1
|
Marra R, Nostroso A, Rosato BE, Esposito FM, D'Onofrio V, Iscaro A, Gambale A, Bruschi B, Coccia P, Poloni A, Unal S, Romano A, Iolascon A, Andolfo I, Russo R. Unveiling the genetic landscape of suspected congenital dyserythropoietic anemia type I: A retrospective cohort study of 36 patients. Am J Hematol 2024; 99:1511-1522. [PMID: 38666530 DOI: 10.1002/ajh.27350] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 07/10/2024]
Abstract
Congenital Dyserythropoietic Anemia type I (CDA I) is a rare hereditary condition characterized by macrocytic/normocytic anemia, splenomegaly, iron overload, and distinct abnormalities during late erythropoiesis, particularly internuclear bridges between erythroblasts. Diagnosis of CDA I remains challenging due to its rarity, clinical heterogeneity, and overlapping phenotype with other rare hereditary anemias. In this case series, we present 36 patients with suspected CDA I. A molecular diagnosis was successfully established in 89% of cases, identifying 16 patients with CDA I through the presence of 18 causative variants in the CDAN1 or CDIN1 genes. Transcriptomic analysis of CDIN1 variants revealed impaired erythroid differentiation and disruptions in transcription, cell proliferation, and histone regulation. Conversely, 16 individuals received a different diagnosis, primarily pyruvate kinase deficiency. Comparisons between CDA I and non-CDA I patients revealed no significant differences in erythroblast morphological features. However, hemoglobin levels and red blood cell count differed between the two groups, with non-CDA I subjects being more severely affected. Notably, most patients with severe anemia belonged to the non-CDA I group (82% non-CDA I vs. 18% CDA I), with a subsequent absolute prevalence of transfusion dependency among non-CDA I patients (100% vs. 41.7%). All patients exhibited reduced bone marrow responsiveness to anemia, with a more pronounced effect observed in non-CDA I patients. Erythropoietin levels were significantly higher in non-CDA I patients compared to CDA I patients. However, evaluations of erythroferrone, soluble transferrin receptor, and hepcidin revealed no significant differences in plasma concentration between the two groups.
Collapse
Affiliation(s)
- Roberta Marra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Antonella Nostroso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Barbara Eleni Rosato
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Federica Maria Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Vanessa D'Onofrio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Anthony Iscaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Antonella Gambale
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- DAIMedLab UOC Genetica Medica, AOU Federico II, Naples, Italy
| | - Barbara Bruschi
- SOsD Oncoematologia Pediatrica, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Paola Coccia
- SOsD Oncoematologia Pediatrica, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Antonella Poloni
- Clinica di Ematologia, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Sule Unal
- Department of Pediatric Hematology, University of Hacettepe, Ankara, Turkey
| | - Alberto Romano
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, Rome, Italy
| | - Achille Iolascon
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Immacolata Andolfo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Roberta Russo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| |
Collapse
|
2
|
Hernández G, Romero-Cortadellas L, Ferrer-Cortès X, Venturi V, Dessy-Rodriguez M, Olivella M, Husami A, de Soto CP, Morales-Camacho RM, Villegas A, González-Fernández FA, Morado M, Kalfa TA, Quintana-Bustamante O, Pérez-Montero S, Tornador C, Segovia JC, Sánchez M. Mutations in the RACGAP1 gene cause autosomal recessive congenital dyserythropoietic anemia type III. Haematologica 2022; 108:581-587. [PMID: 36200420 PMCID: PMC9890003 DOI: 10.3324/haematol.2022.281277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 02/03/2023] Open
Affiliation(s)
- Gonzalo Hernández
- Department of Basic Sciences, Iron metabolism: Regulation and Diseases Group, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain,BloodGenetics S.L. Diagnostics in Inherited Blood Diseases, Esplugues de Llobregat, Spain,*GH and LR-C contributed equally as co-first authors
| | - Lídia Romero-Cortadellas
- Department of Basic Sciences, Iron metabolism: Regulation and Diseases Group, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain,*GH and LR-C contributed equally as co-first authors
| | - Xènia Ferrer-Cortès
- Department of Basic Sciences, Iron metabolism: Regulation and Diseases Group, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain,BloodGenetics S.L. Diagnostics in Inherited Blood Diseases, Esplugues de Llobregat, Spain
| | - Veronica Venturi
- Department of Basic Sciences, Iron metabolism: Regulation and Diseases Group, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Mercedes Dessy-Rodriguez
- Cell Technology Division, Biomedical Innovative Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain,Unidad Mixta de Terapias Avanzadas, Instituto de Investigación Sanitaria Fundación Jiménez, Madrid, Spain
| | - Mireia Olivella
- Bioscience Department, Faculty of Science and Technology (FCT), Universitat de Vic - Universitat Central de Catalunya (Uvic-UCC), Vic, Spain
| | - Ammar Husami
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Concepción Pérez de Soto
- Service of Pediatric Hematology, Hospital Universitario Virgen del Rocío, UGC HH, HHUUVR, Sevilla, Spain
| | - Rosario M. Morales-Camacho
- Department of Hematology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS/CISC/CIBERONC), Universidad de Sevilla, Sevilla, Spain
| | - Ana Villegas
- Department of Hematology, Hospital Clínico San Carlos. Universidad Complutense, Madrid, Spain
| | | | - Marta Morado
- Department of Hematology, Hospital La Paz, Madrid, Spain
| | - Theodosia A. Kalfa
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA,Division of Hematology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Oscar Quintana-Bustamante
- Cell Technology Division, Biomedical Innovative Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain,Unidad Mixta de Terapias Avanzadas, Instituto de Investigación Sanitaria Fundación Jiménez, Madrid, Spain
| | - Santiago Pérez-Montero
- BloodGenetics S.L. Diagnostics in Inherited Blood Diseases, Esplugues de Llobregat, Spain
| | - Cristian Tornador
- BloodGenetics S.L. Diagnostics in Inherited Blood Diseases, Esplugues de Llobregat, Spain
| | - Jose-Carlos Segovia
- Cell Technology Division, Biomedical Innovative Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain,Unidad Mixta de Terapias Avanzadas, Instituto de Investigación Sanitaria Fundación Jiménez, Madrid, Spain
| | - Mayka Sánchez
- Department of Basic Sciences, Iron metabolism: Regulation and Diseases Group. Universitat Internacional de Catalunya (UIC). Sant Cugat del Vallès, 08195, Spain; BloodGenetics S.L. Diagnostics in Inherited Blood Diseases. Esplugues de Llobregat, 08950.
| |
Collapse
|
3
|
King R, Gallagher PJ, Khoriaty R. The congenital dyserythropoieitic anemias: genetics and pathophysiology. Curr Opin Hematol 2022; 29:126-136. [PMID: 35441598 PMCID: PMC9021540 DOI: 10.1097/moh.0000000000000697] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW The congenital dyserythropoietic anemias (CDA) are hereditary disorders characterized by ineffective erythropoiesis. This review evaluates newly developed CDA disease models, the latest advances in understanding the pathogenesis of the CDAs, and recently identified CDA genes. RECENT FINDINGS Mice exhibiting features of CDAI were recently generated, demonstrating that Codanin-1 (encoded by Cdan1) is essential for primitive erythropoiesis. Additionally, Codanin-1 was found to physically interact with CDIN1, suggesting that mutations in CDAN1 and CDIN1 result in CDAI via a common mechanism. Recent advances in CDAII (which results from SEC23B mutations) have also been made. SEC23B was found to functionally overlap with its paralogous protein, SEC23A, likely explaining the absence of CDAII in SEC23B-deficient mice. In contrast, mice with erythroid-specific deletion of 3 or 4 of the Sec23 alleles exhibited features of CDAII. Increased SEC23A expression rescued the CDAII erythroid defect, suggesting a novel therapeutic strategy for the disease. Additional recent advances included the identification of new CDA genes, RACGAP1 and VPS4A, in CDAIII and a syndromic CDA type, respectively. SUMMARY Establishing cellular and animal models of CDA is expected to result in improved understanding of the pathogenesis of these disorders, which may ultimately lead to the development of new therapies.
Collapse
Affiliation(s)
- Richard King
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
| | - Patrick J. Gallagher
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rami Khoriaty
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Noy-Lotan S, Dgany O, Marcoux N, Atkins A, Kupfer GM, Bosques L, Gottschalk C, Steinberg-Shemer O, Motro B, Tamary H. Cdan1 Is Essential for Primitive Erythropoiesis. Front Physiol 2021; 12:685242. [PMID: 34234691 PMCID: PMC8255688 DOI: 10.3389/fphys.2021.685242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/10/2021] [Indexed: 01/14/2023] Open
Abstract
Congenital dyserythropoietic anemia type I (CDA I) is an autosomal recessive disease characterized by moderate to severe macrocytic anemia and pathognomonic morphologic abnormalities of the erythroid precursors, including spongy heterochromatin. The disease is mainly caused by mutations in CDAN1 (encoding for Codanin-1). No patients with homozygous null type mutations have been described, and mouse null mutants die during early embryogenesis prior to the initiation of erythropoiesis. The cellular functions of Codanin-1 and the erythroid specificity of the phenotype remain elusive. To investigate the role of Codanin-1 in erythropoiesis, we crossed mice carrying the Cdan1 floxed allele (Cdanfl/fl) with mice expressing Cre-recombinase under regulation of the erythropoietin receptor promoter (ErGFPcre). The resulting CdanΔEry transgenic embryos died at mid-gestation (E12.5–E13.5) from severe anemia, with very low numbers of circulating erythroblast. Transmission electron microscopy studies of primitive erythroblasts (E9.5) revealed the pathognomonic spongy heterochromatin. The morphology of CdanΔEry primitive erythroblasts demonstrated progressive development of dyserythropoiesis. Annexin V staining showed increases in both early and late-apoptotic erythroblasts compared to controls. Flow cytometry studies using the erythroid-specific cell-surface markers CD71 and Ter119 demonstrated that CdanΔEry erythroid progenitors do not undergo the semi-synchronous maturation characteristic of primitive erythroblasts. Gene expression studies aimed to evaluate the effect of Cdan1 depletion on erythropoiesis revealed a delay of ζ to α globin switch compared to controls. We also found increased expression of Gata2, Pu.1, and Runx1, which are known to inhibit terminal erythroid differentiation. Consistent with this data, our zebrafish model showed increased gata2 expression upon cdan1 knockdown. In summary, we demonstrated for the first time that Cdan1 is required for primitive erythropoiesis, while providing two experimental models for studying the role of Codanin-1 in erythropoiesis and in the pathogenesis of CDA type I.
Collapse
Affiliation(s)
- Sharon Noy-Lotan
- Molecular Pediatric Hematology Laboratory, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Orly Dgany
- Molecular Pediatric Hematology Laboratory, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Nathaly Marcoux
- Molecular Pediatric Hematology Laboratory, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Ayelet Atkins
- The Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramt Gan, Israel
| | - Gary M Kupfer
- Department of Oncology and Pediatrics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Linette Bosques
- Department of Cell Biology, Yale School of Management, Yale University, New Haven, CT, United States
| | - Christine Gottschalk
- Department of Hematology, Oncology, Immunology, and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Orna Steinberg-Shemer
- Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel.,The Rina Zaizov Hematology-Oncology Division, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Benny Motro
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Hannah Tamary
- Molecular Pediatric Hematology Laboratory, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel.,The Rina Zaizov Hematology-Oncology Division, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|