1
|
Nair PC, Burns K, Chau N, McKinnon RA, Miners JO. The molecular basis of dapsone activation of CYP2C9-catalyzed nonsteroidal anti-inflammatory drug oxidation. J Biol Chem 2023; 299:105368. [PMID: 37866634 PMCID: PMC10696402 DOI: 10.1016/j.jbc.2023.105368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023] Open
Abstract
Positive heterotropic cooperativity, or "activation," results in an instantaneous increase in enzyme activity in the absence of an increase in protein expression. Thus, cytochrome P450 (CYP) enzyme activation presents as a potential drug-drug interaction mechanism. It has been demonstrated previously that dapsone activates the CYP2C9-catalyzed oxidation of a number of nonsteroidal anti-inflammatory drugs in vitro. Here, we conducted molecular dynamics simulations (MDS) together with enzyme kinetic investigations and site-directed mutagenesis to elucidate the molecular basis of the activation of CYP2C9-catalyzed S-flurbiprofen 4'-hydroxylation and S-naproxen O-demethylation by dapsone. Supplementation of incubations of recombinant CYP2C9 with dapsone increased the catalytic efficiency of flurbiprofen and naproxen oxidation by 2.3- and 16.5-fold, respectively. MDS demonstrated that activation arises predominantly from aromatic interactions between the substrate, dapsone, and the phenyl rings of Phe114 and Phe476 within a common binding domain of the CYP2C9 active site, rather than involvement of a distinct effector site. Mutagenesis of Phe114 and Phe476 abrogated flurbiprofen and naproxen oxidation, and MDS and kinetic studies with the CYP2C9 mutants further identified a pivotal role of Phe476 in dapsone activation. MDS additionally showed that aromatic stacking interactions between two molecules of naproxen are necessary for binding in a catalytically favorable orientation. In contrast to flurbiprofen and naproxen, dapsone did not activate the 4'-hydroxylation of diclofenac, suggesting that the CYP2C9 active site favors cooperative binding of nonsteroidal anti-inflammatory drugs with a planar or near-planar geometry. More generally, the work confirms the utility of MDS for investigating ligand binding in CYP enzymes.
Collapse
Affiliation(s)
- Pramod C Nair
- Department of Clinical Pharmacology, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia; FHMRI Cancer Program, Flinders Health and Medical Research Institute, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia.
| | - Kushari Burns
- Department of Clinical Pharmacology, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Nuy Chau
- Department of Clinical Pharmacology, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A McKinnon
- FHMRI Cancer Program, Flinders Health and Medical Research Institute, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - John O Miners
- Department of Clinical Pharmacology, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia; FHMRI Cancer Program, Flinders Health and Medical Research Institute, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
2
|
Rendić SP, Crouch RD, Guengerich FP. Roles of selected non-P450 human oxidoreductase enzymes in protective and toxic effects of chemicals: review and compilation of reactions. Arch Toxicol 2022; 96:2145-2246. [PMID: 35648190 PMCID: PMC9159052 DOI: 10.1007/s00204-022-03304-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022]
Abstract
This is an overview of the metabolic reactions of drugs, natural products, physiological compounds, and other (general) chemicals catalyzed by flavin monooxygenase (FMO), monoamine oxidase (MAO), NAD(P)H quinone oxidoreductase (NQO), and molybdenum hydroxylase enzymes (aldehyde oxidase (AOX) and xanthine oxidoreductase (XOR)), including roles as substrates, inducers, and inhibitors of the enzymes. The metabolism and bioactivation of selected examples of each group (i.e., drugs, "general chemicals," natural products, and physiological compounds) are discussed. We identified a higher fraction of bioactivation reactions for FMO enzymes compared to other enzymes, predominately involving drugs and general chemicals. With MAO enzymes, physiological compounds predominate as substrates, and some products lead to unwanted side effects or illness. AOX and XOR enzymes are molybdenum hydroxylases that catalyze the oxidation of various heteroaromatic rings and aldehydes and the reduction of a number of different functional groups. While neither of these two enzymes contributes substantially to the metabolism of currently marketed drugs, AOX has become a frequently encountered route of metabolism among drug discovery programs in the past 10-15 years. XOR has even less of a role in the metabolism of clinical drugs and preclinical drug candidates than AOX, likely due to narrower substrate specificity.
Collapse
Affiliation(s)
| | - Rachel D Crouch
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN, 37204, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| |
Collapse
|
3
|
Agrawal S, Heiss MS, Fenter RB, Abramova TV, Perera MA, Pacheco JA, Smith ME, Rasmussen-Torvik LJ, George AL. Impact of CYP2C9-Interacting Drugs on Warfarin Pharmacogenomics. Clin Transl Sci 2020; 13:941-949. [PMID: 32270628 PMCID: PMC7485961 DOI: 10.1111/cts.12781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/24/2020] [Indexed: 01/20/2023] Open
Abstract
Precise dosing of warfarin is important to achieve therapeutic benefit without adverse effects. Pharmacogenomics explains some interindividual variability in warfarin response, but less attention has been paid to drug‐drug interactions in the context of genetic factors. We investigated retrospectively the combined effects of cytochrome P450 (CYP)2C9 and vitamin K epoxide reductase complex (VKORC)1 genotypes and concurrent exposure to CYP2C9‐interacting drugs on long‐term measures of warfarin anticoagulation. Study participants predicted to be sensitive responders to warfarin based on CYP2C9 and VKORC1 genotypes, had significantly greater international normalized ratio (INR) variability over time. Participants who were concurrently taking CYP2C9‐interacting drugs were found to have greater INR variability and lesser time in therapeutic range. The associations of INR variability with genotype were driven by the subgroup not exposed to interacting drugs, whereas the effect of interacting drug exposure was driven by the subgroup categorized as normal responders. Our findings emphasize the importance of considering drug interactions in pharmacogenomic studies.
Collapse
Affiliation(s)
- Saaket Agrawal
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Meredith S Heiss
- Graduate Program in Genetic Counseling, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Remington B Fenter
- Graduate Program in Genetic Counseling, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tatiana V Abramova
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Minoli A Perera
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jennifer A Pacheco
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Maureen E Smith
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Medicine, Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Laura J Rasmussen-Torvik
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
4
|
Challenges in assignment of allosteric effects in cytochrome P450-catalyzed substrate oxidations to structural dynamics in the hemoprotein architecture. J Inorg Biochem 2017; 167:100-115. [DOI: 10.1016/j.jinorgbio.2016.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/17/2016] [Accepted: 11/22/2016] [Indexed: 12/19/2022]
|
5
|
Schalcher TR, Borges RS, Coleman MD, Batista Júnior J, Salgado CG, Vieira JLF, Romão PRT, Oliveira FR, Monteiro MC. Clinical oxidative stress during leprosy multidrug therapy: impact of dapsone oxidation. PLoS One 2014; 9:e85712. [PMID: 24465659 PMCID: PMC3899049 DOI: 10.1371/journal.pone.0085712] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/29/2013] [Indexed: 12/17/2022] Open
Abstract
This study aims to assess the oxidative stress in leprosy patients under multidrug therapy (MDT; dapsone, clofazimine and rifampicin), evaluating the nitric oxide (NO) concentration, catalase (CAT) and superoxide dismutase (SOD) activities, glutathione (GSH) levels, total antioxidant capacity, lipid peroxidation, and methemoglobin formation. For this, we analyzed 23 leprosy patients and 20 healthy individuals from the Amazon region, Brazil, aged between 20 and 45 years. Blood sampling enabled the evaluation of leprosy patients prior to starting multidrug therapy (called MDT 0) and until the third month of multidrug therapy (MDT 3). With regard to dapsone (DDS) plasma levels, we showed that there was no statistical difference in drug plasma levels between multibacillary (0.518±0.029 µg/mL) and paucibacillary (0.662±0.123 µg/mL) patients. The methemoglobin levels and numbers of Heinz bodies were significantly enhanced after the third MDT-supervised dose, but this treatment did not significantly change the lipid peroxidation and NO levels in these leprosy patients. In addition, CAT activity was significantly reduced in MDT-treated leprosy patients, while GSH content was increased in these patients. However, SOD and Trolox equivalent antioxidant capacity levels were similar in patients with and without treatment. These data suggest that MDT can reduce the activity of some antioxidant enzyme and influence ROS accumulation, which may induce hematological changes, such as methemoglobinemia in patients with leprosy. We also explored some redox mechanisms associated with DDS and its main oxidative metabolite DDS-NHOH and we explored the possible binding of DDS to the active site of CYP2C19 with the aid of molecular modeling software.
Collapse
Affiliation(s)
- Taysa Ribeiro Schalcher
- Laboratório de Microbiologia e Imunologia Clínica/UFPA and Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Pará/UFPA, Rua Augusto Corrêa, Belém, Brasil
| | - Rosivaldo S. Borges
- Laboratório de Microbiologia e Imunologia Clínica/UFPA and Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Pará/UFPA, Rua Augusto Corrêa, Belém, Brasil
| | - Michael D. Coleman
- Mechanisms of Drug Toxicity Group, Department of Pharmaceutical Sciences, Aston University, Aston Triangle, Birmingham, United Kingdom
| | - João Batista Júnior
- Centro Universitário do Distrito Federal - UDF, SEP/SUL EQ 704/904 - CONJ A, Brasília/DF, Brasil
| | - Claudio G. Salgado
- Laboratório de Dermato-Imunologia UFPA/MC, Marituba, Pará, and Programa de Pós-graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará/UFPA, Bairro Guamá, Belém, Brasil
| | - Jose Luiz F. Vieira
- Laboratório de Microbiologia e Imunologia Clínica/UFPA and Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Pará/UFPA, Rua Augusto Corrêa, Belém, Brasil
| | - Pedro R. T. Romão
- Programa de Pós-graduação em Ciências da Saúde. Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brasil
| | - Fabio R. Oliveira
- Laboratório de Microbiologia e Imunologia Clínica/UFPA and Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Pará/UFPA, Rua Augusto Corrêa, Belém, Brasil
| | - Marta Chagas Monteiro
- Laboratório de Microbiologia e Imunologia Clínica/UFPA and Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Pará/UFPA, Rua Augusto Corrêa, Belém, Brasil
- * E-mail:
| |
Collapse
|
6
|
Matsumoto K, Nemoto E, Hasegawa T, Akimoto M, Sugibayashi K. In Vitro Characterization of the Cytochrome P450 Isoforms Involved in the Metabolism of 6-Methoxy-2-napthylacetic Acid, an Active Metabolite of the Prodrug Nabumetone. Biol Pharm Bull 2011; 34:734-9. [DOI: 10.1248/bpb.34.734] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kaori Matsumoto
- Faculty of Pharmaceutical Sciences, Josai International University
| | - Eiichi Nemoto
- Faculty of Pharmaceutical Sciences, Josai International University
- Faculty of Pharmaceutical Sciences, Josai University
| | - Tetsuya Hasegawa
- Faculty of Pharmaceutical Sciences, Josai International University
| | - Masayuki Akimoto
- Faculty of Pharmaceutical Sciences, Josai International University
| | | |
Collapse
|
7
|
Zhou D, Andersson TB, Grimm SW. In Vitro Evaluation of Potential Drug-Drug Interactions with Ticagrelor: Cytochrome P450 Reaction Phenotyping, Inhibition, Induction, and Differential Kinetics. Drug Metab Dispos 2010; 39:703-10. [DOI: 10.1124/dmd.110.037143] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
8
|
Zhou SF, Liu JP, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev 2009; 41:89-295. [PMID: 19514967 DOI: 10.1080/03602530902843483] [Citation(s) in RCA: 502] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pharmacogenetics is the study of how interindividual variations in the DNA sequence of specific genes affect drug response. This article highlights current pharmacogenetic knowledge on important human drug-metabolizing cytochrome P450s (CYPs) to understand the large interindividual variability in drug clearance and responses in clinical practice. The human CYP superfamily contains 57 functional genes and 58 pseudogenes, with members of the 1, 2, and 3 families playing an important role in the metabolism of therapeutic drugs, other xenobiotics, and some endogenous compounds. Polymorphisms in the CYP family may have had the most impact on the fate of therapeutic drugs. CYP2D6, 2C19, and 2C9 polymorphisms account for the most frequent variations in phase I metabolism of drugs, since almost 80% of drugs in use today are metabolized by these enzymes. Approximately 5-14% of Caucasians, 0-5% Africans, and 0-1% of Asians lack CYP2D6 activity, and these individuals are known as poor metabolizers. CYP2C9 is another clinically significant enzyme that demonstrates multiple genetic variants with a potentially functional impact on the efficacy and adverse effects of drugs that are mainly eliminated by this enzyme. Studies into the CYP2C9 polymorphism have highlighted the importance of the CYP2C9*2 and *3 alleles. Extensive polymorphism also occurs in other CYP genes, such as CYP1A1, 2A6, 2A13, 2C8, 3A4, and 3A5. Since several of these CYPs (e.g., CYP1A1 and 1A2) play a role in the bioactivation of many procarcinogens, polymorphisms of these enzymes may contribute to the variable susceptibility to carcinogenesis. The distribution of the common variant alleles of CYP genes varies among different ethnic populations. Pharmacogenetics has the potential to achieve optimal quality use of medicines, and to improve the efficacy and safety of both prospective and currently available drugs. Further studies are warranted to explore the gene-dose, gene-concentration, and gene-response relationships for these important drug-metabolizing CYPs.
Collapse
Affiliation(s)
- Shu-Feng Zhou
- School of Health Sciences, RMIT University, Bundoora, Victoria, Australia.
| | | | | |
Collapse
|
9
|
Zhou SF, Zhou ZW, Huang M. Polymorphisms of human cytochrome P450 2C9 and the functional relevance. Toxicology 2009; 278:165-88. [PMID: 19715737 DOI: 10.1016/j.tox.2009.08.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 08/18/2009] [Accepted: 08/21/2009] [Indexed: 12/19/2022]
Abstract
Human cytochrome P450 2C9 (CYP2C9) accounts for ∼20% of hepatic total CYP content and metabolizes ~15% clinical drugs such as phenytoin, S-warfarin, tolbutamide, losartan, and many nonsteroidal anti-inflammatory agents (NSAIDs). CYP2C9 is highly polymorphic, with at least 33 variants of CYP2C9 (*1B through *34) being identified so far. CYP2C9*2 is frequent among Caucasians with ~1% of the population being homozygous carriers and 22% are heterozygous. The corresponding figures for the CYP2C9*3 allele are 0.4% and 15%, respectively. There are a number of clinical studies addressing the impact of CYP2C9 polymorphisms on the clearance and/or therapeutic response of therapeutic drugs. These studies have highlighted the importance of the CYP2C9*2 and *3 alleles as a determining factor for drug clearance and drug response. The CYP2C9 polymorphisms are relevant for the efficacy and adverse effects of numerous NSAIDs, sulfonylurea antidiabetic drugs and, most critically, oral anticoagulants belonging to the class of vitamin K epoxide reductase inhibitors. Warfarin has served as a practical example of how pharmacogenetics can be utilized to achieve maximum efficacy and minimum toxicity. For many of these drugs, a clear gene-dose and gene-effect relationship has been observed in patients. In this regard, CYP2C9 alleles can be considered as a useful biomarker in monitoring drug response and adverse effects. Genetic testing of CYP2C9 is expected to play a role in predicting drug clearance and conducting individualized pharmacotherapy. However, prospective clinical studies with large samples are warranted to establish gene-dose and gene-effect relationships for CYP2C9 and its substrate drugs.
Collapse
Affiliation(s)
- Shu-Feng Zhou
- School of Health Sciences, RMIT University, Victoria 3083, Australia.
| | | | | |
Collapse
|
10
|
Si D, Wang Y, Zhou YH, Guo Y, Wang J, Zhou H, Li ZS, Fawcett JP. Mechanism of CYP2C9 inhibition by flavones and flavonols. Drug Metab Dispos 2008; 37:629-34. [PMID: 19074529 DOI: 10.1124/dmd.108.023416] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This article describes an in vitro investigation of the inhibition of cytochrome P450 (P450) 2C9 by a series of flavonoids made up of flavones (flavone, 6-hydroxyflavone, 7-hydroxyflavone, chrysin, baicalein, apigenin, luteolin, scutellarein, and wogonin) and flavonols (galangin, fisetin, kaempferol, morin, and quercetin). With the exception of flavone, all flavonoids were shown to inhibit CYP2C9-mediated diclofenac 4'-hydroxylation in the CYP2C9 RECO system, with K(i) value <or= 2.2 microM. In terms of the mechanism of inhibition, 6-hydroxyflavone was found to be a noncompetitive inhibitor of CYP2C9, whereas the other flavonoids were competitive inhibitors. Computer docking simulation and constructed mutants substituted at residue 100 of CYP2C9.1 indicate that the noncompetitive binding site of 6-hydroxyflavone lies beside Phe100, similar to the reported allosteric binding site of warfarin. The other flavonoids exert competitive inhibition through interaction with the substrate binding site of CYP2C9 accessed by flurbiprofen. These results suggest flavonoids can participate in interactions with drugs that act as substrates for CYP2C9 and provide a possible molecular basis for understanding cooperativity in human P450-mediated drug-drug interactions.
Collapse
Affiliation(s)
- Dayong Si
- College of Life Science, Jilin University, Changchun, 130023, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Prediction of the Effects of Genetic Polymorphism on the Pharmacokinetics of CYP2C9 Substrates from In Vitro Data. Pharm Res 2008; 26:822-35. [DOI: 10.1007/s11095-008-9781-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 11/04/2008] [Indexed: 11/25/2022]
|
12
|
Kramer MA, Tracy TS. Studying cytochrome P450 kinetics in drug metabolism. Expert Opin Drug Metab Toxicol 2008; 4:591-603. [PMID: 18484917 DOI: 10.1517/17425255.4.5.591] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Determination of cytochrome P450 enzyme-mediated kinetics in vitro can be useful for predicting drug dosing and clearance in humans. Expressed P450s, human liver microsomes, human hepatocytes (both fresh and cryopreserved), and human liver slices are used to estimate K(m) and V(max) values for determination of intrinsic clearance of the drug for scale-up to predict in vivo clearance. OBJECTIVE To describe the advantages and disadvantages of the various in vitro systems used to estimate kinetic parameters for disposition of drugs and the various kinetic profiles that can be observed. METHODS A review of the literature was conducted to evaluate the utility of the various in vitro preparations, the methods for determining kinetic parameters and the types of kinetic profiles that may be observed. RESULTS/CONCLUSIONS The choice of in vitro system for determining kinetic parameters will depend on the objective of the studies, as each system has advantages and disadvantages. Kinetic parameter determinations must be carefully assessed to assure that the correct kinetic model is applied and the most accurate kinetic parameters are determined.
Collapse
Affiliation(s)
- Melissa A Kramer
- University of Minnesota, College of Pharmacy, Department of Experimental and Clinical Pharmacology, 7-115B Weaver-Densford Hall, 308 Harvard Street SE, Minneapolis, MN 55455, USA
| | | |
Collapse
|
13
|
Hummel MA, Gannett PM, Aguilar J, Tracy TS. Substrate proton to heme distances in CYP2C9 allelic variants and alterations by the heterotropic activator, dapsone. Arch Biochem Biophys 2008; 475:175-83. [PMID: 18485885 DOI: 10.1016/j.abb.2008.04.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Revised: 04/25/2008] [Accepted: 04/26/2008] [Indexed: 11/29/2022]
Abstract
CYP2C9 polymorphisms result in reduced enzyme catalytic activity and greater activation by effector molecules as compared to wild-type protein, with the mechanism(s) for these changes in activity not fully elucidated. Through T(1) NMR and spectral binding analyses, mechanism(s) for these differences in behavior of the variant proteins (CYP2C9.2, CYP2C9.3, and CYP2C9.5) as compared to CYP2C9.1 were assessed. Neither altered binding affinity nor substrate (flurbiprofen) proton to heme-iron distances differed substantially among the four enzymes. Co-incubation with dapsone resulted in reduced substrate proton to heme-iron distances for all enzymes, providing at least a partial mechanism for the activation of CYP2C9 variants by dapsone. In summary, neither altered binding affinity nor substrate orientation appear to be major factors in the reduced catalytic activity noted in the CYP2C9 variants, but dapsone co-incubation caused similar changes in substrate proton to heme-iron distances suggesting at least partial common mechanisms in the activation of the CYP2C9 forms.
Collapse
Affiliation(s)
- Matthew A Hummel
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, 7-115B Weaver-Densford Hall, 308 Harvard Street, SE, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
14
|
Wei L, Locuson CW, Tracy TS. Polymorphic variants of CYP2C9: mechanisms involved in reduced catalytic activity. Mol Pharmacol 2007; 72:1280-8. [PMID: 17686967 DOI: 10.1124/mol.107.036178] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CYP2C9 catalyzes the demethylation of the biphasic kinetics substrate (S)-naproxen, and the CYP2C9*2 (R144C) and CYP2C9*3 (I359L) variants are associated with lower rates of (S)-naproxen demethylation. To assess the reasons for these reductions in catalytic activity of the two variants and potential substrate concentration-dependent differences in a biphasic kinetics substrate, cytochrome P450 (P450) cycle coupling and uncoupling were monitored during coincubation of (S)-naproxen and CYP2C9 over a range of P450 reductase concentrations. Coupling was greatest in the CYP2C9.1 enzyme, followed by CYP2C9.2, and then CYP2C9.3. Uncoupling in CYP2C9.1 and CYP2C9.3 was primarily to H(2)O(2). In contrast, CYP2C9.2 uncoupled to excess water preferentially. The conversion of enzyme to the high spin state was similar in CYP2C9.1 and CYP2C9.2, but lower in CYP2C9.3. It is noteworthy that neither altered substrate binding nor altered interaction with reductase seemed to be involved in reduced catalysis. These results suggest that in addition to coupling differences, differential uncoupling to shunt products and differences in spin state help explain the reduced catalytic activity in these enzymes.
Collapse
Affiliation(s)
- Lian Wei
- Department of Experimental and Clinical Pharmacology, University of Minnesota, 308 Harvard St. SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
15
|
Isin EM, Guengerich FP. Multiple Sequential Steps Involved in the Binding of Inhibitors to Cytochrome P450 3A4. J Biol Chem 2007; 282:6863-74. [PMID: 17200113 DOI: 10.1074/jbc.m610346200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450 (P450) 3A4 is an extensively studied human enzyme involved in the metabolism of >50% of drugs. The mechanism of the observed homotropic and heterotropic cooperativity in P450 3A4-catalyzed oxidations is not well understood, and together with the cooperative behavior, a detailed understanding of interaction of drug inhibitors with P450 3A4 is important in predicting clinical drug-drug interactions. The interactions of P450 3A4 with several structurally diverse inhibitors were investigated using both kinetic and thermodynamic approaches to resolve the steps involved in binding of these ligands. The results of pre-steady-state absorbance and fluorescence experiments demonstrate that inhibitor binding is clearly a multistep process, even more complex than the binding of substrates. Based on spectrophotometric equilibrium binding titrations as well as isothermal titration calorimetry experiments, the stoichiometry of binding appears to be 1:1 in the concentration ranges studied. Using a sequential-mixing stopped-flow approach, we were also able to show that the observed multiphasic binding kinetics is the result of sequential events as opposed to the existence of multiple enzyme populations in dynamic equilibrium that interact with ligands at different rates. We propose a three-step minimal model for inhibitor binding, developed with kinetic simulations, consistent with our previously reported model for the binding of substrates, although it is possible that even more steps are involved.
Collapse
Affiliation(s)
- Emre M Isin
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | |
Collapse
|
16
|
Wahlstrom JL, Rock DA, Slatter JG, Wienkers LC. Advances in predicting CYP-mediated drug interactions in the drug discovery setting. Expert Opin Drug Discov 2006; 1:677-91. [DOI: 10.1517/17460441.1.7.677] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Samer CF, Desmeules JA, Dayer P. Individualizing analgesic prescription. Part II: pharmacogenetics of anti-inflammatory analgesics and co-analgesics. Per Med 2006; 3:271-297. [PMID: 29788658 DOI: 10.2217/17410541.3.3.271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Caroline Flora Samer
- Geneva University Hospital, Clinical Pharmacology and Toxicology and Multidisciplinary Pain Center, 1211 Geneva 14, Switzerland
| | - Jules Alexandre Desmeules
- Geneva University Hospital, Clinical Pharmacology and Toxicology and Multidisciplinary Pain Center, 1211 Geneva 14, Switzerland
| | - Pierre Dayer
- Geneva University Hospital, Clinical Pharmacology and Toxicology and Multidisciplinary Pain Center, 1211 Geneva 14, Switzerland
| |
Collapse
|
18
|
Kumar V, Locuson CW, Sham YY, Tracy TS. Amiodarone analog-dependent effects on CYP2C9-mediated metabolism and kinetic profiles. Drug Metab Dispos 2006; 34:1688-96. [PMID: 16815961 DOI: 10.1124/dmd.106.010678] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CYP2C9 substrates can exhibit both hyperbolic and atypical kinetic profiles, and their metabolism can be activated or inhibited depending on the effector studied. CYP2C9 genetic variants can also affect both substrate turnover and kinetic profile. The present study assessed whether analogs of the effector amiodarone differentially altered the atypical kinetic profile of the substrate naproxen and whether this effect was genotype-dependent. Amiodarone, desethylamiodarone, benzbromarone, and its dimethyl analog (benz(meth)arone) were incubated with naproxen and either CYP2C9.1 or CYP2C9.3. Amiodarone activated naproxen demethylation at lower concentrations, regardless of the CYP2C9 allele, and inhibited metabolism at higher concentrations without altering the kinetic profile. Desethylamiodarone was a potent inhibitor of naproxen demethylation, irrespective of the CYP2C9 allele. Benzbromarone altered naproxen demethylation kinetics from a biphasic profile to that of a hyperbolic form in CYP2C9.1 and CYP2C9.3, resulting in inhibition and activation, respectively. In contrast, benz(meth)arone activated naproxen demethylation in both CYP2C9.1 and CYP2C9.3. In addition, the kinetic profile of naproxen demethylation became more hyperbolic at lower concentrations of benz(meth)arone and then reverted back to biphasic as the benz(meth)arone was increased further. Equilibrium binding and multiple-ligand docking studies were used to propose how such similar compounds exerted very different effects on naproxen metabolism. In summary, effectors of CYP2C9 metabolism can alter not only the degree of substrate turnover (activation or inhibition) but also the kinetic profile of metabolism of CYP2C9 substrates through effects on substrate binding and orientation. In addition, these kinetics effects are concentration- and genotype-dependent.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
19
|
Locuson CW, Gannett PM, Tracy TS. Heteroactivator effects on the coupling and spin state equilibrium of CYP2C9. Arch Biochem Biophys 2006; 449:115-29. [PMID: 16545770 DOI: 10.1016/j.abb.2006.02.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 01/31/2006] [Accepted: 02/02/2006] [Indexed: 12/21/2022]
Abstract
The cytochromes P450 are capable of oxidizing a variety of xenobiotics. Binding of a small molecule heteroactivator to a P450 can alter the coupling of substrate oxidation during P450 catalysis, but the degree to which coupling or shunting via one of the three catalytic cycle branch points is linked to the heteroactivator-modified position of bound substrate is unknown. Using reconstituted CYP2C9, stoichiometric measurements were gathered with three substrates and two classes of heteroactivators to further understand the mechanisms involved in heteroactivation. Heteroactivation of P450 metabolism appeared to involve, but not require, changes in coupling and that increased uncoupling to a specific byproduct like H(2)O(2) does not necessarily correlate to the degree of coupling. In addition, spectroscopy demonstrated that every heteroactivator tested influenced the spin equilibrium of the heme iron even in the presence of saturating substrate suggesting that both substrate proximity and the ability to desolvate the heme can be involved in heteroactivation.
Collapse
Affiliation(s)
- Charles W Locuson
- University of Minnesota, Department of Experimental and Clinical Pharmacology, USA
| | | | | |
Collapse
|
20
|
Hummel MA, Locuson CW, Gannett PM, Rock DA, Mosher CM, Rettie AE, Tracy TS. CYP2C9 genotype-dependent effects on in vitro drug-drug interactions: switching of benzbromarone effect from inhibition to activation in the CYP2C9.3 variant. Mol Pharmacol 2005; 68:644-51. [PMID: 15955872 DOI: 10.1124/mol.105.013763] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The CYP2C9.3 variant exhibits marked decreases in substrate turnover compared with the wild-type enzyme, but little is known regarding the effect this variant form may have on the occurrence of drug-drug interactions. To examine this possibility, the effect of the potent CYP2C9 inhibitor, benzbromarone, was studied with regard to CYP2C9.1- and CYP2C9.3-mediated flurbiprofen metabolism to evaluate whether the variant enzyme exhibits differential inhibition kinetics. Although benzbromarone inhibited CYP2C9.1 activity as expected, CYP2C9.3-mediated flurbiprofen 4'-hydroxylation was activated in the presence of benzbromarone. T1 relaxation studies revealed little change in distances of flurbiprofen protons from the heme iron of either CYP2C9.1 or CYP2C9.3 in the presence of benzbromarone compared with flurbiprofen alone. Spectral binding studies were also performed to investigate whether benzbromarone affected substrate binding, with the addition of benzbromarone having little effect on flurbiprofen-binding affinity in both CYP2C9.1 and CYP2C9.3. Docking studies with the 2C9.1 structure crystallized with a closed active site identified multiple but overlapping subsites with sufficient space for benzbromarone binding in the enzyme when flurbiprofen was positioned closest to the heme. If the closed conformation of 2C9.3 is structurally similar to 2C9.1, as expected for the conservative I359L mutation, then the dynamics of benzbromarone binding may account for the switching of drug interaction effects. In conclusion, the I359L amino acid substitution found in CYP2C9.3 not only reduces metabolism compared with CYP2C9.1 but can also dramatically alter inhibitor effects, suggesting that differential degrees of drug inhibition interactions may occur in individuals with this variant form of CYP2C9.
Collapse
Affiliation(s)
- Matthew A Hummel
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, 308 Harvard St., S.E., Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Kirchheiner J, Tsahuridu M, Jabrane W, Roots I, Brockmöller J. The CYP2C9 polymorphism: from enzyme kinetics to clinical dose recommendations. Per Med 2004; 1:63-84. [DOI: 10.1517/17410541.1.1.63] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
CYP2C9 is the major human enzyme of the cytochrome P450 2C subfamily and metabolizes approximately 10% of all therapeutically relevant drugs. Two inherited SNPs termed CYP2C9*2 (Arg144Cys) and *3 (Ile359Leu) are known to affect catalytic function. Numerous rare or functionally silent polymorphisms have been identified. About 35% of the Caucasian population carries at least one *2 or *3 allele. CYP2C9 metabolizes several oral hypoglycemics, oral anticoagulants, non-steroidal anti-inflammatory drugs and other drugs, including phenytoin, losartan, fluvastatin, and torsemide. In vitro studies with several drugs indicate that the Cys144 (.2) and Leu359 (.3) variants confer only about 70 and 10% of the intrinsic clearance of the wild-type protein (.1), respectively. The clinical pharmacokinetic implications of these polymorphisms vary depending on the enzymes contribution to total oral clearance. Several studies demonstrated that the CYP2C9 polymorphisms are medically important for non-steroidal anti-inflammatory drugs, for oral hypoglycemics, vitamin K antagonistic oral anticoagulants, and phenytoin. In particular, CYP2C9 polymorphisms should be routinely considered in therapy with oral anticoagulants where severe adverse events at initiation of therapy might be reduced by genotyping. CYP2C9 polymorphisms were also clinically associated with side effects of phenytoin, with gastric bleeding during therapy with non-steroidals and with hypoglycemia under oral hypoglycemic drugs. Data appear mature enough for the routine consideration of CYP2C9 genotypes in therapy with acenocoumarol, phenytoin, warfarin, and some other drugs. Nevertheless, it is advisable before the routine clinical use of these genotype data to rigorously test the benefits of genotype-based therapeutic recommendations by randomized controlled clinical trials.
Collapse
Affiliation(s)
- Julia Kirchheiner
- University of Cologne, Department of Pharmacology, University of Cologne, Gleueler Str. 24, 50931 Koln, Germany.
| | - Martina Tsahuridu
- Humboldt University, Institute of Clinical Pharmacology, University Medical Center Charité, Humboldt University Berlin, Germany
| | - Wafaa Jabrane
- University of Cologne, Department of Pharmacology, University of Cologne, Gleueler Str. 24, 50931 Koln, Germany
| | - Ivar Roots
- Humboldt University, Institute of Clinical Pharmacology, University Medical Center Charité, Humboldt University Berlin, Germany
| | - Jürgen Brockmöller
- Georg August University, Department of Clinical Pharmacology, Georg August University Gottingen, Germany
| |
Collapse
|
22
|
Liu KH, Kim MJ, Jung WM, Kang W, Cha IJ, Shin JG. LANSOPRAZOLE ENANTIOMER ACTIVATES HUMAN LIVER MICROSOMAL CYP2C9 CATALYTIC ACTIVITY IN A STEREOSPECIFIC AND SUBSTRATE-SPECIFIC MANNER. Drug Metab Dispos 2004; 33:209-13. [PMID: 15537834 DOI: 10.1124/dmd.104.001438] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recently proposed a possible stereoselective activation by lansoprazole of CYP2C9-catalyzed tolbutamide hydroxylation, as well as stereoselective inhibition of several cytochrome P450 (P450) isoforms. This study evaluated the effects of lansoprazole enantiomers on CYP2C9 activity in vitro, using several probe substrates. For tolbutamide 4-methylhydroxylation and phenytoin 4-hydroxylation, R-lansoprazole was an activator (140 and 550% of control at 100 microM R-lansoprazole, EC50 values of 19.9 and 30.2 microM, respectively). R-Lansoprazole-mediated activation of the formation of 4-hydroxyphenytoin was also seen with recombinant human CYP2C9. R-Lansoprazole increased the Michaelis-Menten-derived V(max) of phenytoin 4-hydroxylation from 0.024 to 0.121 pmol/min/pmol P450, and lowered its K(m) from 20.5 to 15.0 microM, suggesting that R-lansoprazole activates CYP2C9-mediated phenytoin metabolism without displacing phenytoin from the active site. Kinetic parameters were also estimated using the two-site binding equation, with alpha values <1 and beta values >1, indicative of activation. Additionally, phenytoin at 10 to 200 microM had no reciprocal effect on the hydroxylation of R-lansoprazole. Meanwhile, R-lansoprazole had no activation effect on diclofenac and S-warfarin metabolism in the incubation study using both recombinant CYP2C9 and human liver microsomes. These substrate-dependent activation effects suggest that phenytoin has a different binding orientation compared with diclofenac and S-warfarin. Overall, these results suggest that R-lansoprazole activates CYP2C9 in a stereospecific and substrate-specific manner, possibly by binding within the active site and inducing positive cooperativity. This is the first report to describe stereoselective activation of this cytochrome P450 isoform.
Collapse
Affiliation(s)
- Kwang-Hyeon Liu
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine and Clinical Pharmacology Center, Busan Paik Hospital, Korea
| | | | | | | | | | | |
Collapse
|