1
|
Sánchez-Fernández N, Gómez-Acero L, Sarasola LI, Argerich J, Chevigné A, Jacobson KA, Ciruela F, Fernández-Dueñas V, Aso E. Cannabidiol negatively modulates adenosine A 2A receptor functioning in living cells. Acta Neuropsychiatr 2024; 36:320-324. [PMID: 37605951 PMCID: PMC10894643 DOI: 10.1017/neu.2023.30] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
OBJECTIVES Cannabidiol (CBD) is a phytocannabinoid with great potential in clinical applications. The mechanism(s) of action of CBD require further investigation. Previous studies suggested that adenosine A2A receptors (A2ARs) could play a role in CBD-induced effects. Here, we evaluated the ability of CBD to modify the function of A2AR. METHODS We used HEK-293T cells transfected with the cDNA encoding the human A2AR and Gαs protein, both modified to perform bioluminescence-based assays. We first assessed the effect of CBD on A2AR ligand binding using an A2AR NanoLuciferase sensor. Next, we evaluated whether CBD modified A2AR coupling to mini-Gαs proteins using the NanoBiT™ assay. Finally, we further assessed CBD effects on A2AR intrinsic activity by recording agonist-induced cAMP accumulation. RESULTS CBD did not bind orthosterically to A2AR but reduced the coupling of A2AR to Gαs protein and the subsequent generation of cAMP. CONCLUSION CBD negatively modulates A2AR functioning.
Collapse
Affiliation(s)
- Nuria Sánchez-Fernández
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L’Hospitalet de Llobregat, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Laura Gómez-Acero
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L’Hospitalet de Llobregat, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Laura I. Sarasola
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L’Hospitalet de Llobregat, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Josep Argerich
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L’Hospitalet de Llobregat, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L’Hospitalet de Llobregat, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Víctor Fernández-Dueñas
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L’Hospitalet de Llobregat, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Ester Aso
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L’Hospitalet de Llobregat, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Spain
| |
Collapse
|
2
|
Thompson KJ, Tobin AB. Crosstalk between the M 1 muscarinic acetylcholine receptor and the endocannabinoid system: A relevance for Alzheimer's disease? Cell Signal 2020; 70:109545. [PMID: 31978506 PMCID: PMC7184673 DOI: 10.1016/j.cellsig.2020.109545] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder which accounts for 60-70% of the 50 million worldwide cases of dementia and is characterised by cognitive impairments, many of which have long been associated with dysfunction of the cholinergic system. Although the M1 muscarinic acetylcholine receptor (mAChR) is considered a promising drug target for AD, ligands targeting this receptor have so far been unsuccessful in clinical trials. As modulatory receptors to cholinergic transmission, the endocannabinoid system may be a promising drug target to allow fine tuning of the cholinergic system. Furthermore, disease-related changes have been found in the endocannabinoid system during AD progression and indeed targeting the endocannabinoid system at specific disease stages alleviates cognitive symptoms in numerous mouse models of AD. Here we review the role of the endocannabinoid system in AD, and its crosstalk with mAChRs as a potential drug target for cholinergic dysfunction.
Collapse
Affiliation(s)
- Karen J Thompson
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, Davidson Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Andrew B Tobin
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, Davidson Building, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
3
|
Abstract
From the pharmacological point of view, allosteric modulators may present numerous advantages over orthosteric ligands. Growing availability of novel tools and experimental data provides a tempting opportunity to apply computational methods to improve known modulators and design novel ones. However, recent progress in understanding of complexity of allostery increases awareness of problems involved in design of modulators with desired properties. Deeper insight into phenomena such as probe dependence, altering signaling bias with minor changes in ligand structure, as well as influence of subtle endogenous allosteric factors turns out to be fundamental. These effects make the design of a modulator with precise pharmacological outcome a very challenging task, and need to be taken into consideration throughout the design process. In this chapter, we focus on nuances of targeting GPCR allosteric sites in computational drug design efforts, in particular with application of docking, virtual screening, and molecular dynamics.
Collapse
|
4
|
Allosteric Modulators of the Class A G Protein Coupled Receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 917:185-207. [PMID: 27236557 DOI: 10.1007/978-3-319-32805-8_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Allosteric modulation is the regulation of a protein by binding of an effector molecule at the proteins allosteric site (a site other than that of the endogenous ligand). Allosteric modulators, by virtue of the fact that they may stabilize different global conformations of a receptor, have the potential to disrupt protein-protein interactions of very large proteins and elicit diverse functional responses. The existence of ligands that allosterically modulate the G protein receptor (GPCR) functions provides both challenges and opportunities for drug development campaigns. A number of therapeutic advantages of allosteric modulators over classic orthosteric ligands were proposed, involving nature of response, improved selectivity and ligand-directed signaling. In this review I discuss various aspects of allosteric modulation of GPCRs, which arise from the interactions of receptors with synthetic or endogenous small molecules, ions, lipids and diverse proteins. Detection and quantification of allosteric modulation will be also addressed. In the conclusion I will present future opportunities and challenges in the development of allosteric modulators as therapeutics.
Collapse
|
5
|
van der Westhuizen ET, Valant C, Sexton PM, Christopoulos A. Endogenous Allosteric Modulators of G Protein–Coupled Receptors. J Pharmacol Exp Ther 2015; 353:246-60. [DOI: 10.1124/jpet.114.221606] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
6
|
Scholten DJ, Canals M, Wijtmans M, de Munnik S, Nguyen P, Verzijl D, de Esch IJP, Vischer HF, Smit MJ, Leurs R. Pharmacological characterization of a small-molecule agonist for the chemokine receptor CXCR3. Br J Pharmacol 2012; 166:898-911. [PMID: 21883151 DOI: 10.1111/j.1476-5381.2011.01648.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE The chemokine receptor CXCR3 is a GPCR found predominantly on activated T cells. CXCR3 is activated by three endogenous peptides; CXCL9, CXCL10 and CXCL11. Recently, a small-molecule agonist, VUF10661, has been reported in the literature and synthesized in our laboratory. The aim of the present study was to provide a detailed pharmacological characterization of VUF10661 by comparing its effects with those of CXCL11. EXPERIMENTAL APPROACH Agonistic properties of VUF10661 were assessed in a chemotaxis assay with murine L1.2 cells transiently transfected with cDNA encoding the human CXCR3 receptor and in binding studies, with [(125)I]-CXCL10 and [(125)I]-CXCL11, on membrane preparations from HEK293 cells stably expressing CXCR3. [(35)S]-GTPγS binding was used to determine its potency to induce CXCR3-mediated G protein activation and BRET-based assays to investigate its effects on intracellular cAMP levels and β-arrestin recruitment. KEY RESULTS VUF10661 acted as a partial agonist in CXCR3-mediated chemotaxis, bound to CXCR3 in an allosteric fashion in ligand binding assays and activated G(i) proteins with the same efficacy as CXCL11 in the [(35)S]-GTPγS binding and cAMP assay, while it recruited more β-arrestin1 and β-arrestin2 to CXCR3 receptors than the chemokine. CONCLUSIONS AND IMPLICATIONS VUF10661, like CXCL11, activates both G protein-dependent and -independent signalling via the CXCR3 receptor, but probably exerts its effects from an allosteric binding site that is different from that for CXCL11. It could stabilize different receptor and/or β-arrestin conformations leading to differences in functional output. Such ligand-biased signalling might offer interesting options for the therapeutic use of CXCR3 agonists.
Collapse
Affiliation(s)
- D J Scholten
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Allosteric modulators of rhodopsin-like G protein-coupled receptors: opportunities in drug development. Pharmacol Ther 2012; 135:292-315. [PMID: 22728155 DOI: 10.1016/j.pharmthera.2012.06.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 06/07/2012] [Indexed: 11/21/2022]
Abstract
Rhodopsin-like (class A) G protein-coupled receptors (GPCRs) are one of the most important classes of drug targets. The discovery that these GPCRs can be allosterically modulated by small drug molecules has opened up new opportunities in drug development. It will allow the drugability of "difficult targets", such as GPCRs activated by large (glyco)proteins, or by very polar or highly lipophilic physiological agonists. Receptor subtype selectivity should be more easily achievable with allosteric than with orthosteric ligands. Allosteric modulation will allow a broad spectrum of pharmacological effects largely expanding that of orthosteric ligands. Furthermore, allosteric modulators may show an improved safety profile as compared to orthosteric ligands. Only recently, the explicit search for allosteric modulators has been started for only a few rhodopsin-like GPCRs. The first negative allosteric modulators (allosteric antagonists) of chemokine receptors, maraviroc (CCR5 receptor), used in HIV therapy, and plerixafor (CXCR4 receptor) for stem cell mobilization, have been approved as drugs. The development of allosteric modulators for rhodopsin-like GPCRs as novel drugs is still at an early stage; it appears highly promising.
Collapse
|
8
|
Battista N, Di Tommaso M, Bari M, Maccarrone M. The endocannabinoid system: an overview. Front Behav Neurosci 2012; 6:9. [PMID: 22457644 PMCID: PMC3303140 DOI: 10.3389/fnbeh.2012.00009] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/27/2012] [Indexed: 11/24/2022] Open
Abstract
Upon the identification of anandamide (AEA) in the porcine brain, numerous studies contributed to the current state of knowledge regarding all elements that form the “endocannabinoid system (ECS).”How this complex system of receptors, ligands, and enzymes is integrated in helping to regulate fundamental processes at level of central nervous and peripheral systems and how its regulation and dysregulation might counteract disturbances of such functions, is nowadays still under investigation. However, the most recent advances on the physiological distribution and functional role of ECS allowed the progress of various research tools aimed at the therapeutic exploitation of endocannabinoid (eCB) signaling, as well as the development of novel drugs with pharmacological advantages. Here, we shall briefly overview the metabolic and signal transduction pathways of the main eCBs representatives, AEA, and 2-arachidonoylglycerol (2-AG), and we will discuss the therapeutic potential of new ECS-oriented drugs.
Collapse
Affiliation(s)
- Natalia Battista
- Department of Biomedical Sciences, University of Teramo Teramo, Italy
| | | | | | | |
Collapse
|
9
|
Pertwee RG, Howlett AC, Abood ME, Alexander SPH, Di Marzo V, Elphick MR, Greasley PJ, Hansen HS, Kunos G, Mackie K, Mechoulam R, Ross RA. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB₁ and CB₂. Pharmacol Rev 2011; 62:588-631. [PMID: 21079038 DOI: 10.1124/pr.110.003004] [Citation(s) in RCA: 1188] [Impact Index Per Article: 91.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There are at least two types of cannabinoid receptors (CB(1) and CB(2)). Ligands activating these G protein-coupled receptors (GPCRs) include the phytocannabinoid Δ(9)-tetrahydrocannabinol, numerous synthetic compounds, and endogenous compounds known as endocannabinoids. Cannabinoid receptor antagonists have also been developed. Some of these ligands activate or block one type of cannabinoid receptor more potently than the other type. This review summarizes current data indicating the extent to which cannabinoid receptor ligands undergo orthosteric or allosteric interactions with non-CB(1), non-CB(2) established GPCRs, deorphanized receptors such as GPR55, ligand-gated ion channels, transient receptor potential (TRP) channels, and other ion channels or peroxisome proliferator-activated nuclear receptors. From these data, it is clear that some ligands that interact similarly with CB(1) and/or CB(2) receptors are likely to display significantly different pharmacological profiles. The review also lists some criteria that any novel "CB(3)" cannabinoid receptor or channel should fulfil and concludes that these criteria are not currently met by any non-CB(1), non-CB(2) pharmacological receptor or channel. However, it does identify certain pharmacological targets that should be investigated further as potential CB(3) receptors or channels. These include TRP vanilloid 1, which possibly functions as an ionotropic cannabinoid receptor under physiological and/or pathological conditions, and some deorphanized GPCRs. Also discussed are 1) the ability of CB(1) receptors to form heteromeric complexes with certain other GPCRs, 2) phylogenetic relationships that exist between CB(1)/CB(2) receptors and other GPCRs, 3) evidence for the existence of several as-yet-uncharacterized non-CB(1), non-CB(2) cannabinoid receptors; and 4) current cannabinoid receptor nomenclature.
Collapse
Affiliation(s)
- R G Pertwee
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lane JR, Beukers MW, Mulder-Krieger T, Ijzerman AP. The endocannabinoid 2-arachidonylglycerol is a negative allosteric modulator of the human A3 adenosine receptor. Biochem Pharmacol 2009; 79:48-56. [PMID: 19665453 DOI: 10.1016/j.bcp.2009.07.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 07/16/2009] [Accepted: 07/31/2009] [Indexed: 12/24/2022]
Abstract
Studies of endogenous cannabinoid agonists, such as 2-arachidonylglycerol (2-AG), have revealed their potential to exert modulatory actions on other receptor systems in addition to their ability to activate cannabinoid receptors. This study investigated the effect of cannabinoid ligands on the human adenosine A(3) (hA(3)R) receptor. The endocannabinoid 2-AG was able to inhibit agonist ([125I]N(6)-(4-amino-3-iodobenzyl) adenosine-5'-(N-methyluronamide)--[125I] AB MECA) binding at the hA(3)R. This inhibition occurred over a narrow range of ligand concentration and was characterized by high Hill coefficients suggesting a non-competitive interaction. Furthermore, in the presence of 2-AG, the rate of [125I] AB MECA dissociation was increased, consistent with an action as a negative allosteric modulator of the hA(3)R. Moreover, by measuring intracellular cAMP levels, we demonstrate that 2-AG decreases both the potency of an agonist at the hA(3)R and the basal signalling of this receptor. Since the hA(3)R has been shown to be expressed in astrocytes and microglia, these findings may be particularly relevant in certain pathological states such as cerebral ischemia where levels of 2-AG and anandamide are raised.
Collapse
Affiliation(s)
- J Robert Lane
- Division of Medicinal Chemistry, Leiden/Amsterdam Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | | | | | | |
Collapse
|
11
|
Smid SD, Bjorklund CK, Svensson KM, Heigis S, Revesz A. The endocannabinoids anandamide and 2-arachidonoylglycerol inhibit cholinergic contractility in the human colon. Eur J Pharmacol 2007; 575:168-76. [PMID: 17706636 DOI: 10.1016/j.ejphar.2007.07.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 07/10/2007] [Accepted: 07/17/2007] [Indexed: 11/25/2022]
Abstract
The effects of the endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG) were determined on cholinergic contractility in strips of human colonic longitudinal muscle and circular muscle in vitro, in the presence of nitric oxide synthase blockade with N-nitro-l-arginine (10(-4) M). Anandamide and 2-AG inhibited longitudinal muscle and circular muscle contractile responses to acetylcholine (10(-9)-10(-4) M) in a concentration-dependent manner. This was unaltered following pretreatment with the cannabinoid CB(1) receptor-selective antagonist AM251 (10(-7) M), however in isolation AM251 elicited a significant rightward shift in the potency of acetylcholine-evoked contraction in both longitudinal muscle and circular muscle preparations. Pretreatment with an inhibitor of anandamide catabolism, arachidonoyl trifluoromethyl ketone (10(-5) M), alone caused a significant decrease in the potency of acetylcholine-evoked contraction in both longitudinal and circular muscle, but had no significant additional effect on the anandamide-induced (10(-5) M) suppression of contraction. Pretreatment with the cannabinoid CB(2) receptor inverse agonist JTE 907 (10(-6) M) neither influenced the potency of acetylcholine-evoked contraction alone nor prevented the potency shift in acetylcholine-evoked contraction in the presence of anandamide (10(-5) M). The findings of the present study indicate that the endocannabinoids anandamide and 2-arachidonoylglycerol suppress colonic cholinergic contractility via a non conventional cannabinoid or non-cannabinoid receptor-mediated pathway. Cholinergic contraction may be tonically modulated by endocannabinoids and/or products of arachidonate metabolism unrelated to endocannabinoid production. The extent of anandamide metabolism is not sufficient to influence the functional effects of its exogenous administration in human colonic tissue in vitro.
Collapse
Affiliation(s)
- Scott D Smid
- Discipline of Pharmacology, School of Medical Sciences, Faculty of Health Sciences, The University of Adelaide, Adelaide, Australia.
| | | | | | | | | |
Collapse
|
12
|
Abstract
The past decade has witnessed a significant growth in the identification of allosteric modulators of G protein-coupled receptors (GPCRs), i.e., ligands that interact with binding sites that are topographically distinct from the orthosteric site recognized by the receptor's endogenous agonist. Because of their ability to modulate receptor conformations in the presence of orthosteric ligand, allosteric modulators can "fine-tune" classical pharmacological responses. This is advantageous in terms of a potential for engendering greater GPCR subtype-selectivity, but represents a significant challenge for detecting and validating allosteric behaviors. Although allosteric sites need not have evolved to accommodate endogenous ligands, there are a number of examples of where such modulators have been shown to contribute to physiological or pathophysiological processes. Studies are also beginning to unravel the structural basis of allosteric modulation of GPCRs. It remains to be determined whether such modulation represents interactions within monomers versus across dimers.
Collapse
Affiliation(s)
- Lauren T May
- Department of Pharmacology, University of Melbourne, 3010 Parkville, Victoria
| | | | | | | |
Collapse
|
13
|
Abstract
Recent years have produced rapid and enormous growth in our understanding of endocannabinoid-mediated signaling in the CNS. While much of the recent progress has focused on other areas of the brain, a significant body of evidence has developed that indicates the presence of a robust system for endocannabinoid-mediated signaling in the dentate gyrus. This chapter will provide an overview of our current understanding of that system based on available anatomical and physiological data.
Collapse
Affiliation(s)
- Charles J Frazier
- Department of Pharmacodynamics, University of Florida, College of Pharmacy, Gainesville, FL 32610, USA.
| |
Collapse
|
14
|
Oz M. Receptor-independent actions of cannabinoids on cell membranes: Focus on endocannabinoids. Pharmacol Ther 2006; 111:114-44. [PMID: 16584786 DOI: 10.1016/j.pharmthera.2005.09.009] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 09/30/2005] [Indexed: 01/08/2023]
Abstract
Cannabinoids are a structurally diverse group of mostly lipophilic molecules that bind to cannabinoid receptors. In fact, endogenous cannabinoids (endocannabinoids) are a class of signaling lipids consisting of amides and esters of long-chain polyunsaturated fatty acids. They are synthesized from lipid precursors in plasma membranes via Ca(2+) or G-protein-dependent processes and exhibit cannabinoid-like actions by binding to cannabinoid receptors. However, endocannabinoids can produce effects that are not mediated by these receptors. In pharmacologically relevant concentrations, endocannabinoids modulate the functional properties of voltage-gated ion channels including Ca(2+) channels, Na(+) channels, various types of K(+) channels, and ligand-gated ion channels such as serotonin type 3, nicotinic acetylcholine, and glycine receptors. In addition, modulatory effects of endocannabinoids on other ion-transporting membrane proteins such as transient potential receptor-class channels, gap junctions and transporters for neurotransmitters have also been demonstrated. Furthermore, functional properties of G-protein-coupled receptors for different types of neurotransmitters and neuropeptides are altered by direct actions of endocannabinoids. Although the mechanisms of these effects are currently not clear, it is likely that these direct actions of endocannabinoids are due to their lipophilic structures. These findings indicate that additional molecular targets for endocannabinoids exist and that these targets may represent novel sites for cannabinoids to alter either the excitability of the neurons or the response of the neuronal systems. This review focuses on the results of recent studies indicating that beyond their receptor-mediated effects, endocannabinoids alter the functions of ion channels and other integral membrane proteins directly.
Collapse
Affiliation(s)
- Murat Oz
- National Institute on Drug Abuse, NIH/DHHS, Intramural Research Program, Cellular Neurobiology Branch, 5500 Nathan Shock Drive, Baltimore MD, 21224, USA.
| |
Collapse
|
15
|
Lanzafame AA, Turnbull L, Amiramahdi F, Arthur JF, Huynh H, Woodcock EA. Inositol phospholipids localized to caveolae in rat heart are regulated by alpha1-adrenergic receptors and by ischemia-reperfusion. Am J Physiol Heart Circ Physiol 2005; 290:H2059-65. [PMID: 16373581 DOI: 10.1152/ajpheart.01210.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Postischemic reperfusion of rat or mouse hearts causes generation of inositol (1,4,5)trisphosphate [Ins(1,4,5)P3] and the initiation of arrhythmias. In the current study we investigated the possibility that the enhanced Ins(1,4,5)P3 generation in postischemic reperfusion was associated with an increased availability of the precursor lipid phosphatidylinositol(4,5)bisphosphate (PIP2) for alpha1-adrenergic receptor-activated phospholipase C (PLC). Isolated-perfused rat hearts were labeled with [3H]inositol and subjected to ischemia-reperfusion or stimulation with norepinephrine under normoxic conditions. Caveolar fractions were prepared by buoyant density sucrose gradient centrifugation. [3H]PIP2 was concentrated in caveolae, along with Galphaq and PLCbeta1b. Caveolae contained only 27.3 +/- 6.9% (means +/- SE, n = 6) of the total alpha1-adrenergic receptor complement of the heart. These did not migrate to PIP2-containing caveolar fractions with norepinephrine stimulation under normoxic conditions, even though caveolar PIP2 was depleted. In contrast, [3H]PIP2 in caveolae increased during 2 min of reperfusion, independently of norepinephrine release and thus of alpha1-adrenergic receptor activation. The increased PIP2 in the caveolar fractions where signaling proteins are concentrated may be critical for the heightened generation of Ins(1,4,5)P3 in early reperfusion.
Collapse
Affiliation(s)
- Alfred A Lanzafame
- Cellular Biochemistry Laboratory, Baker Heart Research Institute, Melbourne, Victoria, Australia
| | | | | | | | | | | |
Collapse
|