1
|
Hoang PM, Torre D, Jaynes P, Ho J, Mohammed K, Alvstad E, Lam WY, Khanchandani V, Lee JM, Toh CMC, Lee RX, Anbuselvan A, Lee S, Sebra RP, Martin J. Walsh, Marazzi I, Kappei D, Guccione E, Jeyasekharan AD. A PRMT5-ZNF326 axis mediates innate immune activation upon replication stress. SCIENCE ADVANCES 2024; 10:eadm9589. [PMID: 38838142 PMCID: PMC11804791 DOI: 10.1126/sciadv.adm9589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/25/2024] [Indexed: 06/07/2024]
Abstract
DNA replication stress (RS) is a widespread phenomenon in carcinogenesis, causing genomic instability and extensive chromatin alterations. DNA damage leads to activation of innate immune signaling, but little is known about transcriptional regulators mediating such signaling upon RS. Using a chemical screen, we identified protein arginine methyltransferase 5 (PRMT5) as a key mediator of RS-dependent induction of interferon-stimulated genes (ISGs). This response is also associated with reactivation of endogenous retroviruses (ERVs). Using quantitative mass spectrometry, we identify proteins with PRMT5-dependent symmetric dimethylarginine (SDMA) modification induced upon RS. Among these, we show that PRMT5 targets and modulates the activity of ZNF326, a zinc finger protein essential for ISG response. Our data demonstrate a role for PRMT5-mediated SDMA in the context of RS-induced transcriptional induction, affecting physiological homeostasis and cancer therapy.
Collapse
Affiliation(s)
- Phuong Mai Hoang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Denis Torre
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetic and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Patrick Jaynes
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jessica Ho
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Kevin Mohammed
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetic and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Erik Alvstad
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Wan Yee Lam
- Department of Genetic and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vartika Khanchandani
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jie Min Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Chin Min Clarissa Toh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Rui Xue Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Akshaya Anbuselvan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, South Korea
| | - Robert P. Sebra
- Department of Genetic and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Martin J. Walsh
- Department of Genetic and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ivan Marazzi
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ernesto Guccione
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetic and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anand D. Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Hospital, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
2
|
Chang C, Zhou G, Lee Luo C, Eleraky S, Moradi M, Gao Y. Sugar ring alignment and dynamics underline cytarabine and gemcitabine inhibition on Pol η catalyzed DNA synthesis. J Biol Chem 2024; 300:107361. [PMID: 38735473 PMCID: PMC11176770 DOI: 10.1016/j.jbc.2024.107361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024] Open
Abstract
Nucleoside analogue drugs are pervasively used as antiviral and chemotherapy agents. Cytarabine and gemcitabine are anti-cancer nucleoside analogue drugs that contain C2' modifications on the sugar ring. Despite carrying all the required functional groups for DNA synthesis, these two compounds inhibit DNA extension once incorporated into DNA. It remains unclear how the C2' modifications on cytarabine and gemcitabine affect the polymerase active site during substrate binding and DNA extension. Using steady-state kinetics, static and time-resolved X-ray crystallography with DNA polymerase η (Pol η) as a model system, we showed that the sugar ring C2' chemical groups on cytarabine and gemcitabine snugly fit within the Pol η active site without occluding the steric gate. During DNA extension, Pol η can extend past gemcitabine but with much lower efficiency past cytarabine. The Pol η crystal structures show that the -OH modification in the β direction on cytarabine locks the sugar ring in an unfavorable C2'-endo geometry for product formation. On the other hand, the addition of fluorine atoms on gemcitabine alters the proper conformational transition of the sugar ring for DNA synthesis. Our study illustrates mechanistic insights into chemotherapeutic drug inhibition and resistance and guides future optimization of nucleoside analogue drugs.
Collapse
Affiliation(s)
- Caleb Chang
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Grace Zhou
- Department of Biosciences, Rice University, Houston, Texas, USA
| | | | - Sarah Eleraky
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Madeline Moradi
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Yang Gao
- Department of Biosciences, Rice University, Houston, Texas, USA.
| |
Collapse
|
3
|
Design, synthesis, and evaluation of liver-specific gemcitabine prodrugs for potential treatment of hepatitis C virus infection and hepatocellular carcinoma. Eur J Med Chem 2021; 213:113135. [PMID: 33454548 DOI: 10.1016/j.ejmech.2020.113135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 11/24/2022]
Abstract
Many successful anti-viral and anti-cancer drugs are nucleoside analogs, which disrupt RNA and/or DNA synthesis. Here, we present liver-specific prodrugs of the chemotherapy drug gemcitabine (2',2'-difluorodeoxycytidine) for the treatment of hepatitis C virus (HCV) infection and hepatocellular carcinoma. The prodrugs were synthesized by introducing aromatic functional moieties to the cytosine 4-NH2 group of gemcitabine via amide bonds. The chemical modification was designed to i) enable passive diffusion across cellular membrane, ii) protect the prodrugs from inactivating deamination by cellular enzymes, and iii) allow release of active gemcitabine after amide hydrolysis by high levels of carboxylesterases in the liver. We found that many of our prodrugs exhibited similar toxicity as gemcitabine toward liver- and kidney-derived cancer cell lines but were 24- to 620-fold less cytotoxic than gemcitabine in breast- and pancreas-derived cancer cells, respectively. The prodrugs also inhibited an HCV replicon with IC50 values ranging from 10 nM-1.7 μM. Moreover, many of the prodrugs had therapeutic index values of >10,000 and have synergetic effects when combined with other Food and Drug Administration-approved anti-HCV small molecule drugs. These characteristics support the development of gemcitabine prodrugs as liver-specific therapeutics.
Collapse
|
4
|
Messikommer A, Seipel K, Byrne S, Valk PJM, Pabst T, Luedtke NW. RNA Targeting in Acute Myeloid Leukemia. ACS Pharmacol Transl Sci 2020; 3:1225-1232. [PMID: 33344899 DOI: 10.1021/acsptsci.0c00120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Indexed: 12/12/2022]
Abstract
Nucleosides and their analogues constitute an essential family of anticancer drugs. DNA has been the presumptive target of the front-line prodrug for acute myeloid leukemia (AML), cytarabine (ara-C), since the 1980s. Here, the biomolecular targeting of ara-C was evaluated in primary white blood cells using the ara-C mimic "AzC" and azide-alkyne "click" reactions. Fluorescent staining and microscopy revealed that metabolic incorporation of AzC into primary white blood cells was unexpectedly enhanced by the DNA polymerase inhibitor aphidicholine. According to RNaseH digestion and pull-down-and-release experiments, AzC was incorporated into short RNA fragments bound to DNA in peripheral blood monocytes (PBMCs) collected from all six healthy human donors tested. Samples from 22 AML patients (French-American-British classes M4 and M5) exhibited much more heterogeneity, with 27% incorporating AzC into RNA and 55% into DNA. The overall survival of AML patients whose samples incorporated AzC into RNA was approximately 3-fold higher as compared to that of the DNA cohort (p ≤ 0.056, χ2 = 3.65). These results suggest that the RNA primers of DNA synthesis are clinically favorable targets of ara-C, and that variable incorporation of nucleoside drugs into DNA versus RNA may enable future patient stratification into treatment-specific subgroups.
Collapse
Affiliation(s)
| | - Katja Seipel
- Department of Medical Oncology, University Hospital Inselspital and University of Bern, CH-3010 Bern, Switzerland
| | - Stephen Byrne
- Department of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Peter J M Valk
- Department of Hematology, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Thomas Pabst
- Department of Medical Oncology, University Hospital Inselspital and University of Bern, CH-3010 Bern, Switzerland
| | - Nathan W Luedtke
- Department of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland.,Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3A 1A3, Canada
| |
Collapse
|
5
|
Cardinal-David B, Labbé MO, Prévost M, Dostie S, Guindon Y. Diastereoselective and regioselective synthesis of adenosine thionucleoside analogues using an acyclic approach. CAN J CHEM 2020. [DOI: 10.1139/cjc-2020-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An acyclic approach to synthesize thiofuranoside N-glycosides bearing an adenine nucleobase is presented herein. This approach provides a significant improvement in terms of regio- and diastereoselectivity compared with the current paradigms used for their formation. Activation of acyclic dithioacetal substrates bearing either a C2′-alkoxy or fluoro group and coupling with purine nucleobases selectively generates 1′,2′-syn thioaminals. The regiochemistry of the nucleobase coupling (N7 or N9) can also be controlled by using either silylated or unsilylated purines. A subsequent SN2-like cyclization of these 1′,2′-syn acyclic thioaminals results in the desired 1′,2′-cis thionucleoside analogues.
Collapse
Affiliation(s)
- Benoit Cardinal-David
- Bio-organic Chemistry Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada
- Department of Chemistry, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Marc-Olivier Labbé
- Bio-organic Chemistry Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada
- Department of Chemistry, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Michel Prévost
- Bio-organic Chemistry Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada
| | - Starr Dostie
- Bio-organic Chemistry Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada
| | - Yvan Guindon
- Bio-organic Chemistry Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada
- Department of Chemistry, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
6
|
Structural insights into mutagenicity of anticancer nucleoside analog cytarabine during replication by DNA polymerase η. Sci Rep 2019; 9:16400. [PMID: 31704958 PMCID: PMC6841716 DOI: 10.1038/s41598-019-52703-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/22/2019] [Indexed: 01/08/2023] Open
Abstract
Cytarabine (AraC) is the mainstay chemotherapy for acute myeloid leukemia (AML). Whereas initial treatment with AraC is usually successful, most AML patients tend to relapse, and AraC treatment-induced mutagenesis may contribute to the development of chemo-resistant leukemic clones. We show here that whereas the high-fidelity replicative polymerase Polδ is blocked in the replication of AraC, the lower-fidelity translesion DNA synthesis (TLS) polymerase Polη is proficient, inserting both correct and incorrect nucleotides opposite a template AraC base. Furthermore, we present high-resolution crystal structures of human Polη with a template AraC residue positioned opposite correct (G) and incorrect (A) incoming deoxynucleotides. We show that Polη can accommodate local perturbation caused by the AraC via specific hydrogen bonding and maintain a reaction-ready active site alignment for insertion of both correct and incorrect incoming nucleotides. Taken together, the structures provide a novel basis for the ability of Polη to promote AraC induced mutagenesis in relapsed AML patients.
Collapse
|
7
|
Holzer S, Rzechorzek NJ, Short IR, Jenkyn-Bedford M, Pellegrini L, Kilkenny ML. Structural Basis for Inhibition of Human Primase by Arabinofuranosyl Nucleoside Analogues Fludarabine and Vidarabine. ACS Chem Biol 2019; 14:1904-1912. [PMID: 31479243 PMCID: PMC6757278 DOI: 10.1021/acschembio.9b00367] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022]
Abstract
Nucleoside analogues are widely used in clinical practice as chemotherapy drugs. Arabinose nucleoside derivatives such as fludarabine are effective in the treatment of patients with acute and chronic leukemias and non-Hodgkin's lymphomas. Although nucleoside analogues are generally known to function by inhibiting DNA synthesis in rapidly proliferating cells, the identity of their in vivo targets and mechanism of action are often not known in molecular detail. Here we provide a structural basis for arabinose nucleotide-mediated inhibition of human primase, the DNA-dependent RNA polymerase responsible for initiation of DNA synthesis in DNA replication. Our data suggest ways in which the chemical structure of fludarabine could be modified to improve its specificity and affinity toward primase, possibly leading to less toxic and more effective therapeutic agents.
Collapse
Affiliation(s)
- Sandro Holzer
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Neil J. Rzechorzek
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Isobel R. Short
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Michael Jenkyn-Bedford
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Luca Pellegrini
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Mairi L. Kilkenny
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| |
Collapse
|
8
|
Ubhi T, Brown GW. Exploiting DNA Replication Stress for Cancer Treatment. Cancer Res 2019; 79:1730-1739. [PMID: 30967400 DOI: 10.1158/0008-5472.can-18-3631] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/08/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Abstract
Complete and accurate DNA replication is fundamental to cellular proliferation and genome stability. Obstacles that delay, prevent, or terminate DNA replication cause the phenomena termed DNA replication stress. Cancer cells exhibit chronic replication stress due to the loss of proteins that protect or repair stressed replication forks and due to the continuous proliferative signaling, providing an exploitable therapeutic vulnerability in tumors. Here, we outline current and pending therapeutic approaches leveraging tumor-specific replication stress as a target, in addition to the challenges associated with such therapies. We discuss how replication stress modulates the cell-intrinsic innate immune response and highlight the integration of replication stress with immunotherapies. Together, exploiting replication stress for cancer treatment seems to be a promising strategy as it provides a selective means of eliminating tumors, and with continuous advances in our knowledge of the replication stress response and lessons learned from current therapies in use, we are moving toward honing the potential of targeting replication stress in the clinic.
Collapse
Affiliation(s)
- Tajinder Ubhi
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Grant W Brown
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada. .,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Li XQ, Ren J, Chen P, Chen YJ, Wu M, Wu Y, Chen K, Li J. Co-inhibition of Pol η and ATR sensitizes cisplatin-resistant non-small cell lung cancer cells to cisplatin by impeding DNA damage repair. Acta Pharmacol Sin 2018; 39:1359-1372. [PMID: 29849128 DOI: 10.1038/aps.2017.187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 12/14/2017] [Indexed: 02/08/2023]
Abstract
For the majority of patients with advanced non-small cell lung cancer (NSCLC), the standard of care remains platinum-based chemotherapy. However, cisplatin resistance is a big obstacle to the treatment, and elucidation of its mechanism is warranted. In this study, we showed that there was no difference in intracellular uptake of cisplatin or the removal of platinum-DNA adducts between a cisplatin-resistant NSCLC cell line (A549/DR) and a cisplatin-sensitive NSCLC cell line (A549). However, the capacity to repair DNA interstrand crosslinks (ICLs) and double-strand breaks (DSBs) was significantly enhanced in the A549/DR cell line compared to 3 cisplatin-sensitive cell lines. We found that the protein and mRNA expression levels of Pol η, a Y-family translesion synthesis (TLS) polymerase, were markedly increased upon cisplatin exposure in A549/DR cells compared with A549 cells. Furthermore, intracellular co-localization of Pol η and proliferation cell nuclear antigen (PCNA) induced by cisplatin or cisplatin plus gemcitabine treatment was inhibited by depleting ataxia telangiectasia mutated and Rad-3-related (ATR). Pol η depletion by siRNA sensitized A549/DR cells to cisplatin; co-depletion of Pol η and ATR further increased A549/DR cell death induced by cisplatin or cisplatin plus gemcitabine compared to depletion of Pol η or ATR alone, concomitant with inhibition of DNA ICL and DSB repair and accumulation of DNA damage. No additional sensitization effect of co-depleting Pol η and ATR was observed in A549 cells. These results demonstrate that co-inhibition of Pol η and ATR reverses the drug resistance of cisplatin-resistant NSCLC cells by blocking the repair of DNA ICLs and DSBs induced by cisplatin or cisplatin plus gemcitabine.
Collapse
|
10
|
McCluskey GD, Mohamady S, Taylor SD, Bearne SL. Exploring the Potent Inhibition of CTP Synthase by Gemcitabine-5'-Triphosphate. Chembiochem 2016; 17:2240-2249. [PMID: 27643605 DOI: 10.1002/cbic.201600405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Indexed: 11/10/2022]
Abstract
CTP synthase (CTPS) catalyzes the conversion of UTP to CTP and is a target for the development of antiviral, anticancer, antiprotozoal, and immunosuppressive agents. Exposure of cell lines to the antineoplastic cytidine analogue gemcitabine causes depletion of intracellular CTP levels, but the direct inhibition of CTPS by its metabolite gemcitabine-5'-triphosphate (dF-dCTP) has not been demonstrated. We show that dF-dCTP is a potent competitive inhibitor of Escherichia coli CTPS with respect to UTP [Ki =(3.0±0.1) μm], and that its binding affinity exceeds that of CTP ≈75-fold. Site-directed mutagenesis studies indicated that Glu149 is an important binding determinant for both CTP and dF-dCTP. Comparison of the binding affinities of the 5'-triphosphates of 2'-fluoro-2'-deoxycytidine and 2'-fluoro-2'-deoxyarabinocytidine revealed that the 2'-F-arabino group contributes markedly to the strong binding of dF-dCTP. Geminal 2'-F substitution on UTP (dF-dUTP) did not result in an increase in binding affinity with CTPS. Remarkably, CTPS catalyzed the conversion of dF-dUTP into dF-dCTP, thus suggesting that dF-dCTP might be regenerated in vivo from its catabolite dF-dUTP.
Collapse
Affiliation(s)
- Gregory D McCluskey
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Samy Mohamady
- Faculty of Pharmacy, The British University in Egypt, 11837, Cairo, Egypt
| | - Scott D Taylor
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.,Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
11
|
Dostie S, Prévost M, Mochirian P, Tanveer K, Andrella N, Rostami A, Tambutet G, Guindon Y. Diastereoselective Synthesis of C2′-Fluorinated Nucleoside Analogues Using an Acyclic Approach. J Org Chem 2016; 81:10769-10790. [DOI: 10.1021/acs.joc.6b01845] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Starr Dostie
- Bio-organic
Chemistry Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
- Department
of Chemistry, McGill University, Montréal, Québec H3A 2K6, Canada
| | - Michel Prévost
- Bio-organic
Chemistry Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Philippe Mochirian
- Bio-organic
Chemistry Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Kashif Tanveer
- Bio-organic
Chemistry Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Nicholas Andrella
- Bio-organic
Chemistry Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Ariana Rostami
- Bio-organic
Chemistry Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Guillaume Tambutet
- Bio-organic
Chemistry Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
- Department
of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Yvan Guindon
- Bio-organic
Chemistry Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
- Department
of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
- Department
of Chemistry, McGill University, Montréal, Québec H3A 2K6, Canada
| |
Collapse
|
12
|
Novel DNA methyltransferase-1 (DNMT1) depleting anticancer nucleosides, 4'-thio-2'-deoxycytidine and 5-aza-4'-thio-2'-deoxycytidine. Cancer Chemother Pharmacol 2014; 74:291-302. [PMID: 24908436 DOI: 10.1007/s00280-014-2503-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 05/27/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE Currently approved DNA hypomethylating nucleosides elicit their effects in part by depleting DNA methyltransferase I (DNMT1). However, their low response rates and adverse effects continue to drive the discovery of newer DNMT1 depleting agents. Herein, we identified two novel 2'-deoxycytidine (dCyd) analogs, 4'-thio-2'-deoxycytidine (T-dCyd) and 5-aza-4'-thio-2'-deoxycytidine (aza-T-dCyd) that potently deplete DNMT1 in both in vitro and in vivo models of cancer and concomitantly inhibit tumor growth. METHODS DNMT1 protein levels in in vitro and in vivo cancer models were determined by Western blotting and antitumor efficacy was evaluated using xenografts. Effects on CpG methylation were evaluated using methylation-specific PCR. T-dCyd metabolism was evaluated using radiolabeled substrate. RESULTS T-dCyd markedly depleted DNMT1 in CCRF-CEM and KG1a leukemia and NCI-H23 lung carcinoma cell lines, while it was ineffective in the HCT-116 colon or IGROV-1 ovarian tumor lines. On the other hand, aza-T-dCyd potently depleted DNMT1 in all of these lines indicating that dCyd analogs with minor structural dissimilarities induce different DNMT1 turnover mechanisms. Although T-dCyd was deaminated to 4'-thio-2'-deoxyuridine, very little was converted to 4'-thio-thymidine nucleotides, suggesting that inhibition of thymidylate synthase would be minimal with 4'-thio dCyd analogs. Both T-dCyd and aza-T-dCyd also depleted DNMT1 in human tumor xenografts and markedly reduced in vivo tumor growth. Interestingly, the selectivity index of aza-T-dCyd was at least tenfold greater than that of decitabine. CONCLUSIONS Collectively, these data show that 4'-thio modified dCyd analogs, such as T-dCyd or aza-T-dCyd, could be a new source of clinically effective DNMT1 depleting anticancer compounds with less toxicity.
Collapse
|
13
|
Huang SYN, Murai J, Dalla Rosa I, Dexheimer TS, Naumova A, Gmeiner WH, Pommier Y. TDP1 repairs nuclear and mitochondrial DNA damage induced by chain-terminating anticancer and antiviral nucleoside analogs. Nucleic Acids Res 2013; 41:7793-803. [PMID: 23775789 PMCID: PMC3763526 DOI: 10.1093/nar/gkt483] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Chain-terminating nucleoside analogs (CTNAs) that cause stalling or premature termination of DNA replication forks are widely used as anticancer and antiviral drugs. However, it is not well understood how cells repair the DNA damage induced by these drugs. Here, we reveal the importance of tyrosyl–DNA phosphodiesterase 1 (TDP1) in the repair of nuclear and mitochondrial DNA damage induced by CTNAs. On investigating the effects of four CTNAs—acyclovir (ACV), cytarabine (Ara-C), zidovudine (AZT) and zalcitabine (ddC)—we show that TDP1 is capable of removing the covalently linked corresponding CTNAs from DNA 3′-ends. We also show that Tdp1−/− cells are hypersensitive and accumulate more DNA damage when treated with ACV and Ara-C, implicating TDP1 in repairing CTNA-induced DNA damage. As AZT and ddC are known to cause mitochondrial dysfunction, we examined whether TDP1 repairs the mitochondrial DNA damage they induced. We find that AZT and ddC treatment leads to greater depletion of mitochondrial DNA in Tdp1−/− cells. Thus, TDP1 seems to be critical for repairing nuclear and mitochondrial DNA damage caused by CTNAs.
Collapse
Affiliation(s)
- Shar-yin N Huang
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA, Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan, NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA and Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Patel K, Yerram SR, Azad NA, Kern SE. A thymidylate synthase ternary complex-specific antibody, FTS, permits functional monitoring of fluoropyrimidines dosing. Oncotarget 2013; 3:678-85. [PMID: 22824673 PMCID: PMC3443251 DOI: 10.18632/oncotarget.554] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
5-Fluorouracil (5FU) and similar fluoropyrimidines induce covalent modification of thymidylate synthase (TS) and inhibit its activity. They are often used to treat solid cancers, but drug resistance and toxicity are drawbacks. Therefore, there is an unmet need for a functional assay to quantify fluorouracil activity in tissues, so as to individually tailor dosing. It is cumbersome to separately quantify unmodified and 5FU-modified TS using currently available commercial anti-TS antibodies because they recognize both forms. We report here the first monoclonal antibody (FTS) specific to 5FU-modified TS. By immunoblot assay, the FTS antibody specifically recognizes modified TS in a dose-dependent manner in 5FU-treated cells, in cancer xenograft tissues of 5FU-treated mice, and in the murine tissues. In the same assay, the antibody is nonreactive with unmodified TS in untreated or treated cells and tissues. Speculatively, a high-throughput assay could be enabled by pairing anti-TS antibodies of two specificities, one recognizing only modified TS and another recognizing both forms, to structurally quantify the TS-inhibiting effect of fluorouracil at a cellular or tissue level without requiring prior protein separation. Such a development might aid preclinical analytic studies or make practical the individual tailoring of dosing.
Collapse
Affiliation(s)
- Kalpesh Patel
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | |
Collapse
|
15
|
Kamakura N, Yamamoto J, Brooks PJ, Iwai S, Kuraoka I. Effects of 5',8-cyclodeoxyadenosine triphosphates on DNA synthesis. Chem Res Toxicol 2012; 25:2718-24. [PMID: 23146066 DOI: 10.1021/tx300351p] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hydroxyl radicals generate a broad range of DNA lesions in living cells. Cyclopurine deoxynucleosides (CPUs) are a biologically significant class of oxidative DNA lesions due to their helical distortion and chemically stability. The CPUs on DNA are substrates for the nucleotide excision repair (NER) but not for base excision repair or direct damage reversal. Moreover, these lesions block DNA and RNA polymerases, resulting in cell death. Here, we describe the chemical synthesis of 5'S and 5'R isomers of 5',8-cyclodeoxyadenosine triphosphate (cdATP) and demonstrate their ability to be incorporated into DNA by replicative DNA polymerases. DNA synthesis assays revealed that the incorporation of the stereoisomeric cdATPs strongly inhibits DNA polymerase reactions. Surprisingly, the two stereoisomers had different mutagenic profiles, since the S isomer of cdATP could be inserted opposite to the dTMP, but the R isomer of cdATP could be inserted opposite to the dCMP. Kinetic analysis revealed that the S isomer of cdATP could be incorporated more efficiently (25.6 μM(-1) min(-1)) than the R isomer (1.13 μM(-1) min(-1)) during DNA synthesis. Previous data showed that the S isomer in DNA blocked DNA synthesis and the exonuclease activity of DNA polymerase and is less efficiently repaired by NER. This indicates that the S isomer has a tendency to accumulate on the genome DNA, and as such, the S isomer of cdATP may be a candidate cytotoxic drug.
Collapse
Affiliation(s)
- Naoto Kamakura
- Graduate School of Engineering Science, Osaka University Graduate School of Engineering Science, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | | | | | | | | |
Collapse
|
16
|
Wen Y, Gorsic LK, Wheeler HE, Ziliak DM, Huang RS, Dolan ME. Chemotherapeutic-induced apoptosis: a phenotype for pharmacogenomics studies. Pharmacogenet Genomics 2011; 21:476-88. [PMID: 21642893 PMCID: PMC3134538 DOI: 10.1097/fpc.0b013e3283481967] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM To determine whether cellular apoptosis is a suitable phenotypic trait for pharmacogenomics studies by evaluating caspase 3/7-mediated activity in lymphoblastoid cell lines after treatment with six chemotherapeutic agents: 5'-deoxyfluorouridine, pemetrexed, cytarabine, paclitaxel, carboplatin, and cisplatin. MATERIALS AND METHODS Using monozygotic twin pair and sibling pair lymphoblastoid cell lines, we identified conditions for measurement of caspase 3/7 activity in lymphoblastoid cell lines. Genome-wide association studies were performed with over 2 million single nucleotide polymorphisms (SNPs) and cisplatin-induced apoptosis in HapMap CEU cell lines (n=77). RESULTS Although treatment with 5'-deoxyfluorouridine and pemetrexed for up to 24 h resulted in low levels of apoptosis or interindividual variation in caspase-dependent cell death; paclitaxel, cisplatin, carboplatin, and cytarabine treatment for 24 h resulted in 9.4-fold, 9.1-fold, 7.0-fold, and 6.0-fold increases in apoptosis relative to control, respectively. There was a weak correlation between caspase activity and cytotoxicity (r(2)=0.03-0.29) demonstrating that cytotoxicity and apoptosis are two distinct phenotypes that may produce independent genetic associations. Estimated heritability (h(2)) for apoptosis was 0.57 and 0.29 for cytarabine (5 and 40 μmol/l, respectively), 0.22 for paclitaxel (12.5 nmol/l), and 0.34 for cisplatin (5 μmol/l). In the genome-wide association study using the HapMap CEU panel, we identified a significant enrichment of cisplatin-induced cytotoxicity SNPs within the significant cisplatin-induced apoptosis SNPs and an enrichment of expression quantitative trait loci (eQTL). Among these eQTLs, we identified several eQTLs with known function related to apoptosis and/or cytotoxicity. CONCLUSION Our study identifies apoptosis as a phenotype for pharmacogenomic studies in lymphoblastoid cell lines after treatment with paclitaxel, cisplatin, carboplatin, and cytarabine that may have utility for discovering biomarkers to predict response to certain chemotherapeutics.
Collapse
Affiliation(s)
| | | | - Heather E. Wheeler
- Section of Hematology/Oncology, Department of Medicine, the University of Chicago, Chicago, IL 60637, USA
| | - Dana M. Ziliak
- Section of Hematology/Oncology, Department of Medicine, the University of Chicago, Chicago, IL 60637, USA
| | - R. Stephanie Huang
- Section of Hematology/Oncology, Department of Medicine, the University of Chicago, Chicago, IL 60637, USA
| | - M. Eileen Dolan
- Section of Hematology/Oncology, Department of Medicine, the University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
17
|
Abstract
The discovery of human DNA polymerase eta (pol η) has a major impact on the fields of DNA replication/repair fields. Since the discovery of human pol η, a number of new DNA polymerases with the ability to bypass various DNA lesions have been discovered. Among these polymerases, pol η is the most extensively studied lesion bypass polymerase with a defined major biological function, that is, to replicate across the cyclobutane pyrimidine dimers introduced by UV irradiation. Cyclobutane pyrimidine dimer is a major DNA lesion that causes distortion of DNA structure and block the replicative DNA polymerases during DNA replication process. Genetic defects in the pol η gene, Rad30, results in a disease called xeroderma pigmentosum variant. This review focuses on the overall properties of pol η and the mechanism that involved in regulating its activity in cells. In addition, the role of pol η in the action of DNA-targeting anticancer compounds is also discussed.
Collapse
Affiliation(s)
- Kai-ming Chou
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA.
| |
Collapse
|
18
|
Robak T. New nucleoside analogs for patients with hematological malignancies. Expert Opin Investig Drugs 2011; 20:343-59. [PMID: 21320002 DOI: 10.1517/13543784.2011.554822] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION In the last few years, several new purine and pyrimidine nucleoside analogs have been synthesized and made available for both preclinical studies and clinical trials. AREAS COVERED This article summarizes recent achievements in the mechanism of action, pharmacological properties and clinical activity and toxicity as well as the emerging role of newer purine and pyrimidine nucleoside analogs potentially active in lymphoid and myeloid malignancies. A literature review was conducted from the MEDLINE database PubMed for articles in English. Publications from 2000 to October 2010 were scrutinized. The search terms used were clofarabine, nelarabine, forodesine, 8-chloroadenosine, LMP-420, azacitidine, decitabine, sapacitabine, troxacitabine, thiarabine and zebularine in conjunction with hematologic malignancies, leukemia and lymphoma. Conference proceedings from the previous 5 years of the American Society of Hematology, European Hematology Association, and American Society of Clinical Oncology were searched manually. Additional relevant publications were obtained by reviewing the references from the chosen articles. EXPERT OPINION Several new nucleoside analogs are currently under investigation in preclinical and clinical studies concerning hematological malignancies. Clofarabine, nelarabine, azacitidine and decitabine have been recently approved for the treatment of leukemias and/or myelodysplastic syndromes. Other agents including forodesine, 8-chloroadenosine, LMP-420, sapacitabine, troxacitabine, thiarabine and zebularine seem to be promising for the treatment of lymphoid and myeloid malignancies. However, definitive data from ongoing and future clinical trials will aid in better defining their status in the treatment of hematological disorders.
Collapse
Affiliation(s)
- Tadeusz Robak
- Medical University of Lodz, Department of Hematology, Lodz, Poland.
| |
Collapse
|
19
|
Abstract
To maintain genomic stability, ribonucleotide incorporation during DNA synthesis is controlled predominantly at the DNA polymerase level. A steric clash between the 2'-hydroxyl of an incoming ribonucleotide and a bulky active site residue, known as the "steric gate", establishes an effective mechanism for most DNA polymerases to selectively insert deoxyribonucleotides. Recent kinetic, structural, and in vivo studies have illuminated novel features about ribonucleotide exclusion and the mechanistic consequences of ribonucleotide misincorporation on downstream events, such as the bypass of a ribonucleotide in a DNA template and the subsequent extension of the DNA lesion bypass product. These important findings are summarized in this review.
Collapse
Affiliation(s)
- Jessica A Brown
- Department of Biochemistry, Ohio State University, Columbus, Ohio 43210, United States
| | | |
Collapse
|
20
|
Prakasha Gowda AS, Polizzi JM, Eckert KA, Spratt TE. Incorporation of gemcitabine and cytarabine into DNA by DNA polymerase beta and ligase III/XRCC1. Biochemistry 2010; 49:4833-40. [PMID: 20459144 DOI: 10.1021/bi100200c] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1-Beta-D-arabinofuranosylcytosine (cytarabine, araC) and 2',2'-difluoro-2'-deoxycytidine (gemcitabine, dFdC), are effective cancer chemotherapeutic agents due to their ability to become incorporated into DNA and then subsequently inhibit DNA synthesis by replicative DNA polymerases. However, the impact of these 3'-modified nucleotides on the activity of specialized DNA polymerases has not been investigated. The role of polymerase beta and base excision repair may be of particular importance due to the increased oxidative stress in tumors, increased oxidative stress caused by chemotherapy treatment, and the variable amounts of polymerase beta in tumors. Here we directly investigate the incorporation of the 5'-triphosphorylated form of araC, dFdC, 2'-fluoro-2'-deoxycytidine (FdC), and cytidine into two nicked DNA substrates and the subsequent ligation. Opposite template dG, the relative k(pol)/K(d) for incorporation was dCTP > araCTP, dFdCTP >> rCTP. The relative k(pol)/K(d) for FdCTP depended on sequence. The effect on k(pol)/K(d) was due largely to changes in k(pol) with no differences in the affinity of the nucleoside triphosphates to the polymerase. Ligation efficiency by T4 ligase and ligase III/XRCC1 was largely unaffected by the nucleotide analogues. Our results show that BER is capable of incorporating araC and dFdC into the genome.
Collapse
Affiliation(s)
- A S Prakasha Gowda
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University,Hershey, Pennsylvania 17033, USA
| | | | | | | |
Collapse
|
21
|
O'Konek JJ, Ladd B, Flanagan SA, Im MM, Boucher PD, Thepsourinthone TS, Secrist JA, Shewach DS. Alteration of the carbohydrate for deoxyguanosine analogs markedly changes DNA replication fidelity, cell cycle progression and cytotoxicity. Mutat Res 2010; 684:1-10. [PMID: 20004674 DOI: 10.1016/j.mrfmmm.2009.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 10/29/2009] [Accepted: 11/17/2009] [Indexed: 11/17/2022]
Abstract
Nucleoside analogs are efficacious cancer chemotherapeutics due to their incorporation into tumor cell DNA. However, they exhibit vastly different antitumor efficacies, suggesting that incorporation produces divergent effects on DNA replication. Here we have evaluated the consequences of incorporation on DNA replication and its fidelity for three structurally related deoxyguanosine analogs: ganciclovir (GCV), currently in clinical trials in a suicide gene therapy approach for cancer, D-carbocyclic 2'-deoxyguanosine (CdG) and penciclovir (PCV). GCV and CdG elicited similar cytotoxicity at low concentrations, whereas PCV was 10-100-fold less cytotoxic in human tumor cells. DNA replication fidelity was evaluated using a supF plasmid-based mutation assay. Only GCV induced a dose-dependent increase in mutation frequency, predominantly GC-->TA transversions, which contributed to cytotoxicity and implicated the ether oxygen in mutagenicity. Activation of mismatch repair with hydroxyurea decreased mutations but failed to repair the GC-->TA transversions. GCV slowed S-phase progression and CdG also induced a G2/M block, but both drugs allowed completion of one cell cycle after drug treatment followed by cell death in the second cell cycle. In contrast, PCV induced a lengthy early S-phase block due to profound suppression of DNA synthesis, with cell death in the first cell cycle after drug treatment. These data suggest that GCV and CdG elicit superior cytotoxicity due to their effects in template DNA, whereas strong inhibition of nascent strand synthesis by PCV may protect against cytotoxicity. Nucleoside analogs based on the carbohydrate structures of GCV and CdG is a promising area for antitumor drug development.
Collapse
Affiliation(s)
- Jessica J O'Konek
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Williams AA, Darwanto A, Theruvathu JA, Burdzy A, Neidigh JW, Sowers LC. Impact of sugar pucker on base pair and mispair stability. Biochemistry 2009; 48:11994-2004. [PMID: 19899814 PMCID: PMC2814217 DOI: 10.1021/bi9014133] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The selection of nucleoside triphosphates by a polymerase is controlled by several energetic and structural features, including base pairing geometry as well as sugar structure and conformation. Whereas base pairing has been considered exhaustively, substantially less is known about the role of sugar modifications for both nucleotide incorporation and primer extension. In this study, we synthesized oligonucleotides containing 2'-fluoro-modified nucleosides with constrained sugar pucker in an internucleotide position and, for the first time, at a primer 3'-end. The thermodynamic stability of these duplexes was examined. The nucleoside 2'-deoxy-2'-fluoroarabinofuranosyluracil [U(2'F(ara))] favors the 2'-endo conformation (DNA-like), while 2'-deoxy-2'-fluororibofuranosyluracil [U(2'F(ribo))] favors the 3'-endo conformation (RNA-like). Oligonucleotides containing U(2'F(ara)) have slightly higher melting temperatures (T(m)) than those containing U(2'F(ribo)) when located in internucleotide positions or at the 3'-end and when correctly paired with adenine or mispaired with guanine. However, both modifications decrease the magnitude of DeltaH degrees and DeltaS degrees for duplex formation in all sequence contexts. In examining the thermodynamic properties for this set of oligonucleotides, we find entropy-enthalpy compensation is apparent. Our thermodynamic findings led to a series of experiments with DNA ligase that reveal, contrary to expectation based upon observed T(m) values, that the duplex containing the U(2'F(ribo)) analogue is more easily ligated. The 2'-fluoro-2'-deoxynucleosides examined here are valuable probes of the impact of sugar constraint and are also members of an important class of antitumor and antiviral agents. The data reported here may facilitate an understanding of the biological properties of these agents, as well as the contribution of sugar conformation to replication fidelity.
Collapse
Affiliation(s)
- Adides A. Williams
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California 92350
| | - Agus Darwanto
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California 92350
| | - Jacob A. Theruvathu
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California 92350
| | - Artur Burdzy
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California 92350
| | - Jonathan W. Neidigh
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California 92350
| | - Lawrence C. Sowers
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California 92350
| |
Collapse
|
23
|
Parker WB. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem Rev 2009; 109:2880-93. [PMID: 19476376 DOI: 10.1021/cr900028p] [Citation(s) in RCA: 403] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- William B Parker
- Southern Research Institute, 2000 Ninth Avenue, South Birmingham, Alabama 35205, USA.
| |
Collapse
|
24
|
Enhancement of the in vivo antitumor activity of clofarabine by 1-beta-D-[4-thio-arabinofuranosyl]-cytosine. Cancer Chemother Pharmacol 2008; 64:253-61. [PMID: 19002461 DOI: 10.1007/s00280-008-0862-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 10/14/2008] [Indexed: 10/21/2022]
Abstract
PURPOSE Clofarabine increases the activation of 1-beta-D-arabinofuranosyl cytosine (araC) in tumor cells, and combination of these two drugs has been shown to result in good clinical activity against various hematologic malignancies. 1-beta-D-[4-thio-arabinofuranosyl] cytosine (T-araC) is a new cytosine analog that has exhibited excellent activity against a broad spectrum of human solid tumors and leukemia/lymphoma xenografts in mice and is currently being evaluated in patients as a new drug for the treatment of cancer. Since T-araC has a vastly superior preclinical efficacy profile in comparison to araC, we have initiated studies to determine the potential value of clofarabine/T-araC combination therapy. METHODS In vitro studies have been conducted to determine the effect of clofarabine on the metabolism of T-araC, and in vivo studies have been conducted to determine the effect of the clofarabine/T-araC combination on five human tumor xenografts in mice. RESULTS Initial studies with various tumor cells in culture indicated that a 2-h incubation with clofarabine enhanced the metabolism of T-araC 24 h after its removal by threefold in three tumor cell types (HCT-116 colon, K562 leukemia, and RL lymphoma) and by 1.5-fold in two other tumor cell types (MDA-MB-435 breast (melanoma), and HL-60 leukemia). Pretreatment with clofarabine resulted in a slight decrease in metabolism of T-araC in RPMI-8226 myeloma cells (65% of control) and inhibited metabolism of T-araC in CCRF-CEM leukemia cells by 90%. In vivo combination studies were conducted with various human tumor xenografts to determine whether or not the modulations observed in vitro were reflective of the in vivo situation. Clofarabine and T-araC were administered on alternate days for five treatments each (q2dx5) with the administration of T-araC 24 h after each clofarabine treatment. Combination treatment of HCT-116, K562, HL-60, or RL tumors with clofarabine and T-araC resulted in dramatically superior anti-tumor activity than treatment with either agent alone, whereas this combination resulted in antagonism in CCRF-CEM tumors. The in vivo antitumor activity of clofarabine plus T-araC against HCT-116 tumors was much better than the activity seen with clofarabine plus araC. CONCLUSIONS These studies provide a rationale for clinical trials using this combination in the treatment of acute leukemias as well as solid tumors and suggest that this combination would exhibit greater antitumor activity than that of clofarabine plus araC.
Collapse
|
25
|
Keller KE, Cavanaugh N, Kuchta RD. Interaction of herpes primase with the sugar of a NTP. Biochemistry 2008; 47:8977-84. [PMID: 18672908 DOI: 10.1021/bi8008467] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We analyzed the interaction of nucleoside triphosphates (NTPs) containing modified sugars to develop a better understanding of how DNA primase from herpes simplex virus I catalyzes primer synthesis. During the NTP binding reaction, primase tolerated a large number of modifications to the sugar ring. Altering the 2' and 3' carbons and even converting the furanose sugar into an acyclic sugar did not prevent binding. Whether or not the base on the NTP could form a correct base pair with the template base being replicated also had minimal effect on the binding reaction, indicating that primase does not use this process to discriminate between right and wrong NTPs. Rather, the key feature that primase recognizes to bind a NTP is the 5'-gamma-phosphate since converting a NTP into a NDP greatly compromised binding. During the polymerization reaction, primase tolerated substantial modification of the 2'-carbon, including the presence of either an ara or ribo hydroxyl, two hydrogens, or two fluorines. However, polymerization absolutely required that the NTP contain a 3'-hydroxyl and an intact sugar ring. Modifications at the 2'-carbon of the nucleotide at the primer 3'-terminus significantly impaired further polymerization events. Compared to a ribonucleotide, incorporation of a 2'-deoxyribo- or 2',2'-difluoro-2'-deoxyribonucleotide resulted in strong chain termination, while incorporation of an aranucleotide resulted in very strong chain termination. The implications of these data with respect to the mechanism of primase and the relationship between human and herpes primase are discussed.
Collapse
Affiliation(s)
- Kristopher E Keller
- Department of Chemistry and Biochemistry, University of Colorado, 215 UCB, Boulder, Colorado 80309, USA
| | | | | |
Collapse
|
26
|
Fowler JD, Brown JA, Johnson KA, Suo Z. Kinetic investigation of the inhibitory effect of gemcitabine on DNA polymerization catalyzed by human mitochondrial DNA polymerase. J Biol Chem 2008; 283:15339-48. [PMID: 18378680 DOI: 10.1074/jbc.m800310200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Gemcitabine, 2'-deoxy-2', 2'-difluorocytidine (dFdC), is a drug approved for use against various solid tumors. Clinically, this moderately toxic nucleoside analog causes peripheral neuropathy, hematological dysfunction, and pulmonary toxicity in cancer patients. Although these side effects closely mimic symptoms of mitochondrial dysfunction, there is no direct evidence to show gemcitabine interferes with mitochondrial DNA replication catalyzed by human DNA polymerase gamma. Here we employed presteady state kinetic methods to directly investigate the incorporation of the 5'-triphosphorylated form of gemcitabine (dFdCTP), the excision of the incorporated monophosphorylated form (dFdCMP), and the bypass of template base dFdC catalyzed by human DNA polymerase gamma. Opposite template base dG, dFdCTP was incorporated with a 432-fold lower efficiency than dCTP. Although dFdC is not a chain terminator, the incorporated dFdCMP decreased the incorporation efficiency of the next 2 correct nucleotides by 214- and 7-fold, respectively. Moreover, the primer 3'-dFdCMP was excised with a 50-fold slower rate than the matched 3'-dCMP. When dFdC was encountered as a template base, DNA polymerase gamma paused at the lesion and one downstream position but eventually elongated the primer to full-length product. These pauses were because of a 1,000-fold decrease in nucleotide incorporation efficiency. Interestingly, the polymerase fidelity at these pause sites decreased by 2 orders of magnitude. Thus, our pre-steady state kinetic studies provide direct evidence demonstrating the inhibitory effect of gemcitabine on the activity of human mitochondrial DNA polymerase.
Collapse
Affiliation(s)
- Jason D Fowler
- Department of Biochemistry, Ohio State Biochemistry Program, Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
27
|
Zhang J, Visser F, King KM, Baldwin SA, Young JD, Cass CE. The role of nucleoside transporters in cancer chemotherapy with nucleoside drugs. Cancer Metastasis Rev 2007; 26:85-110. [PMID: 17345146 DOI: 10.1007/s10555-007-9044-4] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nucleoside analogs are important components of treatment regimens for various malignancies. Nucleoside-specific membrane transporters mediate plasma membrane permeation of physiologic nucleosides and most nucleoside analogs, for which the initial event is cellular conversion of nucleosides to active agents. Understanding of the roles of nucleoside transporters in nucleoside drug toxicity and resistance will provide opportunities for potentiating anticancer efficacy and avoiding resistance. Because transportability is a possible determinant of toxicity and resistance of many nucleoside analogs, nucleoside transporter abundance might be a prognostic marker to assess drug resistance. Elucidation of the structural determinants of nucleoside analogs for interaction with transporter proteins as well as the structural features of transporter proteins required for permeant interaction and translocation will lead to "transportability guidelines" for the rational design and therapeutic application of nucleoside analogs as anticancer drugs. It should eventually be possible to develop clinical assays that predict sensitivity and/or resistance to nucleoside anti-cancer drugs and thus to identify those patient populations that will most likely benefit from optimal nucleoside analog treatments. This review discusses recent results from structure/function studies of human nucleoside transporters, the role of nucleoside transport processes in the cytotoxicity and resistance of several anticancer nucleoside analogs and strategies to improve the nucleoside transporter-related anticancer effects of nucleoside analogs.
Collapse
Affiliation(s)
- Jing Zhang
- Membrane Protein Research Group, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Clarke ML, Damaraju VL, Zhang J, Mowles D, Tackaberry T, Lang T, Smith KM, Young JD, Tomkinson B, Cass CE. The role of human nucleoside transporters in cellular uptake of 4'-thio-beta-D-arabinofuranosylcytosine and beta-D-arabinosylcytosine. Mol Pharmacol 2006; 70:303-10. [PMID: 16617163 DOI: 10.1124/mol.105.021543] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
4'-Thio-beta-D-arabinofuranosyl cytosine (TaraC) is in phase I development for treatment of cancer. In human equilibrative nucleoside transporter (hENT) 1-containing CEM cells, initial rates of uptake (10 microM; picomoles per microliter of cell water per second) of [3H]TaraC and [3H]1-beta-D-arabinofuranosyl cytosine (araC) were low (0.007 +/- 003 and 0.034 +/- 0.003, respectively) compared with that of [3H]uridine (0.317 +/- 0.048), a highactivity hENT1 permeant. In hENT1- and hENT2-containing HeLa cells, initial rates of uptake (10 microM; picomoles per cell per second) of [3H]TaraC, [3H]araC, and [3H]deoxycytidine were low (0.30 +/- 0.003, 0.42 +/- 0.03, and 0.51 +/- 0.11, respectively) and mediated primarily by hENT1 (approximately 74, approximately 65, and approximately 61%, respectively). In HeLa cells with recombinant human concentrative nucleoside transporter (hCNT) 1 or hCNT3 and pharmacologically blocked hENT1 and hENT2, transport of 10 microM[3H]TaraC and [3H]araC was not detected. The apparent affinities of recombinant transporters (produced in yeast) for a panel of cytosine-containing nucleosides yielded results that were consistent with the observed low-permeant activities of TaraC and araC for hENT1/2 and negligible permeant activities for hCNT1/2/3. During prolonged drug exposures of CEM cells with hENT1 activity, araC was more cytotoxic than TaraC, whereas coexposures with nitrobenzylthioinosine (to pharmacologically block hENT1) yielded identical cytotoxicities for araC and TaraC. The introduction by gene transfer of hENT2 and hCNT1 activities, respectively, into nucleoside transport-defective CEM cells increased sensitivity to both drugs moderately and slightly. These results demonstrated that nucleoside transport capacity (primarily via hENT1, to a lesser extent by hENT2 and possibly by hCNT1) is a determinant of pharmacological activity of both drugs.
Collapse
Affiliation(s)
- Marilyn L Clarke
- Department of Oncology, Cross Cancer Institute, 11560 University Ave., Edmonton, AB, T6G 1Z2 Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lam W, Park SY, Leung CH, Cheng YC. Apurinic/apyrimidinic endonuclease-1 protein level is associated with the cytotoxicity of L-configuration deoxycytidine analogs (troxacitabine and beta-L-2',3'-dideoxy-2',3'-didehydro-5-fluorocytidine) but not D-configuration deoxycytidine analogs (gemcitabine and beta-D-arabinofuranosylcytosine). Mol Pharmacol 2006; 69:1607-14. [PMID: 16481390 DOI: 10.1124/mol.105.021527] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Beta-L-dioxolane-cytidine (L-OddC, BCH-4556, Troxacitabine), a novel L-configuration deoxycytidine analog, is under phase III clinical trial for cancer treatment. We showed that human apurinic/apyrimidinic endonuclease (APE-1) has exonuclease activity for preferentially removing L-OddC and other L-configuration nucleosides over D-configuration nucleosides from the 3' terminus of DNA in vitro. In this study, we examined whether APE-1 protein plays a role in the cytotoxicity of L-OddC. We established RKO (human colorectal carcinoma) cell lines that can be induced by doxycycline to overexpress 4- to 5-fold either APE-1 wild type (wt), C65A (redox deficient), E96A (exonuclease deficient), or E96Q (exonuclease deficient) mutants and to down-regulate endogenous APE-1 by short hairpin RNA to 10% of the original level. Clonogenic results indicated that the induction of wt or C65A, but not E96A or E96Q, made cells approximately 2-fold resistant to L-OddC and beta-L-2',3'-dideoxy-2',3'-didehydro-5-fluorocytidine (L-Fd4C), whereas the down-regulation of APE-1 sensitized cells by approximately 2-fold to L-OddC and L-Fd4C. The alteration of APE-1 in cells did not change the sensitivity of these cells to beta-D-2',2'-difluorodeoxycytidine (dFdC; gemcitabine) and beta-D-arabinofuranosylcytosine (AraC), both of which are D-configuration deoxycytidine analogs. The DNA incorporation of L-OddC, but not that of dFdC, was decreased by the induction of wt APE-1 but not E96A mutant and was increased by the down-regulation of APE-1. The rate of retention of L-OddC was inversely correlated to the level of APE-1 in isolated nuclei; however, this was not the case for dFdC. In conclusion, this study supports the hypothesis that APE-1 plays a critical role in the actions of L-configuration but not D-configuration nucleoside analogs.
Collapse
Affiliation(s)
- Wing Lam
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
30
|
Tiwari KN, Messini L, Montgomery JA, Secrist JA. Synthesis and biological activity of 4'-thio-L-xylofuranosyl purine nucleosides. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2006; 24:1895-906. [PMID: 16438056 DOI: 10.1080/15257770500269077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A series of some new 4'-thio-L-xylofuranosyl nucleosides were prepared and evaluated as potential anticancer agents. A versatile sugar intermediate for direct coupling with the purine moiety is also synthesized by an efficient and high-yielding route. Proof of structure and configuration at all chiral centers of the nucleosides was obtained by proton NMR. All target compounds were evaluated in a series of human cancer cell lines in vitro. The details of the synthesis of the carbohydrate precursor 1-O-acetyl-2,3,5-tri-O-benzyl-4-thio-L-xylofuranose (6) and corresponding purine nucleosides are presented in the manuscript.
Collapse
Affiliation(s)
- Kamal N Tiwari
- Southern Research Institute, Birmingham, Alabama 35255-5305, USA
| | | | | | | |
Collapse
|