2018] [Indexed: 10/28/2022]
|
14
|
Sareen N, Sequiera GL, Chaudhary R, Abu-El-Rub E, Chowdhury SR, Sharma V, Surendran A, Moudgil M, Fernyhough P, Ravandi A, Dhingra S. Early passaging of mesenchymal stem cells does not instigate significant modifications in their immunological behavior. Stem Cell Res Ther 2018; 9:121. [PMID: 29720263 PMCID: PMC5930635 DOI: 10.1186/s13287-018-0867-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 03/29/2018] [Accepted: 04/12/2018] [Indexed: 12/15/2022] Open
Abstract
Background Bone marrow-derived allogeneic mesenchymal stem cells (MSCs) from young healthy donors are immunoprivileged and their clinical application for regenerative medicine is under evaluation. However, data from preclinical and initial clinical trials indicate that allogeneic MSCs after transplantation provoke a host immune response and are rejected. In the current study, we evaluated the effect of an increase in passage number in cell culture on immunoprivilege of the MSCs. Since only limited numbers of MSCs can be sourced at a time from a donor, it is imperative to expand them in culture to meet the necessary numbers required for cell therapy. Presently, the most commonly used passages for transplantation include passages (P)3–7. Therefore, in this study we included clinically relevant passages, i.e., P3, P5, and P7, for evaluation. Methods The immunoprivilege of MSCs was assessed with the mixed leukocyte reaction assay, where rat MSCs were cocultured with peripheral blood leukocytes for 72 h. Leukocyte-mediated cytotoxicity, apoptosis (Bax/Bcl-xl ratio), leukocyte proliferation, and alterations in cellular bioenergetics in MSCs were assessed after the coculture. Furthermore, the expression of various oxidized phospholipids (oxidized phosphatidylcholine (ox-PC)) was analyzed in MSCs using a lipidomic platform. To determine if the ox-PCs were acting in tandem with downstream intracellular protein alterations, we performed proteome analysis using a liquid chromatography/mass spectrometry (LC/MS) proteomic platform. Results Our data demonstrate that MSCs were immunoprivileged at all three passages since coculture with leukocytes did not affect the survival of MSCs at P3, P5, and P7. We also found that, with an increase in the passage number of MSCs, leukocytes did not cause any significant effect on cellular bioenergetics (basal respiration rate, spare respiratory capacity, maximal respiration, and coupling efficiency). Interestingly, in our omics data, we detected alterations in some of the ox-PCs and proteins in MSCs at different passages; however, these changes were not significant enough to affect their immunoprivilege. Conclusions The outcome of this study demonstrates that an increase in passage number (from P3 to P7) in the cell culture does not have any significant effect on the immunoprivilege of MSCs. Electronic supplementary material The online version of this article (10.1186/s13287-018-0867-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Niketa Sareen
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Glen Lester Sequiera
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Rakesh Chaudhary
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Ejlal Abu-El-Rub
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Subir Roy Chowdhury
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research Centre, Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, Canada
| | - Vikram Sharma
- School of Biomedical and Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, England
| | - Arun Surendran
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Meenal Moudgil
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Paul Fernyhough
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research Centre, Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, Canada
| | - Amir Ravandi
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
15
|
Abstract
The cAMP-dependent protein kinase PKA is a well-characterized member of the serine-threonine protein AGC kinase family and is the effector kinase of cAMP signaling. As such, PKA is involved in the control of a wide variety of cellular processes including metabolism, cell growth, gene expression and apoptosis. cAMP-dependent PKA signaling pathways play important roles during infection and virulence of various pathogens. Since fluxes in cAMP are involved in multiple intracellular functions, a variety of different pathological infectious processes can be affected by PKA signaling pathways. Here, we highlight some features of cAMP-PKA signaling that are relevant to Plasmodium falciparum-infection of erythrocytes and present an update on AKAP targeting of PKA in PGE2 signaling via EP4 in Theileria annulata-infection of leukocytes and discuss cAMP-PKA signling in Toxoplasma.
Collapse
Affiliation(s)
- M. Haidar
- Cochin Institute, Inserm U1016, CNRS UMR8104, Paris, France
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, France
| | - G. Ramdani
- Cochin Institute, Inserm U1016, CNRS UMR8104, Paris, France
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, France
- Departments of Medicine, University of California, San Diego, La Jolla, California, USA
| | - E. J. Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| | - G. Langsley
- Cochin Institute, Inserm U1016, CNRS UMR8104, Paris, France
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, France
| |
Collapse
|