1
|
Aschner M, Skalny AV, Lu R, Santamaria A, Zhou JC, Ke T, Karganov MY, Tsatsakis A, Golokhvast KS, Bowman AB, Tinkov AA. The role of hypoxia-inducible factor 1 alpha (HIF-1α) modulation in heavy metal toxicity. Arch Toxicol 2023; 97:1299-1318. [PMID: 36933023 DOI: 10.1007/s00204-023-03483-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023]
Abstract
Hypoxia-inducible factor 1 (HIF-1) is an oxygen-sensing transcriptional regulator orchestrating a complex of adaptive cellular responses to hypoxia. Several studies have demonstrated that toxic metal exposure may also modulate HIF-1α signal transduction pathway, although the existing data are scarce. Therefore, the present review aims to summarize the existing data on the effects of toxic metals on HIF-1 signaling and the potential underlying mechanisms with a special focus on prooxidant effect of the metals. The particular effect of metals was shown to be dependent on cell type, varying from down- to up-regulation of HIF-1 pathway. Inhibition of HIF-1 signaling may contribute to impaired hypoxic tolerance and adaptation, thus promoting hypoxic damage in the cells. In contrast, its metal-induced activation may result in increased tolerance to hypoxia through increased angiogenesis, thus promoting tumor growth and contributing to carcinogenic effect of heavy metals. Up-regulation of HIF-1 signaling is mainly observed upon Cr, As, and Ni exposure, whereas Cd and Hg may both stimulate and inhibit HIF-1 pathway. The mechanisms underlying the influence of toxic metal exposure on HIF-1 signaling involve modulation of prolyl hydroxylases (PHD2) activity, as well as interference with other tightly related pathways including Nrf2, PI3K/Akt, NF-κB, and MAPK signaling. These effects are at least partially mediated by metal-induced ROS generation. Hypothetically, maintenance of adequate HIF-1 signaling upon toxic metal exposure through direct (PHD2 modulation) or indirect (antioxidant) mechanisms may provide an additional strategy for prevention of adverse effects of metal toxicity.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518100, China
| | - Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | - Aristides Tsatsakis
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia.,Laboratory of Toxicology, Medical School, University of Crete, Voutes, 700 13, Heraklion, Crete, Greece
| | - Kirill S Golokhvast
- Siberian Federal Scientific Centre of Agrobiotechnologies of the Russian Academy of Sciences, Krasnoobsk, Russia
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, USA
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia. .,Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003, Yaroslavl, Russia.
| |
Collapse
|
2
|
Luo Y, Chen Q, Zou J, Fan J, Li Y, Luo Z. Chronic Intermittent Hypoxia Exposure Alternative to Exercise Alleviates High-Fat-Diet-Induced Obesity and Fatty Liver. Int J Mol Sci 2022; 23:ijms23095209. [PMID: 35563600 PMCID: PMC9104027 DOI: 10.3390/ijms23095209] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 01/27/2023] Open
Abstract
Obesity often concurs with nonalcoholic fatty liver disease (NAFLD), both of which are detrimental to human health. Thus far, exercise appears to be an effective treatment approach. However, its effects cannot last long and, moreover, it is difficult to achieve for many obese people. Thus, it is necessary to look into alternative remedies. The present study explored a noninvasive, easy, tolerable physical alternative. In our experiment, C57BL/6 mice were fed with a high-fat diet (HFD) to induce overweight/obesity and were exposed to 10% oxygen for one hour every day. We found that hypoxia exerted protective effects. First, it offset HFD-induced bodyweight gain and insulin resistance. Secondly, hypoxia reversed the HFD-induced enlargement of white and brown adipocytes and fatty liver, and protected liver function. Thirdly, HFD downregulated the expression of genes required for lipolysis and thermogenesis, such as UCP1, ADR3(beta3-adrenergic receptor), CPT1A, ATGL, PPARα, and PGC1α, M2 macrophage markers arginase and CD206 in the liver, and UCP1 and PPARγ in brown fat, while these molecules were upregulated by hypoxia. Furthermore, hypoxia induced the activation of AMPK, an energy sensing enzyme. Fourthly, our results showed that hypoxia increased serum levels of epinephrine. Indeed, the effects of hypoxia on bodyweight, fatty liver, and associated changes in gene expression ever tested were reproduced by injection of epinephrine and prevented by propranolol at varying degrees. Altogether, our data suggest that hypoxia triggers stress responses where epinephrine plays important roles. Therefore, our study sheds light on the hope to use hypoxia to treat the daunting disorders, obesity and NAFLD.
Collapse
Affiliation(s)
- Yunfei Luo
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, Schools of Basic Sciences, Nanchang University, Nanchang 330031, China; (Y.L.); (Q.C.); (J.Z.); (J.F.); (Y.L.)
| | - Qiongfeng Chen
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, Schools of Basic Sciences, Nanchang University, Nanchang 330031, China; (Y.L.); (Q.C.); (J.Z.); (J.F.); (Y.L.)
| | - Junrong Zou
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, Schools of Basic Sciences, Nanchang University, Nanchang 330031, China; (Y.L.); (Q.C.); (J.Z.); (J.F.); (Y.L.)
| | - Jingjing Fan
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, Schools of Basic Sciences, Nanchang University, Nanchang 330031, China; (Y.L.); (Q.C.); (J.Z.); (J.F.); (Y.L.)
| | - Yuanjun Li
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, Schools of Basic Sciences, Nanchang University, Nanchang 330031, China; (Y.L.); (Q.C.); (J.Z.); (J.F.); (Y.L.)
| | - Zhijun Luo
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, Schools of Basic Sciences, Nanchang University, Nanchang 330031, China; (Y.L.); (Q.C.); (J.Z.); (J.F.); (Y.L.)
- Queen Mary School, Nanchang University, Nanchang 330031, China
- Correspondence: ; Tel.: +86-158-7917-7010
| |
Collapse
|
3
|
Ruan Y, Fang X, Guo T, Liu Y, Hu Y, Wang X, Hu Y, Gao L, Li Y, Pi J, Xu Y. Metabolic reprogramming in the arsenic carcinogenesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113098. [PMID: 34952379 DOI: 10.1016/j.ecoenv.2021.113098] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Chronic exposure to arsenic has been associated with a variety of cancers with the mechanisms undefined. Arsenic exposure causes alterations in metabolites in bio-samples. Recent research progress on cancer biology suggests that metabolic reprogramming contributes to tumorigenesis. Therefore, metabolic reprogramming provides a new clue for the mechanisms of arsenic carcinogenesis. In the present manuscript, we review the latest findings in reprogramming of glucose, lipids, and amino acids in response to arsenic exposure. Most studies focused on glucose reprogramming and found that arsenic exposure enhanced glycolysis. However, in vivo studies observed "reverse Warburg effect" in some cases due to the complexity of the disease evolution and microenvironment. Arsenic exposure has been reported to disturb lipid deposition by inhibiting lipolysis, and induce serine-glycine one-carbon pathway. As a dominant mechanism for arsenic toxicity, oxidative stress is considered to link with metabolism reprogramming. Few studies analyzed the causal relationship between metabolic reprogramming and arsenic-induced cancers. Metabolic alterations may vary with exposure doses and periods. Identifying metabolic alterations common among humans and experiment models with human-relevant exposure characteristics may guide future investigations.
Collapse
Affiliation(s)
- Yihui Ruan
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, P.R. China
| | - Xin Fang
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, P.R. China
| | - Tingyue Guo
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, P.R. China
| | - Yiting Liu
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, P.R. China
| | - Yu Hu
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, P.R. China
| | - Xuening Wang
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, P.R. China
| | - Yuxin Hu
- Experimental Teaching Center, School of Public Health, China Medical University, P.R. China
| | - Lanyue Gao
- Experimental Teaching Center, School of Public Health, China Medical University, P.R. China
| | - Yongfang Li
- The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, P.R. China
| | - Jingbo Pi
- The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, P.R. China; Program of Environmental Toxicology, School of Public Health, China Medical University, P.R. China
| | - Yuanyuan Xu
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, P.R. China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, P.R. China.
| |
Collapse
|
4
|
Liu J, Niu Q, Hu Y, Ran S, Li S. The Mechanism of Trivalent Inorganic Arsenic on HIF-1α: a Systematic Review and Meta-analysis. Biol Trace Elem Res 2020; 198:449-463. [PMID: 32124230 DOI: 10.1007/s12011-020-02087-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
Abstract
The purpose of our study was to investigate the role of hypoxia-inducible factor-1α (HIF-1α) in arsenic-induced carcinogenesis. We included 39 articles for meta-analysis. The results showed that low-dose exposure to arsenic (≤ 10 μmol/L) could promote the expression of phosphatidylinositol 3-kinase (PI3K) and phosphorylation-protein kinase B (p-AKT). High-dose arsenic exposure (> 10 μmol/L) promoted the expression of PI3K, HIF-1α, vascular endothelial growth factor (VEGF), and p38MAPK (P38). Acute arsenic exposure (< 24 h) promoted the expression of PI3K, HIF-1α, and VEGF. Chronic arsenic exposure (≥ 24 h) promoted the expression of PI3K, p-AKT, and P38. Moreover, for normal tissue-derived cells, arsenic could induce the increased expression of PI3K, p-AKT, HIF-1α, and VEGF. For tumor tissue-derived cells, arsenic could induce the expression of PI3K, p-AKT, and P38. We found that arsenic exposure could activate the PI3K/AKT pathway, further induce the high expression of HIF-1α, and then upregulate the levels of miRNA-21 and VEGF, promote the expression of proliferating cell nuclear antigen (PCNA), and ultimately lead to malignant cell proliferation. Our findings indicated that arsenic could increase the expression of HIF-1α by activating the PI3K/AKT pathway and eventually induce malignant cell proliferation.
Collapse
Affiliation(s)
- Jiaqing Liu
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Qiang Niu
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Yunhua Hu
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Shanshan Ran
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Shugang Li
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
5
|
Wooton-Kee CR, Robertson M, Zhou Y, Dong B, Sun Z, Kim KH, Liu H, Xu Y, Putluri N, Saha P, Coarfa C, Moore DD, Nuotio-Antar AM. Metabolic dysregulation in the Atp7b-/- Wilson's disease mouse model. Proc Natl Acad Sci U S A 2020; 117:2076-2083. [PMID: 31924743 PMCID: PMC6994990 DOI: 10.1073/pnas.1914267117] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Inactivating mutations in the copper transporter Atp7b result in Wilson's disease. The Atp7b-/- mouse develops hallmarks of Wilson's disease. The activity of several nuclear receptors decreased in Atp7b-/- mice, and nuclear receptors are critical for maintaining metabolic homeostasis. Therefore, we anticipated that Atp7b-/- mice would exhibit altered progression of diet-induced obesity, fatty liver, and insulin resistance. Following 10 wk on a chow or Western-type diet (40% kcal fat), parameters of glucose and lipid homeostasis were measured. Hepatic metabolites were measured by liquid chromatography-mass spectrometry and correlated with transcriptomic data. Atp7b-/- mice fed a chow diet presented with blunted body-weight gain over time, had lower fat mass, and were more glucose tolerant than wild type (WT) littermate controls. On the Western diet, Atp7b-/- mice exhibited reduced body weight, adiposity, and hepatic steatosis compared with WT controls. Atp7b-/- mice fed either diet were more insulin sensitive than WT controls; however, fasted Atp7b-/- mice exhibited hypoglycemia after administration of insulin due to an impaired glucose counterregulatory response, as evidenced by reduced hepatic glucose production. Coupling gene expression with metabolomic analyses, we observed striking changes in hepatic metabolic profiles in Atp7b-/- mice, including increases in glycolytic intermediates and components of the tricarboxylic acid cycle. In addition, the active phosphorylated form of AMP kinase was significantly increased in Atp7b-/- mice relative to WT controls. Alterations in hepatic metabolic profiles and nuclear receptor signaling were associated with improved glucose tolerance and insulin sensitivity as well as with impaired fasting glucose production in Atp7b-/- mice.
Collapse
Affiliation(s)
- Clavia Ruth Wooton-Kee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030;
| | - Matthew Robertson
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Ying Zhou
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030
| | - Bingning Dong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Zhen Sun
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Kang Ho Kim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Hailan Liu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Yong Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Pradip Saha
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Cristian Coarfa
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - David D Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030;
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030
| | | |
Collapse
|
6
|
Kim J, Yang G, Kim Y, Kim J, Ha J. AMPK activators: mechanisms of action and physiological activities. Exp Mol Med 2016; 48:e224. [PMID: 27034026 PMCID: PMC4855276 DOI: 10.1038/emm.2016.16] [Citation(s) in RCA: 493] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 02/07/2023] Open
Abstract
AMP-activated protein kinase (AMPK) is a central regulator of energy homeostasis, which coordinates metabolic pathways and thus balances nutrient supply with energy demand. Because of the favorable physiological outcomes of AMPK activation on metabolism, AMPK has been considered to be an important therapeutic target for controlling human diseases including metabolic syndrome and cancer. Thus, activators of AMPK may have potential as novel therapeutics for these diseases. In this review, we provide a comprehensive summary of both indirect and direct AMPK activators and their modes of action in relation to the structure of AMPK. We discuss the functional differences among isoform-specific AMPK complexes and their significance regarding the development of novel AMPK activators and the potential for combining different AMPK activators in the treatment of human disease.
Collapse
Affiliation(s)
- Joungmok Kim
- Depatment of Oral Biochemistry and Molecular Biology, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Goowon Yang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Yeji Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Jin Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, Graduate School, Kyung Hee University, Seoul, Korea
| |
Collapse
|
7
|
Perspectives of the AMP-activated kinase (AMPK) signalling pathway in thyroid cancer. Biosci Rep 2014; 34:BSR20130134. [PMID: 27919039 PMCID: PMC3986867 DOI: 10.1042/bsr20130134] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/17/2014] [Accepted: 02/24/2014] [Indexed: 12/22/2022] Open
Abstract
Approximately 90% of non-medullary thyroid malignancies originate from the follicular cell and are classified as papillary or follicular (well-differentiated) thyroid carcinomas, showing an overall favourable prognosis. However, recurrence or persistence of the disease occurs in some cases associated with the presence of loco-regional or distant metastatic lesions that generally become resistant to radioiodine therapy, while glucose uptake and metabolism are increased. Recent advances in the field of tumor progression have shown that CTC (circulating tumour cells) are metabolic and genetically heterogeneous. There is now special interest in unravelling the mechanisms that allow the reminiscence of dormant tumour lesions that might be related to late disease progression and increased risk of recurrence. AMPK (AMP-activated protein kinase) is activated by the depletion in cellular energy levels and allows adaptive changes in cell metabolism that are fundamental for cell survival in a stressful environment; nevertheless, the activation of this kinase also decreases cell proliferation rate and induces tumour cell apoptosis. In the thyroid field, AMPK emerged as a novel important intracellular pathway, since it regulates both iodide and glucose uptakes in normal thyroid cells. Furthermore, it has recently been demonstrated that the AMPK pathway is highly activated in papillary thyroid carcinomas, although the clinical significance of these findings remains elusive. Herein we review the current knowledge about the role of AMPK activation in thyroid physiology and pathophysiology, with special focus on thyroid cancer. Recurrence or persistence of differentiated thyroid cancer can be associated with resistance to radioiodine therapy, which is associated with higher glucose uptake and metabolism by the remnant lesions. The possible role of AMPK activation in this phenomenon is discussed.
Collapse
|
8
|
|
9
|
Mitra R, Chao OS, Nanus DM, Goodman OB. Negative regulation of NEP expression by hypoxia. Prostate 2013; 73:706-14. [PMID: 23138928 DOI: 10.1002/pros.22613] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 10/12/2012] [Indexed: 11/09/2022]
Abstract
BACKGROUND Neutral endopeptidase (NEP) is a transmembrane cell surface peptidase present on prostatic epithelial cells that catalytically inactivates small peptide substrates. Neutral endopeptidase loss is associated with prostate cancer growth, progression, and increased angiogenesis. We examined whether NEP expression is regulated by hypoxia, frequently encountered in the tumor microenvironment. METHODS NEP expression was compared in prostate cancer cell lines cultured in normoxic and hypoxic conditions. The NEP activity, protein levels, and mRNA levels were determined using enzyme assay, Western blotting and q-PCR analysis, respectively. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay (ChIP) was used to confirm the negative regulation of NEP at the transcriptional level by hypoxia responsive elements (HREs). RESULTS The results indicate that NEP expression was inhibited under hypoxic conditions in the NEP positive LNCaP, C4-2, and 22RV1 cells and human umbilical vascular endothelial (HUVEC) cells. NEP regulation appeared to be predominantly at the transcriptional level as NEP mRNA expression significantly reduced with hypoxia, concordant with the kinetics of protein levels, and NEP enzyme activity. A search of the NEP gene sequence revealed three putative HREs upstream of the NEP promoter. Two of the HREs demonstrated a specific reduction of shift in the presence of cobalt chloride; specificity of the binding sites was confirmed by ChIP. CONCLUSIONS Our data indicate a novel mechanism where hypoxia negatively regulates the tumor suppressor function of NEP in prostate cancer. The negative regulation of NEP is mediated by binding of the HIF1-α protein binding to the HREs present upstream of the NEP promoter.
Collapse
Affiliation(s)
- Ranjana Mitra
- Cancer Research Program, Center for Diabetes and Obesity Prevention, Treatment, Research and Education, College of Pharmacy, Roseman University of Health Sciences, Henderson, NV, USA
| | | | | | | |
Collapse
|
10
|
Brown KA, Samarajeewa NU, Simpson ER. Endocrine-related cancers and the role of AMPK. Mol Cell Endocrinol 2013; 366:170-9. [PMID: 22801104 DOI: 10.1016/j.mce.2012.06.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 04/06/2012] [Accepted: 06/21/2012] [Indexed: 01/27/2023]
Abstract
AMP-activated protein kinase (AMPK) is a master regulator of energy homeostasis involved in the regulation of a number of physiological processes including β-oxidation of fatty acids, lipogenesis, protein and cholesterol synthesis, as well as cell cycle inhibition and apoptosis. Important changes to these processes are known to occur in cancer due to changes in AMPK activity within cancer cells and in the periphery. This review aims to present findings relating to the role and regulation of AMPK in endocrine-related cancers. Obesity is a known risk factor for many types of cancers and a number of endocrine factors, including adipokines and steroid hormones, are regulated by and regulate AMPK. A clear role for AMPK in breast cancer is evident from the already impressive body of work published to date. However, information pertaining to its role in prostate cancer is still contentious, and future work should unravel the intricacies behind its role to inhibit, in some cases, and stimulate cancer growth in others. This review also presents data relating to the role of AMPK in cancers of the endometrium, ovary and colon, and discusses the possible use of AMPK-activating drugs including metformin for the treatment of all endocrine-related cancers.
Collapse
Affiliation(s)
- Kristy A Brown
- Metabolism and Cancer Laboratory, Prince Henry's Institute, Clayton 3168, Australia.
| | | | | |
Collapse
|
11
|
PTEN regulates PDGF ligand switch for β-PDGFR signaling in prostate cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:1017-1027. [PMID: 22209699 DOI: 10.1016/j.ajpath.2011.11.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 10/10/2011] [Accepted: 11/28/2011] [Indexed: 12/29/2022]
Abstract
Platelet-derived growth factor (PDGF) family members are potent growth factors that regulate cell proliferation, migration, and transformation. Clinical studies have shown that both PDGF receptor β (β-PDGFR) and its ligand PDGF D are up-regulated in primary prostate cancers and bone metastases, whereas PDGF B, a classic ligand for β-PDGFR, is not frequently detected in clinical samples. In this study, we examined the role of the tumor suppressor phosphatase and tensin homologue deleted on chromosome 10 (PTEN) in the regulation of PDGF expression levels using both a prostate-specific, conditional PTEN-knockout mouse model and mouse prostate epithelial cell lines established from these mice. We found an increase in PDGF D and β-PDGFR expression levels in PTEN-null tumor cells, accompanied by a decrease in PDGF B expression. Among Akt isoforms, increased Akt3 expression was most prominent in mouse PTEN-null cells, and phosphatidylinositol 3-kinase/Akt activity was essential for the maintenance of increased PDGF D and β-PDGFR expression. In vitro deletion of PTEN resulted in a PDGF ligand switch from PDGF B to PDGF D in normal mouse prostate epithelial cells, further demonstrating that PTEN regulates this ligand switch. Similar associations between PTEN status and PDGF isoforms were noted in human prostate cancer cell lines. Taken together, these results suggest a mechanism by which loss of PTEN may promote prostate cancer progression via PDGF D/β-PDGFR signal transduction.
Collapse
|
12
|
Kawakami T, Hanao N, Nishiyama K, Kadota Y, Inoue M, Sato M, Suzuki S. Differential effects of cobalt and mercury on lipid metabolism in the white adipose tissue of high-fat diet-induced obesity mice. Toxicol Appl Pharmacol 2011; 258:32-42. [PMID: 22019852 DOI: 10.1016/j.taap.2011.10.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 10/01/2011] [Accepted: 10/04/2011] [Indexed: 11/17/2022]
Abstract
Metals and metalloid species are involved in homeostasis in energy systems such as glucose metabolism. Enlarged adipocytes are one of the most important causes of obesity-associated diseases. In this study, we studied the possibility that various metals, namely, CoCl(2), HgCl(2), NaAsO(2) and MnCl(2) pose risk to or have beneficial effects on white adipose tissue (WAT). Exposure to the four metals resulted in decreases in WAT weight and the size of enlarged adipocytes in mice fed a high-fat diet (HFD) without changes in liver weight, suggesting that the size and function of adipocytes are sensitive to metals. Repeated administration of CoCl(2) significantly increased serum leptin, adiponectin and high-density lipoprotein (HDL) cholesterol levels and normalized glucose level and adipose cell size in mice fed HFD. In contrast, HgCl(2) treatment significantly decreased serum leptin level with the down-regulation of leptin mRNA expression in WAT and a reduction in adipocyte size. Next, we tried to investigate possible factors that affect adipocyte size. Repeated exposure to HgCl(2) significantly decreased the expression levels of factors upon the regulation of energy such as the PPARα and PPARγ mRNA expression levels in adipocytes, whereas CoCl(2) had little effect on those genes expressions compared with that in the case of the mice fed HFD with a vehicle. In addition, repeated administration of CoCl(2) enhanced AMPK activation in a dose-dependent manner in the liver, skeletal muscle and WAT; HgCl(2) treatment also enhanced AMPK activation in the liver. Thus, both Co and Hg reduced WAT weight and the size of enlarged adipocytes, possibly mediated by AMKP activation in the mice fed HFD. However, inorganic cobalt may have a preventive role in obesity-related diseases through increased leptin, adiponectin and HDL-cholesterol levels, whereas inorganic mercury may accelerate the development of such diseases. These results may lead to the development of new approaches to establishing the role of metals in adipose tissue of obesity-related diseases.
Collapse
Affiliation(s)
- Takashige Kawakami
- Faculty of Pharmaceutical Science, Tokushima Bunri University, 180 Yamashiro-cho, Tokushima City 770-8514, Japan.
| | | | | | | | | | | | | |
Collapse
|
13
|
Bao L, Shi H. Arsenite Induces Endothelial Cell Permeability Increase through a Reactive Oxygen Species−Vascular Endothelial Growth Factor Pathway. Chem Res Toxicol 2010; 23:1726-34. [DOI: 10.1021/tx100191t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lingzhi Bao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Malott Hall 5044, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| | - Honglian Shi
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Malott Hall 5044, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| |
Collapse
|
14
|
Luo Z, Zang M, Guo W. AMPK as a metabolic tumor suppressor: control of metabolism and cell growth. Future Oncol 2010; 6:457-70. [PMID: 20222801 DOI: 10.2217/fon.09.174] [Citation(s) in RCA: 297] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
AMPK is an evolutionarily conserved fuel-sensing enzyme that is activated in shortage of energy and suppressed in its surfeit. AMPK activation stimulates fatty acid oxidation, enhances insulin sensitivity, alleviates hyperglycemia and hyperlipidemia, and inhibits proinflammatory changes. Thus, AMPK is a well-received therapeutic target for metabolic syndrome and Type 2 diabetes. Recent studies indicate that AMPK plays a role in linking metabolic syndrome and cancer. AMPK is an essential mediator of the tumor suppressor LKB1 and could be suppressed in cancer cells containing loss-of-function mutations of LKB1 or containing active mutations of B-Raf, or in cancers associated with metabolic syndrome. The activation of AMPK reprograms cellular metabolism and enforces metabolic checkpoints by acting on mTORC1, p53, fatty acid synthase and other molecules for regulating cell growth and metabolism. In keeping with in vitro studies, recent epidemiological studies indicate that the incidence of cancer is reduced in Type 2 diabetes treated with metformin, an AMPK activator. Thus, AMPK is emerging as an interesting metabolic tumor suppressor and a promising target for cancer prevention and therapy.
Collapse
Affiliation(s)
- Zhijun Luo
- Department of Biochemistry, Boston University School of Medicine, MA 02118, USA.
| | | | | |
Collapse
|
15
|
Abstract
The AMP-activated protein kinase (AMPK) was initially identified as the kinase that phosphorylates the 3-hydroxy 3-methylglutaryl coenzyme A reductase, the rate-limiting enzyme for cholesterol biosynthesis. As the name suggests, the AMPK is activated by increased intracellular concentrations of AMP, and is generally described as a "metabolite-sensing kinase" and when activated initiates steps to conserve cellular energy. Although there is a strong link between the activity of the AMPK and metabolic control in muscle cells, the activity of the AMPK in endothelial cells can be regulated by stimuli that affect cellular ATP levels, such as hypoxia as well as by fluid shear stress, Ca(2+)-elevating agonists, and hormones such as adiponectin. To date the AMPK in endothelial cells has been implicated in the regulation of fatty acid oxidation, small G protein activity and nitric oxide production as well as inflammation and angiogenesis. Moreover, there is evidence indicating that the activation of the AMPK may help to prevent the vascular complications associated with the metabolic syndrome.
Collapse
Affiliation(s)
- Beate Fisslthaler
- Institute for Vascular Signalling, Centre for Molecular Medicine, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | | |
Collapse
|
16
|
Izumi Y, Shiota M, Kusakabe H, Hikita Y, Nakao T, Nakamura Y, Muro T, Miura K, Yoshiyama M, Iwao H. Pravastatin accelerates ischemia-induced angiogenesis through AMP-activated protein kinase. Hypertens Res 2009; 32:675-9. [PMID: 19498441 DOI: 10.1038/hr.2009.77] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Statins exert pleiotropic effects on the cardiovascular system, in part through an increase in nitric oxide (NO) bioavailability. In this study, we examined the role of pravastatin in ischemia-induced angiogenesis. Unilateral hindlimb ischemia was surgically induced in C57BL/6J mice. Phosphorylation of AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC) and endothelial NO synthase (eNOS) was increased in ischemic tissues. Furthermore, mice treated with pravastatin showed higher increases in phosphorylation than did untreated mice. Laser Doppler analysis has shown that pravastatin treatment accelerates the development of collateral vessels and angiogenesis in response to hindlimb ischemia. Capillary density in the ischemic hindlimb was also increased by pravastatin treatment. An in vitro study on human umbilical vein endothelial cells (HUVECs) revealed that pravastatin increased the phosphorylation of AMPK. Pravastatin-induced phosphorylation of eNOS, one of the downstreams of AMPK, was inhibited by compound C, an AMPK antagonist. The increased migration and tube formation of HUVECs by pravastatin were significantly blocked by compound C treatment. The accelerated angiogenesis by pravastatin after hindlimb ischemia was significantly reduced after treatment with compound C. Thus, ischemia induced AMPK phosphorylation in vivo. Furthermore, pravastatin could also activate AMPK in vivo and in vitro. Such phosphorylation results in eNOS activation and angiogenesis, which provide a novel explanation for one of the pleiotropic effects of statins that is beneficial for angiogenesis.
Collapse
Affiliation(s)
- Yasukatsu Izumi
- Department of Pharmacology, Osaka City University Medical School, Osaka 545-8585, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Assem FL, Levy LS. A review of current toxicological concerns on vanadium pentoxide and other vanadium compounds: gaps in knowledge and directions for future research. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2009; 12:289-306. [PMID: 20183524 DOI: 10.1080/10937400903094166] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Vanadium pentoxide (V(2)O(5)) and other inorganic vanadium compounds have recently been evaluated by several occupational exposure limit (OEL) setting (occupational exposure limit, OEL) committees and expert groups in response to the publication of several new studies, including the U.S. National Toxicology Program (NTP, 2002) carcinogenicity study of inhaled V(2)O(5) in rats and mice, which concluded that clear evidence of lung tumors was seen in mice of both genders and that there was some evidence of carcinogenicity in male rats. This study reviews the expert evaluations of several OEL committees and expert groups and attempts to understand the strengths and weaknesses in their scientific arguments. This study also evaluates some key studies relating to potential genotoxicity, carcinogenicity, and respiratory effects of vanadium compounds and discusses how they might elucidate the mechanism(s) by which V(2)O(5) induces lung cancer in mice. All expert groups appear to agree that the lung tumors induced in mice in the NTP (2002) study are a site-specific response and, in general, verify that existing in vitro and in vivo studies suggest that tumors were induced by a secondary mechanism (presumably non-genotoxic), which is supported, though not conclusively, by a mechanistic data set. As some vanadium compounds produce a range of DNA and chromosome damage, there is no consensus on which of these changes is critical for the carcinogenic process for V(2)O(5) or whether the findings for the lung tumors seen in mice exposed to V(2)O(5) can be extrapolated to other inorganic vanadium compounds. As such, the various expert committees used the evidence differently, some to read across, i.e., to predict an endpoint for a substance based on the endpoint information of another with similar characteristics (e.g., physicochemical properties [solubility, bioaccessibility, bioavailability], structure, fate [toxicokinetics], and toxicology) for carcinogenicity from V(2)O(5) to other inorganic vanadium compounds. It is noteworthy that the toxicity of metals does not necessarily relate to carcinogenicity in a direct manner; thus, no assumptions should be made a priori when trying to extrapolate from V(2)O(5) to other inorganic vanadium compounds. Recent studies evaluated in this review provided some further insights into possible mechanisms but do not cover all relevant endpoints, address only a limited number of vanadium compounds, and have not established no-effect thresholds for carcinogenicity or respiratory tract irritation. Thresholds need to be established in order for arguments to be made for setting a health-based OEL for non-genotoxic or secondary genotoxic carcinogens. In conclusion, important knowledge gaps preclude confident classification and risk assessment for all vanadium compounds. Evidence suggests that further research that may address some of these critical gaps is needed.
Collapse
Affiliation(s)
- Farida Louise Assem
- Institute of Environment and Health, Cranfield University, Bedfordshire, United Kingdom
| | | |
Collapse
|
18
|
Yoshiba S, Ito D, Nagumo T, Shirota T, Hatori M, Shintani S. Hypoxia induces resistance to 5-fluorouracil in oral cancer cells via G(1) phase cell cycle arrest. Oral Oncol 2008; 45:109-15. [PMID: 18710819 DOI: 10.1016/j.oraloncology.2008.04.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 04/03/2008] [Accepted: 04/03/2008] [Indexed: 01/15/2023]
Abstract
Malignant tumors are exposed to various levels of hypoxic condition in vivo. It has been known that tumor cells under hypoxia are resistant to chemotherapies. To clarify the mechanism of the hypoxia-induced chemoresistance, we evaluated the effects of hypoxia on the resistance of oral squamous cell carcinoma (OSCC) cell lines to 5-fluorouracil (5-FU). OSCC cells were divided to two groups by the proliferation activity under hypoxic condition; hypoxia-resistant (HR) and hypoxia-sensitive (HS) cells. Growth of HS cells were inhibited by hypoxia and introduced to G(1) arrest in cell cycle. 5-FU effect on HS cell viability was markedly reduced in hypoxic condition without an induction of chemoresistant related protein, P-glycoprotein. However, proliferation, cell cycle, and 5-FU sensitivity of HR cells were not affected by hypoxia. Hypoxia-inducible factor (HIF)-1alpha was induced by hypoxia in all OSCC cell lines, but diminished in HS cells within 48h. Expression of p21 and p27 was strongly augmented and CyclinD expression was reduced by hypoxia in HS cells. However, the expression of these proteins was constitutive in HR cells during 48h hypoxic culture. Phosphorylation of mammalian target of rapamycin (mTOR) was reduced by hypoxia in HS cells. From these findings, we concluded that HS OSCC cells acquire 5-FU resistance under hypoxia by G(1)/S transition through an upregulation of cell cycle inhibitors.
Collapse
Affiliation(s)
- Sayaka Yoshiba
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Kitasenzoku 2-1-1, Ohta-ku, Tokyo 145-8515, Japan.
| | | | | | | | | | | |
Collapse
|
19
|
Chanda D, Kim SJ, Lee IK, Shong M, Choi HS. Sodium arsenite induces orphan nuclear receptor SHP gene expression via AMP-activated protein kinase to inhibit gluconeogenic enzyme gene expression. Am J Physiol Endocrinol Metab 2008; 295:E368-79. [PMID: 18505831 DOI: 10.1152/ajpendo.00800.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sodium arsenite has been demonstrated to alter the expression of genes associated with glucose homeostasis in tissues involved in the pathogenesis of type 2 diabetes; however, the underlying molecular mechanism has not been fully elucidated yet. In this study, we report that the sodium arsenite-induced gene expression of the small heterodimer partner (SHP; NR0B2), an atypical orphan nuclear receptor, regulates the expression of hepatic gluconeogenic genes. Sodium arsenite augments hepatic SHP mRNA levels in an AMP-activated protein kinase (AMPK)-dependent manner. Sodium arsenite activated AMPK and was shown to perturb cellular ATP levels. The arsenite-induced SHP mRNA level was blocked by adenoviral overexpression of dominant negative AMPK (Ad-dnAMPKalpha) or by the AMPK inhibitor compound C in hepatic cell lines. We demonstrated the dose-dependent induction of SHP mRNA levels by sodium arsenite and repressed the forskolin/dexamethasone-induced gene expression of the key hepatic gluconeogenic genes phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). Ad-dnAMPKalpha blocked the repressive effects of arsenite-induced SHP on PEPCK and G6Pase. Sodium arsenite inhibited the promoter activity of PEPCK and G6Pase, and this repression was abolished by small interfering (si)RNA SHP treatments. The knockdown of SHP expression by oligonucleotide siRNA SHP or adenoviral siRNA SHP released the sodium arsenite-mediated repression of forskolin/dexamethasone-stimulated PEPCK and G6Pase gene expression in a variety of hepatic cell lines. Results from our study suggest that sodium arsenite induces SHP via AMPK to inhibit the expression of hepatic gluconeogenic genes and also provide us with a novel molecular mechanism of arsenite-mediated regulation of hepatic glucose homeostasis.
Collapse
Affiliation(s)
- Dipanjan Chanda
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | | | | | | | | |
Collapse
|
20
|
Pearson HB, McCarthy A, Collins CMP, Ashworth A, Clarke AR. Lkb1 deficiency causes prostate neoplasia in the mouse. Cancer Res 2008; 68:2223-32. [PMID: 18381428 DOI: 10.1158/0008-5472.can-07-5169] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mutation of LKB1 is the key molecular event underlying Peutz-Jeghers syndrome, a dominantly inherited condition characterized by a predisposition to a range of malignancies, including those of the reproductive system. We report here the use of a Cre-LoxP strategy to directly address the role of Lkb1 in prostate neoplasia. Recombination of a LoxP-flanked Lkb1 allele within all four murine prostate lobes was mediated by spontaneous activation of a p450 CYP1A1-driven Cre recombinase transgene (termed AhCre). Homozygous mutation of Lkb1 in males expressing AhCre reduced longevity, with 100% manifesting atypical hyperplasia and 83% developing prostate intraepithelial neoplasia (PIN) of the anterior prostate within 2 to 4 months. We also observed focal hyperplasia of the dorsolateral and ventral lobes (61% and 56% incidence, respectively), bulbourethral gland cysts associated with atypical hyperplasia (100% incidence), hyperplasia of the urethra (39% incidence), and seminal vesicle squamous metaplasia (11% incidence). PIN foci overexpressed nuclear beta-catenin, p-Gsk3 beta, and downstream Wnt targets. Immunohistochemical analysis of foci also showed a reduction in Pten activation and up-regulation of both p-PDK1 (an AMPK kinase) and phosphorylated Akt. Our data are therefore consistent with deregulation of Wnt and phosphoinositide 3-kinase/Akt signaling cascades after loss of Lkb1 function. For the first time, this model establishes a link between the tumor suppressor Lkb1 and prostate neoplasia, highlighting a tumor suppressive role within the mouse and raising the possibility of a similar association in the human.
Collapse
Affiliation(s)
- Helen B Pearson
- Cardiff University, School of Biosciences, Cardiff, Wales, United Kingdom
| | | | | | | | | |
Collapse
|
21
|
Jung SN, Yang WK, Kim J, Kim HS, Kim EJ, Yun H, Park H, Kim SS, Choe W, Kang I, Ha J. Reactive oxygen species stabilize hypoxia-inducible factor-1 alpha protein and stimulate transcriptional activity via AMP-activated protein kinase in DU145 human prostate cancer cells. Carcinogenesis 2008; 29:713-21. [PMID: 18258605 DOI: 10.1093/carcin/bgn032] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Hypoxia-inducible factor (HIF-1) plays a central role in the cellular adaptive response to hypoxic conditions, which are closely related to pathophysiological conditions, such as cancer. Although reactive oxygen species (ROS) have been implicated in the regulation of hypoxic and non-hypoxic induction of HIF-1 under various conditions, the role of ROS is quite controversial, and the mechanism underlying the HIF-1 regulation by ROS is not completely understood yet. Here, we investigated the biochemical mechanism for the ROS-induced HIF-1 by revealing a novel role of adenosine monophosphate-activated protein kinase (AMPK) and the upstream signal components. AMPK plays an essential role as energy-sensor under adenosine triphosphate-deprived conditions. Here we report that ROS induced by a direct application of H(2)O(2) and menadione to DU145 human prostate carcinoma resulted in accumulation of HIF-1alpha protein by attenuation of its degradation and activation of its transcriptional activity in an AMPK-dependent manner. By way of contrast, AMPK was required only for the transcriptional activity of HIF-1 under hypoxic condition, revealing a differential role of AMPK in these two stimuli. Furthermore, our data show that inhibition of AMPK enhances HIF-1alpha ubiquitination under ROS condition. Finally, we show that the regulation of HIF-1 by AMPK in response to ROS is under the control of c-Jun N-terminal kinase and Janus kinase 2 pathways. Collectively, our findings identify AMPK as a key determinant of HIF-1 functions in response to ROS and its possible role in the sophisticated HIF-1 regulatory mechanisms.
Collapse
Affiliation(s)
- Seung-Nam Jung
- Department of Biochemistry and Molecular Biology, Kyung Hee University School of Medicine, Seoul 130-701, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kim J, Ahn JH, Kim JH, Yu YS, Kim HS, Ha J, Shinn SH, Oh YS. Fenofibrate regulates retinal endothelial cell survival through the AMPK signal transduction pathway. Exp Eye Res 2007; 84:886-93. [PMID: 17343853 DOI: 10.1016/j.exer.2007.01.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 12/20/2006] [Accepted: 01/09/2007] [Indexed: 01/07/2023]
Abstract
Fenofibrate, a widely used hypolipidemic drug, has anti-inflammatory and anti-atherosclerotic effects in the vessel wall. In the present study, we report an anti-apoptotic property of fenofibrate in human retinal endothelial cells (HRECs) and describe an underlying molecular mechanism. Treatment with fenofibrate protected HRECs from apoptosis in response to serum deprivation in a dose-dependent manner. This inhibition of apoptosis by fenofibrate was not altered by peroxisome proliferator-activated receptor alpha (PPARalpha) antagonist MK 886, and selective agonist for PPARalpha, WY-14643 had no beneficial effects on serum deprivation-induced cell death. Fenofibrate potently induced a sustained activation of AMP-activated protein kinase (AMPK) and vascular endothelial growth factor (VEGF) mRNA expression. Furthermore, compound C, a specific AMPK inhibitor, almost completely blocked the fenofibrate-induced survival effect as well as VEGF mRNA expression. Taken together, these results suggest that fenofibrate prevents apoptotic cell death induced by serum deprivation through PPARalpha-independent, but AMPK-dependent pathway. Thus fenofibrate may have a novel therapeutic property that can control unwanted cell death found in diabetic retinopathy.
Collapse
Affiliation(s)
- Jaetaek Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, 224-1 Heuk Seok-dong, Dongjak-ku, Seoul 156-755, South Korea.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Saks V, Favier R, Guzun R, Schlattner U, Wallimann T. Molecular system bioenergetics: regulation of substrate supply in response to heart energy demands. J Physiol 2006; 577:769-77. [PMID: 17008367 PMCID: PMC1890373 DOI: 10.1113/jphysiol.2006.120584] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This review re-evaluates regulatory aspects of substrate supply in heart. In aerobic heart, the preferred substrates are always free fatty acids, and workload-induced increase in their oxidation is observed at unchanged global levels of ATP, phosphocreatine and AMP. Here, we evaluate the mechanisms of regulation of substrate supply for mitochondrial respiration in muscle cells, and show that a system approach is useful also for revealing mechanisms of feedback signalling within the network of substrate oxidation and particularly for explaining the role of malonyl-CoA in regulation of fatty acid oxidation in cardiac muscle. This approach shows that a key regulator of fatty acid oxidation is the energy demand. Alterations in malonyl-CoA would not be the reason for, but rather the consequence of, the increased fatty acid oxidation at elevated workloads, when the level of acetyl-CoA decreases due to shifts in the kinetics of the Krebs cycle. This would make malonyl-CoA a feedback regulator that allows acyl-CoA entry into mitochondrial matrix space only when it is needed. Regulation of malonyl-CoA levels by AMPK does not seem to work as a master on-off switch, but rather as a modulator of fatty acid import.
Collapse
Affiliation(s)
- Valdur Saks
- Laboratory of Bioenergetics, Joseph Fourier University, 2280 Rue de la Piscine, BP53X-38041, Grenoble Cedex 9, France.
| | | | | | | | | |
Collapse
|