1
|
Cilio S, Fallara G, Lupo Stanghellini MT, Ciceri F, Montorsi F, Lunghi F, Salonia A. Impact of Hydroxyurea to Treat Haematological Disorders on Male Fertility: Two Case Reports and a Systematic Review. World J Mens Health 2024; 42:531-542. [PMID: 38164027 PMCID: PMC11216956 DOI: 10.5534/wjmh.230069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 01/03/2024] Open
Abstract
PURPOSE Hydroxyurea (HU) is a cytoreductive agent used as standard treatment option for sickle cell anaemia/disease (SCD), essential thrombocythemia (ET), and polycythaemia vera (PV). Despite its overall good safety profile, its use also in relatively young patients raises an interest on its potential impact on spermatogenesis. To perform a systematic review of all published articles investigating fertility in male patients affected by SCD, ET, and PV and treated with HU. Two paradigmatic case reports of patients affected by PV and ET, respectively, have been also reported. MATERIALS AND METHODS PubMed, EMBASE, and Cochrane databases were queried for all the published studies indexed up to November 15th, 2022. A combination of the following keywords was used: "hydroxyurea," "fertility," "male," "sperm," "sickle cell anaemia," "sickle cell disease," "essential thrombocythemia," "polycythaemia vera." RESULTS Of 48 articles identified, 8 studies, involving 161 patients, were eligible for inclusion. Overall, the number of spermatogonia per round cross section of seminiferous tubule were decreased in patients with SCD compared to healthy males. HU treatment was always associated with a worsening of semen parameters, even up to azoospermia. Notably, treatment discontinuation was associated with an improvement of semen parameters and a trend toward normalization in the case of PV and ET, with a less clear amelioration in men with SCD. In both our patients with either PV or ET, HU discontinuation was associated with a significant improvement of spermatogenesis with successful spontaneous pregnancies. CONCLUSIONS Published evidence do not consistently report normalization of spermatogenesis after HU discontinuation in SCD cases. Conversely, the literature almost consistently reported an improvement of semen parameters at the discontinuation of HU therapy in PV and ET cases. Our real-life two cases confirmed those findings. The willing of fatherhood and the need for effective fertility treatment warrant further research to improve work-up management in men with hematological disorders.
Collapse
Affiliation(s)
- Simone Cilio
- Division of Experimental Oncology, Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, Urology Unit, University of Naples "Federico II", Napoli, Italy
| | - Giuseppe Fallara
- Division of Experimental Oncology, Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | | | - Fabio Ciceri
- Vita-Salute San Raffaele University, Milan, Italy
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Montorsi
- Division of Experimental Oncology, Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Francesca Lunghi
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Salonia
- Division of Experimental Oncology, Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
2
|
Dimitrievska M, Bansal D, Vitale M, Strouboulis J, Miccio A, Nicolaides KH, El Hoss S, Shangaris P, Jacków-Malinowska J. Revolutionising healing: Gene Editing's breakthrough against sickle cell disease. Blood Rev 2024; 65:101185. [PMID: 38493007 DOI: 10.1016/j.blre.2024.101185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
Recent advancements in gene editing illuminate new potential therapeutic approaches for Sickle Cell Disease (SCD), a debilitating monogenic disorder caused by a point mutation in the β-globin gene. Despite the availability of several FDA-approved medications for symptomatic relief, allogeneic hematopoietic stem cell transplantation (HSCT) remains the sole curative option, underscoring a persistent need for novel treatments. This review delves into the growing field of gene editing, particularly the extensive research focused on curing haemoglobinopathies like SCD. We examine the use of techniques such as CRISPR-Cas9 and homology-directed repair, base editing, and prime editing to either correct the pathogenic variant into a non-pathogenic or wild-type one or augment fetal haemoglobin (HbF) production. The article elucidates ways to optimize these tools for efficacious gene editing with minimal off-target effects and offers insights into their effective delivery into cells. Furthermore, we explore clinical trials involving alternative SCD treatment strategies, such as LentiGlobin therapy and autologous HSCT, distilling the current findings. This review consolidates vital information for the clinical translation of gene editing for SCD, providing strategic insights for investigators eager to further the development of gene editing for SCD.
Collapse
Affiliation(s)
- Marija Dimitrievska
- St John's Institute of Dermatology, King's College London, London SE1 9RT, UK
| | - Dravie Bansal
- St John's Institute of Dermatology, King's College London, London SE1 9RT, UK
| | - Marta Vitale
- St John's Institute of Dermatology, King's College London, London SE1 9RT, UK
| | - John Strouboulis
- Red Cell Hematology Lab, Comprehensive Cancer Center, School of Cancer & Pharmaceutical Sciences, King's College London, United Kingdom
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation During Development, Imagine Institute, INSERM UMR1163, Paris 75015, France
| | - Kypros H Nicolaides
- Women and Children's Health, School of Life Course & Population Sciences, Kings College London, London, United Kingdom; Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, United Kingdom
| | - Sara El Hoss
- Red Cell Hematology Lab, Comprehensive Cancer Center, School of Cancer & Pharmaceutical Sciences, King's College London, United Kingdom.
| | - Panicos Shangaris
- Women and Children's Health, School of Life Course & Population Sciences, Kings College London, London, United Kingdom; Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.
| | | |
Collapse
|
3
|
Galy A, Dewannieux M. Recent advances in hematopoietic gene therapy for genetic disorders. Arch Pediatr 2023; 30:8S24-8S31. [PMID: 38043980 DOI: 10.1016/s0929-693x(23)00224-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Hematopoietic gene therapy is based on the transplantation of gene-modified autologous hematopoietic stem cells and since the inception of this approach, many technological and medical improvements have been achieved. This review focuses on the clinical studies that have used hematopoietic gene therapy to successfully treat several rare and severe genetic disorders of the blood or immune system as well as some non-hematological diseases. Today, in some cases hematopoietic gene therapy has progressed to the point of being equal to, or better than, allogeneic bone marrow transplant. In others, further improvements are needed to obtain more consistent efficacy or to reduce the risks posed by vectors or protocols. Several hematopoietic gene therapy products showing both long-term efficacy and safety have reached the market, but economic considerations challenge the possibility of patient access to novel disease-modifying therapies. © 2023 Published by Elsevier Masson SAS on behalf of French Society of Pediatrics.
Collapse
Affiliation(s)
- Anne Galy
- ART-TG, Inserm US35, Corbeil-Essonnes, France.
| | | |
Collapse
|
4
|
Vavassori V, Ferrari S, Beretta S, Asperti C, Albano L, Annoni A, Gaddoni C, Varesi A, Soldi M, Cuomo A, Bonaldi T, Radrizzani M, Merelli I, Naldini L. Lipid nanoparticles allow efficient and harmless ex vivo gene editing of human hematopoietic cells. Blood 2023; 142:812-826. [PMID: 37294917 PMCID: PMC10644071 DOI: 10.1182/blood.2022019333] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/01/2023] [Accepted: 05/21/2023] [Indexed: 06/11/2023] Open
Abstract
Ex vivo gene editing in T cells and hematopoietic stem/progenitor cells (HSPCs) holds promise for treating diseases. Gene editing encompasses the delivery of a programmable editor RNA or ribonucleoprotein, often achieved ex vivo via electroporation, and when aiming for homology-driven correction of a DNA template, often provided by viral vectors together with a nuclease editor. Although HSPCs activate a robust p53-dependent DNA damage response upon nuclease-based editing, the responses triggered in T cells remain poorly characterized. Here, we performed comprehensive multiomics analyses and found that electroporation is the main culprit of cytotoxicity in T cells, causing death and cell cycle delay, perturbing metabolism, and inducing an inflammatory response. Nuclease RNA delivery using lipid nanoparticles (LNPs) nearly abolished cell death and ameliorated cell growth, improving tolerance to the procedure and yielding a higher number of edited cells compared with using electroporation. Transient transcriptomic changes upon LNP treatment were mostly caused by cellular loading with exogenous cholesterol, whose potentially detrimental impact could be overcome by limiting exposure. Notably, LNP-based HSPC editing dampened p53 pathway induction and supported higher clonogenic activity and similar or higher reconstitution by long-term repopulating HSPCs compared with electroporation, reaching comparable editing efficiencies. Overall, LNPs may allow efficient and harmless ex vivo gene editing in hematopoietic cells for the treatment of human diseases.
Collapse
Affiliation(s)
- Valentina Vavassori
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Asperti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luisa Albano
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Annoni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Gaddoni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angelica Varesi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monica Soldi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Cuomo
- Department of Molecular Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Tiziana Bonaldi
- Department of Molecular Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haematology-Oncology, University of Milan, Milan, Italy
| | - Marina Radrizzani
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Institute for Biomedical Technologies, National Research Council, Segrate, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
5
|
Mattar CNZ, Chan JKY, Choolani M. Gene modification therapies for hereditary diseases in the fetus. Prenat Diagn 2023; 43:674-686. [PMID: 36965009 PMCID: PMC10946994 DOI: 10.1002/pd.6347] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/27/2023]
Abstract
Proof-of-principle disease models have demonstrated the feasibility of an intrauterine gene modification therapy (in utero gene therapy (IUGT)) approach to hereditary diseases as diverse as coagulation disorders, haemoglobinopathies, neurogenetic disorders, congenital metabolic, and pulmonary diseases. Gene addition, which requires the delivery of an integrating or episomal transgene to the target cell nucleus to be transcribed, and gene editing, where the mutation is corrected within the gene of origin, have both been used successfully to increase normal protein production in a bid to reverse or arrest pathology in utero. While most experimental models have employed lentiviral, adenoviral, and adeno-associated viral vectors engineered to efficiently enter target cells, newer models have also demonstrated the applicability of non-viral lipid nanoparticles. Amelioration of pathology is dependent primarily on achieving sustained therapeutic transgene expression, silencing of transgene expression, production of neutralising antibodies, the dilutional effect of the recipient's growth on the mass of transduced cells, and the degree of pre-existing cellular damage. Safety assessment of any IUGT strategy will require long-term postnatal surveillance of both the fetal recipient and the maternal bystander for cell and genome toxicity, oncogenic potential, immune-responsiveness, and germline mutation. In this review, we discuss advances in the field and the push toward clinical translation of IUGT.
Collapse
Affiliation(s)
- Citra N. Z. Mattar
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- National University Health SystemsSingaporeSingapore
| | - Jerry K. Y. Chan
- KK Women's and Children's HospitalSingaporeSingapore
- Duke‐NUS Medical SchoolSingaporeSingapore
| | - Mahesh Choolani
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- National University Health SystemsSingaporeSingapore
| |
Collapse
|
6
|
Aprile A, Sighinolfi S, Raggi L, Ferrari G. Targeting the Hematopoietic Stem Cell Niche in β-Thalassemia and Sickle Cell Disease. Pharmaceuticals (Basel) 2022; 15:ph15050592. [PMID: 35631417 PMCID: PMC9146437 DOI: 10.3390/ph15050592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 01/19/2023] Open
Abstract
In the last decade, research on pathophysiology and therapeutic solutions for β-thalassemia (BThal) and sickle cell disease (SCD) has been mostly focused on the primary erythroid defect, thus neglecting the study of hematopoietic stem cells (HSCs) and bone marrow (BM) microenvironment. The quality and engraftment of HSCs depend on the BM microenvironment, influencing the outcome of HSC transplantation (HSCT) both in allogeneic and in autologous gene therapy settings. In BThal and SCD, the consequences of severe anemia alter erythropoiesis and cause chronic stress in different organs, including the BM. Here, we discuss the recent findings that highlighted multiple alterations of the BM niche in BThal and SCD. We point out the importance of improving our understanding of HSC biology, the status of the BM niche, and their functional crosstalk in these disorders towards the novel concept of combined therapies by not only targeting the genetic defect, but also key players of the HSC–niche interaction in order to improve the clinical outcomes of transplantation.
Collapse
Affiliation(s)
- Annamaria Aprile
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (S.S.); (L.R.)
- Correspondence: (A.A.); (G.F.)
| | - Silvia Sighinolfi
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (S.S.); (L.R.)
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Laura Raggi
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (S.S.); (L.R.)
- University of Milano Bicocca, 20126 Milan, Italy
| | - Giuliana Ferrari
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (S.S.); (L.R.)
- Vita-Salute San Raffaele University, 20132 Milan, Italy
- Correspondence: (A.A.); (G.F.)
| |
Collapse
|
7
|
Taher AT, Cappellini MD. Luspatercept for β-thalassemia: beyond red blood cell transfusions. Expert Opin Biol Ther 2021; 21:1363-1371. [PMID: 34404288 DOI: 10.1080/14712598.2021.1968825] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Red blood cell transfusions and iron chelation therapy are the cornerstone of treatment for β-thalassemia, with allogeneic hematopoietic stem cell transplantation and gene therapy offering further disease-management options for eligible patients. With up to 90% of severe cases of β-thalassemia occurring in resource-constrained countries, and estimates indicating that 22,500 deaths occur annually as a direct consequence of undertransfusion, provision of adequate treatment remains a major issue. AREAS COVERED In this review, we provide an overview of luspatercept, a first-in-class erythroid maturation agent, and present the available clinical data related to the treatment of β-thalassemia. EXPERT OPINION The recent approval of luspatercept offers a new, long-term therapeutic option for adult patients with transfusion-dependent β-thalassemia to reduce red blood cell transfusion burden, anemia, and iron overload.
Collapse
Affiliation(s)
- Ali T Taher
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | | |
Collapse
|
8
|
Karamperis K, Tsoumpeli MT, Kounelis F, Koromina M, Mitropoulou C, Moutinho C, Patrinos GP. Genome-based therapeutic interventions for β-type hemoglobinopathies. Hum Genomics 2021; 15:32. [PMID: 34090531 PMCID: PMC8178887 DOI: 10.1186/s40246-021-00329-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022] Open
Abstract
For decades, various strategies have been proposed to solve the enigma of hemoglobinopathies, especially severe cases. However, most of them seem to be lagging in terms of effectiveness and safety. So far, the most prevalent and promising treatment options for patients with β-types hemoglobinopathies, among others, predominantly include drug treatment and gene therapy. Despite the significant improvements of such interventions to the patient's quality of life, a variable response has been demonstrated among different groups of patients and populations. This is essentially due to the complexity of the disease and other genetic factors. In recent years, a more in-depth understanding of the molecular basis of the β-type hemoglobinopathies has led to significant upgrades to the current technologies, as well as the addition of new ones attempting to elucidate these barriers. Therefore, the purpose of this article is to shed light on pharmacogenomics, gene addition, and genome editing technologies, and consequently, their potential use as direct and indirect genome-based interventions, in different strategies, referring to drug and gene therapy. Furthermore, all the latest progress, updates, and scientific achievements for patients with β-type hemoglobinopathies will be described in detail.
Collapse
Affiliation(s)
- Kariofyllis Karamperis
- Department of Pharmacy, School of Health Sciences, Laboratory of Pharmacogenomics and Individualized Therapy, University of Patras, Patras, Greece
- The Golden Helix Foundation, London, UK
| | - Maria T Tsoumpeli
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Fotios Kounelis
- Department of Computing, Group of Large-Scale Data & Systems, Imperial College London, London, UK
| | - Maria Koromina
- Department of Pharmacy, School of Health Sciences, Laboratory of Pharmacogenomics and Individualized Therapy, University of Patras, Patras, Greece
| | | | - Catia Moutinho
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia
| | - George P Patrinos
- Department of Pharmacy, School of Health Sciences, Laboratory of Pharmacogenomics and Individualized Therapy, University of Patras, Patras, Greece.
- College of Medicine and Health Sciences, Department of Pathology, United Arab Emirates University, Al-Ain, United Arab Emirates.
- Zayed Center of Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
| |
Collapse
|
9
|
Grech L, Borg K, Borg J. Novel therapies in β-thalassaemia. Br J Clin Pharmacol 2021; 88:2509-2524. [PMID: 34004015 DOI: 10.1111/bcp.14918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 04/30/2021] [Accepted: 05/08/2021] [Indexed: 01/19/2023] Open
Abstract
Beta-thalassaemia is one of the most significant haemoglobinopathies worldwide resulting in the synthesis of little or no β-globin chains. Without treatment, β-thalassaemia major is lethal within the first decade of life due to the complex pathophysiology, which leads to wide clinical manifestations. Current clinical management for these patients depends on repeated transfusions followed by iron-chelating therapy. Several novel approaches to correct the resulting α/β-globin chain imbalance, treat ineffective erythropoiesis and improve iron overload are currently being developed. Up to now, the only curative treatment for β-thalassemia is haematopoietic stem-cell transplantation, but this is a risky and costly procedure. Gene therapy, gene editing and base editing are emerging as a powerful approach to treat this disease. In β-thalassaemia, gene therapy involves the insertion of a vector containing the normal β-globin or γ-globin gene into haematopoietic stem cells to permanently produce normal red blood cells. Gene editing and base editing involves the use of zinc finger nucleases, transcription activator-like nucleases and clustered regularly interspaced short palindromic repeats/Cas9 to either correct the causative mutation or else insert a single nucleotide variant that will increase foetal haemoglobin. In this review, we will examine the current management strategies used to treat β-thalassaemia and focus on the novel therapies targeting ineffective erythropoiesis, improving iron overload and correction of the globin chain imbalance.
Collapse
Affiliation(s)
- Laura Grech
- Centre for Molecular Medicine and Biobanking, University of Malta, Malta
| | - Karen Borg
- Department of Public Health Medicine, Ministry for Health, Malta
| | - Joseph Borg
- Centre for Molecular Medicine and Biobanking, University of Malta, Malta.,Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Malta
| |
Collapse
|
10
|
Krishnamurti L. Hematopoietic Cell Transplantation for Sickle Cell Disease. Front Pediatr 2021; 8:551170. [PMID: 33469520 PMCID: PMC7813811 DOI: 10.3389/fped.2020.551170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Sickle cell disease (SCD) is a severe autosomal recessively inherited disorder of the red blood cell characterized by erythrocyte deformation caused by the polymerization of the abnormal hemoglobin, which leads to erythrocyte deformation and triggers downstream pathological changes. These include abnormal rheology, vaso-occlusion, ischemic tissue damage, and hemolysis-associated endothelial dysfunction. These acute and chronic physiologic disturbances contribute to morbidity, organ dysfunction, and diminished survival. Hematopoietic cell transplantation (HCT) from HLA-matched or unrelated donors or haploidentical related donors or genetically modified autologous hematopoietic progenitor cells is performed with the intent of cure or long-term amelioration of disease manifestations. Excellent outcomes have been observed following HLA-identical matched related donor HCT. The majority of SCD patients do not have an available HLA-identical sibling donor. Increasingly, however, they have the option of undergoing HCT from unrelated HLA matched or related haploidentical donors. The preliminary results of transplantation of autologous hematopoietic progenitor cells genetically modified by adding a non-sickling gene or by genomic editing to increase expression of fetal hemoglobin are encouraging. These approaches are being evaluated in early-phase clinical trials. In performing HCT in patients with SCD, careful consideration must be given to patient and donor selection, conditioning and graft-vs.-host disease regimen, and pre-HCT evaluation and management during and after HCT. Sociodemographic factors may also impact awareness of and access to HCT. Further, there is a substantial decisional dilemma in HCT with complex tradeoffs between the possibility of amelioration of disease manifestations and early or late complications of HCT. The performance of HCT for SCD requires careful multidisciplinary collaboration and shared decision making between the physician and informed patients and caregivers.
Collapse
Affiliation(s)
- Lakshmanan Krishnamurti
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| |
Collapse
|
11
|
The VP1u of Human Parvovirus B19: A Multifunctional Capsid Protein with Biotechnological Applications. Viruses 2020; 12:v12121463. [PMID: 33352888 PMCID: PMC7765992 DOI: 10.3390/v12121463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
The viral protein 1 unique region (VP1u) of human parvovirus B19 (B19V) is a multifunctional capsid protein with essential roles in virus tropism, uptake, and subcellular trafficking. These functions reside on hidden protein domains, which become accessible upon interaction with cell membrane receptors. A receptor-binding domain (RBD) in VP1u is responsible for the specific targeting and uptake of the virus exclusively into cells of the erythroid lineage in the bone marrow. A phospholipase A2 domain promotes the endosomal escape of the incoming virus. The VP1u is also the immunodominant region of the capsid as it is the target of neutralizing antibodies. For all these reasons, the VP1u has raised great interest in antiviral research and vaccinology. Besides the essential functions in B19V infection, the remarkable erythroid specificity of the VP1u makes it a unique erythroid cell surface biomarker. Moreover, the demonstrated capacity of the VP1u to deliver diverse cargo specifically to cells around the proerythroblast differentiation stage, including erythroleukemic cells, offers novel therapeutic opportunities for erythroid-specific drug delivery. In this review, we focus on the multifunctional role of the VP1u in B19V infection and explore its potential in diagnostics and erythroid-specific therapeutics.
Collapse
|
12
|
J. Verheul TC, Trinh VT, Vázquez O, Philipsen S. Targeted Protein Degradation as a Promising Tool for Epigenetic Upregulation of Fetal Hemoglobin. ChemMedChem 2020; 15:2436-2443. [PMID: 33002296 PMCID: PMC7756256 DOI: 10.1002/cmdc.202000574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/28/2020] [Indexed: 12/17/2022]
Abstract
The level of fetal hemoglobin (HbF) is an important disease modifier for β-thalassemia and sickle cell disease patients. Indeed, genetic tinkering with the HbF repression machinery has demonstrated great potential for disease mitigation. Such genetic treatments are costly and the high incidence of β-hemoglobinopathies in low-income countries, therefore, calls for the development of affordable, off-the-shelf, oral treatments. The use of PROTAC (PRoteolysis TArgeting Chimeras) technology to influence the epigenetic mechanisms involved in HbF suppression may provide a solution. In this minireview, we briefly explain the HbF repression network highlighting the epigenetic factors that could be targeted for degradation by PROTACs. We hope that this review will inspire clinicians, molecular and chemical biologists to collaborate and contribute to this fascinating field, which should ultimately deliver drugs that reactivate HbF expression with high specificity and low toxicity.
Collapse
Affiliation(s)
- Thijs C. J. Verheul
- Department of Cell BiologyErasmus University Medical Center RotterdamWytemaweg 803000 CARotterdamThe Netherlands
| | - Van Tuan Trinh
- Department of ChemistryUniversity of MarburgHans-Meerwein-Straβe 435043MarburgGermany
| | - Olalla Vázquez
- SYNMIKRO Research CenterUniversity of Marburg35043MarburgGermany
- Department of ChemistryUniversity of MarburgHans-Meerwein-Straβe 435043MarburgGermany
| | - Sjaak Philipsen
- Department of Cell BiologyErasmus University Medical Center RotterdamWytemaweg 803000 CARotterdamThe Netherlands
| |
Collapse
|
13
|
Saleem M, Barturen‐Larrea P, Gomez JA. Emerging roles of Sox6 in the renal and cardiovascular system. Physiol Rep 2020; 8:e14604. [PMID: 33230925 PMCID: PMC7683808 DOI: 10.14814/phy2.14604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
The function of Sex-determining Region Y (SRY)-related high-mobility-group box (Sox) family of transcription factors in cell fate decisions during embryonic development are well-established. Accumulating evidence indicates that the Sox family of transcription factors are fundamental in adult tissue homeostasis, regeneration, and physiology. The SoxD subfamily of genes are expressed in various cell types of different organs during embryogenesis and adulthood and have been involved in cell-fate determination, cellular proliferation and survival, differentiation, and terminal maturation in a number of cell lineages. The dysregulation in the function of SoxD proteins (i.e. Sox5, Sox6, Sox13, and Sox23) have been implicated in different disease conditions such as chondrodysplasia, cancer, diabetes, hypertension, autoimmune diseases, osteoarthritis among others. In this minireview, we present recent developments related to the transcription factor Sox6, which is involved in a number of diseases such as diabetic nephropathy, adipogenesis, cardiomyopathy, inflammatory bowel disease, and cancer. Sox6 has been implicated in the regulation of renin expression and JG cell recruitment in mice during sodium depletion and dehydration. We provide a current perspective of Sox6 research developments in last five years, and the implications of Sox6 functions in cardiovascular physiology and disease conditions.
Collapse
Affiliation(s)
- Mohammad Saleem
- Department of Medicine / Clinical Pharmacology DivisionVanderbilt University Medical CenterNashvilleTNUSA
| | - Pierina Barturen‐Larrea
- Department of Medicine / Clinical Pharmacology DivisionVanderbilt University Medical CenterNashvilleTNUSA
| | - Jose A. Gomez
- Department of Medicine / Clinical Pharmacology DivisionVanderbilt University Medical CenterNashvilleTNUSA
| |
Collapse
|
14
|
Yang P, Chou SJ, Li J, Hui W, Liu W, Sun N, Zhang RY, Zhu Y, Tsai ML, Lai HI, Smalley M, Zhang X, Chen J, Romero Z, Liu D, Ke Z, Zou C, Lee CF, Jonas SJ, Ban Q, Weiss PS, Kohn DB, Chen K, Chiou SH, Tseng HR. Supramolecular nanosubstrate-mediated delivery system enables CRISPR-Cas9 knockin of hemoglobin beta gene for hemoglobinopathies. SCIENCE ADVANCES 2020; 6:6/43/eabb7107. [PMID: 33097539 PMCID: PMC7608838 DOI: 10.1126/sciadv.abb7107] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/09/2020] [Indexed: 05/02/2023]
Abstract
Leveraging the endogenous homology-directed repair (HDR) pathway, the CRISPR-Cas9 gene-editing system can be applied to knock in a therapeutic gene at a designated site in the genome, offering a general therapeutic solution for treating genetic diseases such as hemoglobinopathies. Here, a combined supramolecular nanoparticle (SMNP)/supramolecular nanosubstrate-mediated delivery (SNSMD) strategy is used to facilitate CRISPR-Cas9 knockin of the hemoglobin beta (HBB) gene into the adeno-associated virus integration site 1 (AAVS1) safe-harbor site of an engineered K562 3.21 cell line harboring the sickle cell disease mutation. Through stepwise treatments of the two SMNP vectors encapsulating a Cas9•single-guide RNA (sgRNA) complex and an HBB/green fluorescent protein (GFP)-encoding plasmid, CRISPR-Cas9 knockin was successfully achieved via HDR. Last, the HBB/GFP-knockin K562 3.21 cells were introduced into mice via intraperitoneal injection to show their in vivo proliferative potential. This proof-of-concept demonstration paves the way for general gene therapeutic solutions for treating hemoglobinopathies.
Collapse
Affiliation(s)
- Peng Yang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, China
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging (CIMI), California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shih-Jie Chou
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jindian Li
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033-9061, USA
| | - Wenqiao Hui
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agriculture Sciences, Hefei 230031, China
| | - Wenfei Liu
- Department of Chemistry and Biochemistry, Department of Bioengineering, Department of Materials Science and Engineering, and California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Na Sun
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging (CIMI), California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ryan Y Zhang
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging (CIMI), California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yazhen Zhu
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging (CIMI), California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ming-Long Tsai
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Henkie I Lai
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Matthew Smalley
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging (CIMI), California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xinyue Zhang
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging (CIMI), California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jiayuan Chen
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging (CIMI), California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zulema Romero
- Department of Microbiology, Immunology and Molecular Genetics, DGSOM, Division of Pediatric Hematology-Oncology, Department of Pediatrics, David Geffen School of Medicine, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Dahai Liu
- School of Stomatology and Medicine, Foshan University, Foshan 528000, China
| | - Zunfu Ke
- Department of Pathology, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Chang Zou
- Clinical Medical Research Center, The First Affiliated Hospital of Southern University, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Chin-Fa Lee
- Department of Chemistry, i-Center for Advanced Science and Technology, Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University (NCHU), 145 Xingda Road, South Dist., Taichung 402, Taiwan
| | - Steven J Jonas
- Department of Pediatrics, David Geffen School of Medicine, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Children's Discovery and Innovation Institute, California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Qian Ban
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, China.
| | - Paul S Weiss
- Department of Chemistry and Biochemistry, Department of Bioengineering, Department of Materials Science and Engineering, and California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Donald B Kohn
- Department of Microbiology, Immunology and Molecular Genetics, DGSOM, Division of Pediatric Hematology-Oncology, Department of Pediatrics, David Geffen School of Medicine, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Kai Chen
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033-9061, USA.
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsian-Rong Tseng
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging (CIMI), California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
15
|
Precise and error-prone CRISPR-directed gene editing activity in human CD34+ cells varies widely among patient samples. Gene Ther 2020; 28:105-113. [PMID: 32873924 PMCID: PMC7902267 DOI: 10.1038/s41434-020-00192-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/05/2020] [Accepted: 08/19/2020] [Indexed: 12/29/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and their associated CRISPR-associated nucleases (Cas) are among the most promising technologies for the treatment of hemoglobinopathies including Sickle Cell Disease (SCD). We are only beginning to identify the molecular variables that influence the specificity and the efficiency of CRISPR- directed gene editing, including the position of the cleavage site and the inherent variability among patient samples selected for CRISPR-directed gene editing. Here, we target the beta globin gene in human CD34+ cells to assess the impact of these two variables and find that both contribute to the global diversity of genetic outcomes. Our study demonstrates a unique genetic profile of indels that is generated based on where along the beta globin gene attempts are made to correct the SCD single base mutation. Interestingly, even within the same patient sample, the location of where along the beta globin gene the DNA is cut, HDR activity varies widely. Our data establish a framework upon which realistic protocols inform strategies for gene editing for SCD overcoming the practical hurdles that often impede clinical success.
Collapse
|
16
|
Yang X, Ye Y, Fan D, Lin S, Li M, Hou H, Zhang J, Yang X. Non‑invasive prenatal diagnosis of thalassemia through multiplex PCR, target capture and next‑generation sequencing. Mol Med Rep 2020; 22:1547-1557. [PMID: 32627040 PMCID: PMC7339645 DOI: 10.3892/mmr.2020.11234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 05/14/2020] [Indexed: 11/14/2022] Open
Abstract
Prenatal clinical detection of thalassemia involves gap-PCR and reverse dot blot (RDB) analysis of fetal DNA acquired through invasive methods. The present study aimed to develop a non-invasive prenatal diagnostic method for thalassemia based on next-generation sequencing (NGS). A total of eight families with proband children with thalassemia were recruited for the study during a subsequent pregnancy. The sequence of the thalassemia genes of the parents and proband were determined using NGS, based on a thalassemia AmpliSeq panel. Cell-free plasma DNA from pregnant women related to the aforementioned proband was analyzed using an NGS panel, based on thalassemia-associated capture probes. Heterozygous single nucleotide polymorphisms within the 10 kb regions flanking exons of the targeted thalassemia genes were acquired using probes or AmpliSeq and employed for parental haplotype construction using Trio-based panel sequencing. The fetal haplotype was deduced from the parental haplotypes and relative haplotype dosage, and subsequently validated using gap-PCR and RDB, based on invasively sampled amniotic fluid. A non-invasive prenatal diagnosis procedure from maternal plasma fetal DNA was successfully developed based on haplotype analysis. The deduced haplotypes of eight fetuses were identical to the results of invasive prenatal diagnosis procedures, with an accuracy rate of 100%. Taken together, the present study demonstrated the potential for non-invasive prenatal diagnosis of α- and β-thalassemia using NGS and haplotype-assisted analysis.
Collapse
Affiliation(s)
- Xu Yang
- nstitute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yanchou Ye
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Dongmei Fan
- nstitute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Sheng Lin
- Guangzhou Darui Biotechnology Co., Ltd., Guangzhou, Guangdong 510507, P.R. China
| | - Ming Li
- nstitute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hongying Hou
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Xuexi Yang
- nstitute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
17
|
Humbert O, Samuelson C, Kiem HP. CRISPR/Cas9 for the treatment of haematological diseases: a journey from bacteria to the bedside. Br J Haematol 2020; 192:33-49. [PMID: 32506752 DOI: 10.1111/bjh.16807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/26/2022]
Abstract
Genome editing therapies represent a significant advancement in next-generation, precision medicine for the management of haematological diseases, and CRISPR/Cas9 has to date been the most successful implementation platform. From discovery in bacteria and archaea over three decades ago, through intensive basic research and pre-clinical development phases involving the modification of therapeutically relevant cell types, CRISPR/Cas9 genome editing is now being investigated in ongoing clinic trials. Despite the widespread enthusiasm brought by this new technology, significant challenges remain before genome editing can be routinely recommended and implemented in the clinic. These include risks of genotoxicity resulting from off-target DNA cleavage or chromosomal rearrangement, and suboptimal efficacy of homology-directed repair editing strategies, which thus limit therapeutic options. Practical hurdles such as high costs and inaccessibility to patients outside specialised centres must also be addressed. Future improvements in this rapidly developing field should circumvent current limitations with novel editing platforms and with the simplification of clinical protocols using in vivo delivery of editing reagents.
Collapse
Affiliation(s)
| | | | - Hans-Peter Kiem
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW The current review focuses on recent insights into the development of small molecule therapeutics to treat the β-globinopathies. RECENT FINDINGS Recent studies of fetal γ-globin gene regulation reveal multiple insights into how γ-globin gene reactivation may lead to novel treatment for β-globinopathies. SUMMARY We summarize current information regarding the binding of transcription factors that appear to be impeded or augmented by different hereditary persistence of fetal hemoglobin (HPFH) mutations. As transcription factors have historically proven to be difficult to target for therapeutic purposes, we next address the contributions of protein complexes associated with these HPFH mutation-affected transcription factors with the aim of defining proteins that might provide additional targets for chemical molecules to inactivate the corepressors. Among the enzymes associated with the transcription factor complexes, a group of corepressors with currently available inhibitors were initially thought to be good candidates for potential therapeutic purposes. We discuss possibilities for pharmacological inhibition of these corepressor enzymes that might significantly reactivate fetal γ-globin gene expression. Finally, we summarize the current clinical trial data regarding the inhibition of select corepressor proteins for the treatment of sickle cell disease and β-thalassemia.
Collapse
Affiliation(s)
- Lei Yu
- Departments of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109
| | - Greggory Myers
- Departments of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109
| | - James Douglas Engel
- Departments of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109
| |
Collapse
|
19
|
Karponi G, Zogas N. Gene Therapy For Beta-Thalassemia: Updated Perspectives. APPLICATION OF CLINICAL GENETICS 2019; 12:167-180. [PMID: 31576160 PMCID: PMC6765258 DOI: 10.2147/tacg.s178546] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/11/2019] [Indexed: 12/26/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation was until very recently, the only permanent curative option available for patients suffering from transfusion-dependent beta-thalassemia. Gene therapy, by autologous transplantation of genetically modified hematopoietic stem cells, currently represents a novel therapeutic promise, after many years of extensive preclinical research for the optimization of gene transfer protocols. Nowadays, clinical trials being held on a worldwide setting, have demonstrated that, by re-establishing effective hemoglobin production, patients may be rendered transfusion- and chelation-independent and evade the immunological complications that normally accompany allogeneic hematopoietic stem cell transplantation. The present review will offer a retrospective scope of the long way paved towards successful implementation of gene therapy for beta-thalassemia, and will pinpoint the latest strategies employed to increase globin expression that extend beyond the classic transgene addition perspective. A thorough search was performed using Pubmed in order to identify studies that provide a proof of principle on the aforementioned topic at a preclinical and clinical level. Inclusion criteria also regarded gene transfer technologies of the past two decades, as well as publications outlining the pitfalls that precluded earlier successful implementation of gene therapy for beta-thalassemia. Overall, after decades of research, that included both successes and pitfalls, the path towards a permanent, donor-irrespective cure for beta-thalassemia patients is steadily becoming a realistic approach.
Collapse
Affiliation(s)
- Garyfalia Karponi
- Department of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Zogas
- Department of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
20
|
Booth C, Romano R, Roncarolo MG, Thrasher AJ. Gene therapy for primary immunodeficiency. Hum Mol Genet 2019; 28:R15-R23. [DOI: 10.1093/hmg/ddz170] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 01/21/2023] Open
Abstract
Abstract
Gene therapy is now being trialled as a therapeutic option for an expanding number of conditions, based primarily on the successful treatment over the past two decades of patients with specific primary immunodeficiencies (PIDs) including severe combined immunodeficiency and Wiskott–Aldrich syndrome and metabolic conditions such as leukodystrophy. The field has evolved from the use of gammaretroviral vectors to more sophisticated lentiviral platforms that offer an improved biosafety profile alongside greater efficiency for hematopoietic stem cells gene transfer. Here we review more recent developments including licensing of gene therapies, use of gene corrected autologous T cells as an alternative strategy for some PIDs and the potential of targeted gene correction using various gene editing platforms. Given the promising results of recent clinical trials, it is likely that autologous gene therapies will become standard of care for a number of devastating diseases in the coming decade.
Collapse
Affiliation(s)
- Claire Booth
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Rosa Romano
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, USA
| | - Maria Grazia Roncarolo
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford School of Medicine, Stanford, CA, USA
| | - Adrian J Thrasher
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
21
|
Theranostics of Genetic Diseases. Mol Diagn Ther 2019; 23:153-154. [DOI: 10.1007/s40291-019-00395-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
|
23
|
Porter J. Beyond transfusion therapy: new therapies in thalassemia including drugs, alternate donor transplant, and gene therapy. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:361-370. [PMID: 30504333 PMCID: PMC6245990 DOI: 10.1182/asheducation-2018.1.361] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Transfusion combined with chelation therapy for severe β thalassemia syndromes (transfusion-dependent thalassemia [TDT]) has been successful in extending life expectancy, decreasing comorbidities and improving quality of life. However, this puts lifelong demands not only on the patients but also on the health care systems that are tasked with delivering long-term treatment and comprehensive support. Prevention programs and curative approaches are therefore an important part of overall strategy. Curative treatments alter the dynamic of a patient's health care costs, from financial commitment over 50 years, into a potential "one-off" investment. Since the 1980s, this has usually been available only to the 30% or so of young children with matched sibling donors. By improving the safety of matched related donors and haploidentical hematopoietic stem cell transplants, the potential size of the donor pool for curative therapies may be increased. Recent advances in gene therapy demonstrate that even patients lacking a matched donor can be rendered transfusion independent with an autograft of genetically modified autologous stem cells, with a low short-term risk. Noncurative treatments are also of potential value by decreasing use of blood and chelators and decreasing hospital visits. An example is luspatercept, an activin-receptor trap that modifies transforming growth factor-β signaling, thereby increasing the efficiency of erythropoiesis. This has entered phase 3 clinical trials for TDT and non-TDT and, usefully increases in both Hb and quality of life in non-TDT as well as decreasing transfusion requirements in TDT. Other novel noncurative treatments are entering clinical trials such improvement of erythropoiesis through pharmacological manipulation of hepcidin and iron metabolism.
Collapse
Affiliation(s)
- John Porter
- University College London, London, United Kingdom
| |
Collapse
|
24
|
Torres L, Conran N. Emerging pharmacotherapeutic approaches for the management of sickle cell disease. Expert Opin Pharmacother 2018; 20:173-186. [DOI: 10.1080/14656566.2018.1548610] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lidiane Torres
- Hematology Center, University of Campinas – UNICAMP, Campinas, Brazil
| | - Nicola Conran
- Hematology Center, University of Campinas – UNICAMP, Campinas, Brazil
| |
Collapse
|
25
|
Shariati L, Rohani F, Heidari Hafshejani N, Kouhpayeh S, Boshtam M, Mirian M, Rahimmanesh I, Hejazi Z, Modarres M, Pieper IL, Khanahmad H. Disruption of
SOX6
gene using CRISPR/Cas9 technology for gamma‐globin reactivation: An approach towards gene therapy of β‐thalassemia. J Cell Biochem 2018; 119:9357-9363. [DOI: 10.1002/jcb.27253] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/20/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Laleh Shariati
- Applied Physiology Research Center Cardiovascular Research Institute, Isfahan University of Medical Sciences Isfahan Iran
- Isfahan Cardiovascular Research Center Cardiovascular Research Institute, Isfahan University of Medical Sciences Isfahan Iran
| | - Fattah Rohani
- Department of Clinical Sciences Faculty of Veterinary Medicine, University of Shahrekord Shahrekord Iran
| | - Nahid Heidari Hafshejani
- Department of Genetics and Molecular Biology School of Medicine, Isfahan University of Medical Sciences Isfahan Iran
| | - Shirin Kouhpayeh
- Isfahan Neurosciences Research Center, Alzahra Research Institute Isfahan University of Medical Sciences Isfahan Iran
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center Cardiovascular Research Institute, Isfahan University of Medical Sciences Isfahan Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Science Research Center, School of Pharmacy and Pharmaceutical Science Isfahan University of Medical Sciences Isfahan Iran
| | - Ilnaz Rahimmanesh
- Department of Genetics and Molecular Biology School of Medicine, Isfahan University of Medical Sciences Isfahan Iran
| | - Zahra Hejazi
- Department of Genetics and Molecular Biology School of Medicine, Isfahan University of Medical Sciences Isfahan Iran
| | - Mehran Modarres
- Department of Genetics and Molecular Biology School of Medicine, Isfahan University of Medical Sciences Isfahan Iran
| | - Ina Laura Pieper
- Institute of Life Science, College of Medicine Swansea University Medical School Swansea United Kingdom
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology School of Medicine, Isfahan University of Medical Sciences Isfahan Iran
| |
Collapse
|