1
|
Lovins AR, Miller KA, Buck AK, Ensey DS, Homoelle RK, Murtha MC, Ward NA, Shanahan LA, Gutti G, Shriwas P, McElroy CA, Callam CS, Hadad CM. 4-Amidophenol Quinone Methide Precursors: Effective and Broad-Scope Nonoxime Reactivators of Organophosphorus-Inhibited Cholinesterases and Resurrectors of Organophosphorus-Aged Acetylcholinesterase. ACS Chem Neurosci 2024; 15:1813-1827. [PMID: 38621296 DOI: 10.1021/acschemneuro.4c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Acetylcholinesterase (AChE) inhibition by organophosphorus (OP) compounds poses a serious health risk to humans. While many therapeutics have been tested for treatment after OP exposure, there is still a need for efficient reactivation against all kinds of OP compounds, and current oxime therapeutics have poor blood-brain barrier penetration into the central nervous system, while offering no recovery in activity from the OP-aged forms of AChE. Herein, we report a novel library of 4-amidophenol quinone methide precursors (QMP) that provide effective reactivation against multiple OP-inhibited forms of AChE in addition to resurrecting the aged form of AChE after exposure to a pesticide or some phosphoramidates. Furthermore, these QMP compounds also reactivate OP-inhibited butyrylcholinesterase (BChE) which is an in vivo, endogenous scavenger of OP compounds. The in vitro efficacies of these QMP compounds were tested for reactivation and resurrection of soluble forms of human AChE and BChE and for reactivation of cholinesterases within human blood as well as blood and brain samples from a humanized mouse model. We identify compound 10c as a lead candidate due to its broad-scope efficacy against multiple OP compounds as well as both cholinesterases. With methylphosphonates, compound 10c (250 μM, 1 h) shows >60% recovered activity from OEt-inhibited AChE in human blood as well as mouse blood and brain, thus highlighting its potential for future in vivo analysis. For 10c, the effective concentration (EC50) is less than 25 μM for reactivation of three different methylphosphonate-inhibited forms of AChE, with a maximum reactivation yield above 80%. Similarly, for OP-inhibited BChE, 10c has EC50 values that are less than 150 μM for two different methylphosphonate compounds. Furthermore, an in vitro kinetic analysis show that 10c has a 2.2- and 92.1-fold superior reactivation efficiency against OEt-inhibited and OiBu-inhibited AChE, respectively, when compared to an oxime control. In addition to 10c being a potent reactivator of AChE and BChE, we also show that 10c is capable of resurrecting (ethyl paraoxon)-aged AChE, which is another current limitation of oximes.
Collapse
Affiliation(s)
- Alex R Lovins
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio State University, Columbus, Ohio 43210, United States
| | - Kevin A Miller
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio State University, Columbus, Ohio 43210, United States
| | - Anne K Buck
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio State University, Columbus, Ohio 43210, United States
| | - D Sophia Ensey
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio State University, Columbus, Ohio 43210, United States
| | - Rose K Homoelle
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio State University, Columbus, Ohio 43210, United States
| | - Megan C Murtha
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio State University, Columbus, Ohio 43210, United States
| | - Nathan A Ward
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio State University, Columbus, Ohio 43210, United States
| | - Liam A Shanahan
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio State University, Columbus, Ohio 43210, United States
| | - Gopichand Gutti
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, Columbus, Ohio 43210, United States
| | - Pratik Shriwas
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, Columbus, Ohio 43210, United States
| | - Craig A McElroy
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, Columbus, Ohio 43210, United States
| | - Christopher S Callam
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio State University, Columbus, Ohio 43210, United States
| | - Christopher M Hadad
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
2
|
Hanson C, Huddle LN, Kockanowski J, Whaley KD. Acute Organophosphate Poisoning Case Review With Consideration of Off-Gassing During Postmortem Examination. Am J Forensic Med Pathol 2023; 44:354-357. [PMID: 37549027 PMCID: PMC10662577 DOI: 10.1097/paf.0000000000000870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
ABSTRACT Although self-harm via ingestion of organophosphorus compounds is relatively common in the developing world, it is rare in the United States. This article reviews the signs and symptoms associated with acute organophosphate poisoning and highlights the effects of organophosphate off-gassing during postmortem examinations to increase awareness of this potentially dangerous workplace exposure.Paramedics responded to a 42-year-old man with pulseless electrical activity. Spontaneous circulation was restored after aggressive resuscitation. Before loss of consciousness, the patient exhibited diaphoresis, vomiting, and diarrhea. Upon admission, the patient had a Glasgow Coma Scale score of 3. Significant laboratory values included a pH of 6.8, p co2 of 72 mm Hg, and lactic acid of 21.8 mmol/L. Electrocardiography suggested inferior ST-elevation myocardial infarction. Electroencephalogram revealed severe cerebral dysfunction. The patient died shortly thereafter.Scene investigation revealed suicidal ideations, which included a snapshot of a bottle containing granular sediment associated with statements that he had imbibed fertilizer. During the postmortem examination, the decedent exuded a petroleum-like odor. In addition, autopsy personnel developed symptoms consistent with organophosphate exposure.A reported history of suspected organophosphate exposure in a decedent should prompt increased safety practices to avoid potential harm to autopsy personnel.
Collapse
Affiliation(s)
- Courtney Hanson
- From the University of North Dakota (UND) School of Medicine and Health Sciences
| | - Lauren N. Huddle
- Department of Pathology, UND School of Medicine and Health Sciences, Grand Forks, ND
| | - Julia Kockanowski
- Department of Pathology, UND School of Medicine and Health Sciences, Grand Forks, ND
| | - Kevin D. Whaley
- Department of Pathology, UND School of Medicine and Health Sciences, Grand Forks, ND
| |
Collapse
|
3
|
Wang X, Zhang T, Chen X, Xu Y, Li Z, Yang Y, Du X, Jiang Z, Ni H. Simultaneous Inhibitory Effects of All-Trans Astaxanthin on Acetylcholinesterase and Oxidative Stress. Mar Drugs 2022; 20:md20040247. [PMID: 35447920 PMCID: PMC9032561 DOI: 10.3390/md20040247] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer´s disease is a global neurodegenerative health concern. To prevent the disease, the simultaneous inhibition of acetylcholinesterase and oxidative stress is an efficient approach. In this study, the inhibition effect of all-trans astaxanthin mainly from marine organisms on acetylcholinesterase and oxidative stress was evaluated by a chemical-based method in vitro and cell assay model. The results show that all-trans astaxanthin was a reversible competitive inhibitor and exhibited a strong inhibition effect with half inhibitory concentration (IC50 value) of 8.64 μmol/L. Furthermore, all-trans astaxanthin inhibited oxidative stress through reducing malondialdehyde content and increasing the activity of superoxide dismutase as well as catalase. All-trans astaxanthin could induce the changes of the secondary structure to reduce acetylcholinesterase activity. Molecular-docking analysis reveals that all-trans astaxanthin prevented substrate from binding to acetylcholinesterase by occupying the space of the active pocket to cause the inhibition. Our finding suggests that all-trans astaxanthin might be a nutraceutical supplement for Alzheimer´s disease prevention.
Collapse
Affiliation(s)
- Xin Wang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.W.); (T.Z.); (X.C.); (Y.X.); (Y.Y.); (Z.J.); (H.N.)
| | - Tao Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.W.); (T.Z.); (X.C.); (Y.X.); (Y.Y.); (Z.J.); (H.N.)
| | - Xiaochen Chen
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.W.); (T.Z.); (X.C.); (Y.X.); (Y.Y.); (Z.J.); (H.N.)
| | - Yating Xu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.W.); (T.Z.); (X.C.); (Y.X.); (Y.Y.); (Z.J.); (H.N.)
| | - Zhipeng Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.W.); (T.Z.); (X.C.); (Y.X.); (Y.Y.); (Z.J.); (H.N.)
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology, Xiamen 361021, China
- Key Laboratory of Systemic Utilization and In-Depth Processing of Economic Seaweed, Xiamen Southern Ocean Technology Center of China, Xiamen 361021, China
- Correspondence: (Z.L.); (X.D.); Tel.: +86-13696920945 (X.D.)
| | - Yuanfan Yang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.W.); (T.Z.); (X.C.); (Y.X.); (Y.Y.); (Z.J.); (H.N.)
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology, Xiamen 361021, China
- Key Laboratory of Systemic Utilization and In-Depth Processing of Economic Seaweed, Xiamen Southern Ocean Technology Center of China, Xiamen 361021, China
| | - Xiping Du
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.W.); (T.Z.); (X.C.); (Y.X.); (Y.Y.); (Z.J.); (H.N.)
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology, Xiamen 361021, China
- Key Laboratory of Systemic Utilization and In-Depth Processing of Economic Seaweed, Xiamen Southern Ocean Technology Center of China, Xiamen 361021, China
- Correspondence: (Z.L.); (X.D.); Tel.: +86-13696920945 (X.D.)
| | - Zedong Jiang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.W.); (T.Z.); (X.C.); (Y.X.); (Y.Y.); (Z.J.); (H.N.)
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology, Xiamen 361021, China
- Key Laboratory of Systemic Utilization and In-Depth Processing of Economic Seaweed, Xiamen Southern Ocean Technology Center of China, Xiamen 361021, China
| | - Hui Ni
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.W.); (T.Z.); (X.C.); (Y.X.); (Y.Y.); (Z.J.); (H.N.)
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology, Xiamen 361021, China
- Key Laboratory of Systemic Utilization and In-Depth Processing of Economic Seaweed, Xiamen Southern Ocean Technology Center of China, Xiamen 361021, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
4
|
Assessment of four organophosphorus pesticides as inhibitors of human acetylcholinesterase and butyrylcholinesterase. Sci Rep 2021; 11:21486. [PMID: 34728713 PMCID: PMC8563940 DOI: 10.1038/s41598-021-00953-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/20/2021] [Indexed: 11/08/2022] Open
Abstract
Toxicity of organophosphorus compounds (OPs) remains a major public health concern due to their widespread use as pesticides and the existence of nerve agents. Their common mechanism of action involves inhibition of enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) which are crucial for neurotransmission. Both chronic and acute poisoning by OPs can leave long-lasting health effects even when the patients are treated with standard medical therapy. Therefore, an increasing urgency exists to find more effective oxime reactivators for compounds which are resistant to reactivation, especially phosphoramidates. Here, we investigated in silico and in vitro interactions and kinetics of inhibition for human cholinesterases with four organophosphate pesticides-ethoprophos, fenamiphos, methamidophos and phosalone. Overall, ethoprophos and fenamiphos displayed higher potency as inhibitors for tested cholinesterases. Our results show that methamidophos-inhibited hAChE was more susceptible to reactivation than hAChE inhibited by fenamiphos by selected oximes. Molecular modelling enabled an evaluation of interactions important for specificity and selectivity of both inhibition and reactivation of cholinesterases. Two newly developed reactivators-bispyridinium triazole oxime 14A and zwitterionic oxime RS194B possess remarkable potential for further development of antidotes directed against pesticides and related phosphoramidate exposures, such as nerve agents tabun or Novichoks.
Collapse
|
5
|
Sharma R, Upadhyaya K, Gupta B, Ghosh KK, Tripathi RP, Musilek K, Kuca K. Glycosylated-imidazole aldoximes as reactivators of pesticides inhibited AChE: Synthesis and in-vitro reactivation study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103454. [PMID: 32645360 DOI: 10.1016/j.etap.2020.103454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
The present armamentarium of commercially available antidotes provides limited protection against the neurological effects of organophosphate exposure. Hence, there is an urgent need to design and develop molecules that can protect and reactivate inhibited-AChE in the central nervous system. Some natural compounds like glucose and certain amino acids (glutamate, the anion of glutamic acid) can easily cross the blood brain barrier although they are highly polar. Glucose is mainly transported by systems like glucose transporter protein type 1 (GLUT1). For this reason, a series of non-quaternary and quaternary glycosylated imidazolium oximes with different alkane linkers have been designed and synthesized. These compounds were evaluated for their in-vitro reactivation ability against pesticide (paraoxon-ethyl and paraoxon-methyl) inhibited-AChE and compared with standards antidote AChE reactivators pralidoxime and obidoxime. Several physicochemical properties including acid dissociation constant (pKa), logP, logD, HBD and HBA, have also been assessed for reported compounds. Out of the synthesized compounds, three have exhibited comparable potency with a standard antidote (pralidoxime).
Collapse
Affiliation(s)
- Rahul Sharma
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, CG 492010, India; Department of Plant Physiology, Agril. Biochemistry, Medicinal & Aromatic Plants, Indira Gandhi Agricultural University, Raipur, CG 492005, India
| | - Kapil Upadhyaya
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
| | - Bhanushree Gupta
- Centre for Basic Sciences, Pt. Ravishankar Shukla University, Raipur CG 492010, India.
| | - Kallol K Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, CG 492010, India
| | - Rama P Tripathi
- National Institute of Pharmaceutical Education and Research-Raebareli, Sarojini Nagar, Lucknow, Uttar Pradesh 226301, India
| | - Kamil Musilek
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, Hradec Kralove, Czech Republic; University Hospital, Biomedical Research Center, Sokolska 581, 50005, Hradec Kralove, Czech Republic.
| |
Collapse
|
6
|
Worek F, Thiermann H, Koller M, Wille T. In Vitro Interaction of Organophosphono- and Organophosphorothioates with Human Acetylcholinesterase. Molecules 2020; 25:E3029. [PMID: 32630769 PMCID: PMC7412149 DOI: 10.3390/molecules25133029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 11/16/2022] Open
Abstract
The implementation of the Chemical Weapons Convention (CWC) in 1997 was a milestone in the prohibition of chemical warfare agents (CWA). Yet, the repeated use of CWA underlines the ongoing threat to the population. Organophosphorus (OP) nerve agents still represent the most toxic CWA subgroup. Defensive research on nerve agents is mainly focused on the "classical five", namely tabun, sarin, soman, cyclosarin and VX, although Schedule 1 of the CWC covers an unforeseeable number of homologues. Likewise, an uncounted number of OP pesticides have been produced in previous decades. Our aim was to determine the in vitro inhibition kinetics of selected organophosphono- and organophosphorothioates with human AChE, as well as hydrolysis of the agents in human plasma and reactivation of inhibited AChE, in order to derive potential structure-activity relationships. The investigation of the interactions of selected OP compounds belonging to schedule 1 (V-agents) and schedule 2 (amiton) of the CWC with human AChE revealed distinct structural effects of the P-alkyl, P-O-alkyl and N,N-dialkyl residues on the inhibitory potency of the agents. Irrespective of structural modifications, all tested V-agents presented as highly potent AChE inhibitors. The high stability of the tested agents in human plasma will most likely result in long-lasting poisoning in vivo, having relevant consequences for the treatment regimen. In conclusion, the results of this study emphasize the need to investigate the biological effects of nerve agent analogues in order to assess the efficacy of available medical countermeasures.
Collapse
Affiliation(s)
- Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, D-80937 Munich, Germany; (H.T.); (M.K.); (T.W.)
| | | | | | | |
Collapse
|
7
|
Worek F, Thiermann H, Wille T. Organophosphorus compounds and oximes: a critical review. Arch Toxicol 2020; 94:2275-2292. [PMID: 32506210 PMCID: PMC7367912 DOI: 10.1007/s00204-020-02797-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022]
Abstract
Organophosphorus (OP) pesticides and nerve agents still pose a threat to the population. Treatment of OP poisoning is an ongoing challenge and burden for medical services. Standard drug treatment consists of atropine and an oxime as reactivator of OP-inhibited acetylcholinesterase and is virtually unchanged since more than six decades. Established oximes, i.e. pralidoxime, obidoxime, TMB-4, HI-6 and MMB-4, are of insufficient effectiveness in some poisonings and often cover only a limited spectrum of the different nerve agents and pesticides. Moreover, the value of oximes in human OP pesticide poisoning is still disputed. Long-lasting research efforts resulted in the preparation of countless experimental oximes, and more recently non-oxime reactivators, intended to replace or supplement the established and licensed oximes. The progress of this development is slow and none of the novel compounds appears to be suitable for transfer into advanced development or into clinical use. This situation calls for a critical analysis of the value of oximes as mainstay of treatment as well as the potential and limitations of established and novel reactivators. Requirements for a straightforward identification of superior reactivators and their development to licensed drugs need to be addressed as well as options for interim solutions as a chance to improve the therapy of OP poisoning in a foreseeable time frame.
Collapse
Affiliation(s)
- Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany.
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Timo Wille
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany
| |
Collapse
|
8
|
Comparison of the Respiratory Toxicity and Total Cholinesterase Activities in Dimethyl Versus Diethyl Paraoxon-Poisoned Rats. TOXICS 2019; 7:toxics7020023. [PMID: 30995784 PMCID: PMC6631413 DOI: 10.3390/toxics7020023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 11/17/2022]
Abstract
The chemical structure of organophosphate compounds (OPs) is a well-known factor which modifies the acute toxicity of these compounds. We compared ventilation at rest and cholinesterase activities in male Sprague-Dawley rats poisoned with dimethyl paraoxon (DMPO) and diethyl paraoxon (DEPO) at a subcutaneous dose corresponding to 50% of the median lethal dose (MLD). Ventilation at rest was recorded by whole body plethysmography. Total cholinesterase activities were determined by radiometric assay. Both organophosphates decreased significantly the respiratory rate, resulting from an increase in expiratory time. Dimethyl-induced respiratory toxicity spontaneously reversed within 120 min post-injection. Diethyl-induced respiratory toxicity was long-lasting, more than 180 min post-injection. Both organophosphates decreased cholinesterase activities from 10 to 180 min post-injection with the same degree of inhibition of total cholinesterase within an onset at the same times after injection. There were no significant differences in residual cholinesterase activities between dimethyl and diethyl paraoxon groups at any time. The structure of the alkoxy-group is a determinant factor of the late phase of poisoning, conditioning duration of toxicity without significant effects on the magnitude of alteration of respiratory parameters. For same duration and magnitude of cholinesterase inhibition, there was a strong discrepancy in the time-course of effects between the two compounds.
Collapse
|
9
|
Gorecki L, Soukup O, Kucera T, Malinak D, Jun D, Kuca K, Musilek K, Korabecny J. Oxime K203: a drug candidate for the treatment of tabun intoxication. Arch Toxicol 2018; 93:673-691. [PMID: 30564897 DOI: 10.1007/s00204-018-2377-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022]
Abstract
For over 60 years, researchers across the world have sought to deal with poisoning by nerve agents, the most toxic and lethal chemical weapons. To date, there is no efficient causal antidote with sufficient effect. Every trialed compound fails to fulfil one or more criteria (e.g. reactivation potency, broad reactivation profile). In this recent contribution, we focused our attention to one of the promising compounds, namely the bis-pyridinium reactivator K203. The oxime K203 is very often cited as the best reactivator against tabun poisoning. Herein, we provide all the available literature data in comprehensive and critical review to address whether K203 could be considered as a new drug candidate against organophosphorus poisoning with the stress on tabun. We describe its development from the historical point of view and review all available in vitro as well as in vivo data to date. K203 is easily accessible by a relatively simple two-step synthesis. It is well accommodated in the enzyme active gorge of acetylcholinesterase providing suitable interactions for reactivation, as shown by molecular docking simulations. According to a literature survey, in vitro data for tabun-inhibited AChE are extraordinary. However, in vivo efficiency remains unconvincing. The K203 toxicity profile did not show any perturbations compared to clinically used standards; on the other hand versatility of K203 does not exceed currently available oximes. In summary, K203 does not seem to address current issues associated with the organophosphorus poisoning, especially the broad profile against all nerve agents. However, its reviewed efficacy entitles K203 to be considered as a backup or tentative replacement for obidoxime and trimedoxime, currently only available anti-tabun drugs.
Collapse
Affiliation(s)
- Lukas Gorecki
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Králové, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Králové, Czech Republic
| | - Ondrej Soukup
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Králové, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Králové, Czech Republic
| | - Tomas Kucera
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Králové, Czech Republic
| | - David Malinak
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Králové, Czech Republic.,Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Králové, Czech Republic
| | - Daniel Jun
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Králové, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Králové, Czech Republic
| | - Kamil Kuca
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Králové, Czech Republic.,Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Králové, Czech Republic
| | - Kamil Musilek
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Králové, Czech Republic. .,Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Králové, Czech Republic.
| | - Jan Korabecny
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Králové, Czech Republic. .,Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
10
|
Scheffel C, Niessen KV, Rappenglück S, Wanner KT, Thiermann H, Worek F, Seeger T. Electrophysiological investigation of the effect of structurally different bispyridinium non-oxime compounds on human α7-nicotinic acetylcholine receptor activity—An in vitro structure-activity analysis. Toxicol Lett 2018; 293:157-166. [DOI: 10.1016/j.toxlet.2017.11.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/11/2017] [Accepted: 11/22/2017] [Indexed: 02/01/2023]
|
11
|
Wein T, Höfner G, Rappenglück S, Sichler S, Niessen KV, Seeger T, Worek F, Thiermann H, Wanner KT. Searching for putative binding sites of the bispyridinium compound MB327 in the nicotinic acetylcholine receptor. Toxicol Lett 2018; 293:184-189. [DOI: 10.1016/j.toxlet.2017.10.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/18/2017] [Accepted: 10/29/2017] [Indexed: 01/14/2023]
|
12
|
Rappenglück S, Sichler S, Höfner G, Wein T, Niessen KV, Seeger T, Paintner FF, Worek F, Thiermann H, Wanner KT. Synthesis of a Series of Structurally Diverse MB327 Derivatives and Their Affinity Characterization at the Nicotinic Acetylcholine Receptor. ChemMedChem 2018; 13:1806-1816. [DOI: 10.1002/cmdc.201800325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/28/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Sebastian Rappenglück
- Department of Pharmacy, Center for Drug Research; Ludwig-Maximilians-Universität München; Butenandtstr. 5-13 81377 Munich Germany
| | - Sonja Sichler
- Department of Pharmacy, Center for Drug Research; Ludwig-Maximilians-Universität München; Butenandtstr. 5-13 81377 Munich Germany
| | - Georg Höfner
- Department of Pharmacy, Center for Drug Research; Ludwig-Maximilians-Universität München; Butenandtstr. 5-13 81377 Munich Germany
| | - Thomas Wein
- Department of Pharmacy, Center for Drug Research; Ludwig-Maximilians-Universität München; Butenandtstr. 5-13 81377 Munich Germany
| | - Karin V. Niessen
- Bundeswehr Institute of Pharmacology and Toxicology; Neuherbergstr. 11 80937 Munich Germany
| | - Thomas Seeger
- Bundeswehr Institute of Pharmacology and Toxicology; Neuherbergstr. 11 80937 Munich Germany
| | - Franz F. Paintner
- Department of Pharmacy, Center for Drug Research; Ludwig-Maximilians-Universität München; Butenandtstr. 5-13 81377 Munich Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology; Neuherbergstr. 11 80937 Munich Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology; Neuherbergstr. 11 80937 Munich Germany
| | - Klaus T. Wanner
- Department of Pharmacy, Center for Drug Research; Ludwig-Maximilians-Universität München; Butenandtstr. 5-13 81377 Munich Germany
| |
Collapse
|
13
|
Scheffel C, Niessen KV, Rappenglück S, Wanner KT, Thiermann H, Worek F, Seeger T. Counteracting desensitization of human α7-nicotinic acetylcholine receptors with bispyridinium compounds as an approach against organophosphorus poisoning. Toxicol Lett 2017; 293:149-156. [PMID: 29248576 DOI: 10.1016/j.toxlet.2017.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 01/30/2023]
Abstract
Irreversible inhibition of acetylcholinesterase (AChE) resulting in accumulation of acetylcholine and overstimulation of muscarinic and nicotinic receptors accounts for the acute toxicity of organophosphorus compounds (OP). Accordingly, the mainstay pharmacotherapy against poisoning by OP comprises the competitive muscarinic acetylcholine receptor antagonist atropine to treat muscarinic effects and, in addition, oximes to reactivate inhibited AChE. A therapeutic gap still remains in the treatment of desensitized nicotinic acetylcholine receptors following OP exposure. Hereby, nicotinic effects result in paralysis of the central and peripheral respiratory system if untreated. Thus, these receptors pose an essential target for therapeutic indication to address these life-threatening nicotinic symptoms of the cholinergic crisis. Identification of ligands regulating dynamic transitions between functional states by binding to modulatory sites appears to be a promising strategy for therapeutic intervention. In this patch clamp study, the ability of differently substituted bispyridinium non-oximes to "resensitize" i.e. to recover the activity of desensitized human homomeric α7-type nAChRs stably transfected in CHO cells was investigated and compared to the already described α7-specific positive allosteric modulator PNU-120596. The structures of these bispyridinium analogues were based on the lead structure of the tert-butyl-substituted bispyridinium propane MB327, which has been shown to have a positive therapeutic effect due to a non-competitive antagonistic action at muscle-type nAChRs in vivo and has been found to have a positive allosteric activity at neuronal receptors in vitro. Prior to test compounds, desensitization of hα7-nAChRs was verified by applying an excess of nicotine revealing activation at low, and desensitization at high concentrations. Thereby, desensitization could be reduced by modulation with PNU-120596. Desensitization was further verified by dose-response profiles of agonists, carbamoylcholine and epibatidine in the absence and presence of PNU-120596. Although less pronounced than PNU-120596 and the lead structure MB327, bispyridinium compounds, particularly those substituted at position 3 and 4, resensitized the nicotine desensitized hα7-nAChRs in a concentration-dependent manner and prolonged the mean channel open time. In summary, identification of more potent compounds able to restore nAChR function in OP intoxication is needed for development of a putative efficient antidote.
Collapse
Affiliation(s)
- Corinna Scheffel
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany; Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Germany.
| | - Karin V Niessen
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | | | - Klaus T Wanner
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Thomas Seeger
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| |
Collapse
|
14
|
New insights on molecular interactions of organophosphorus pesticides with esterases. Toxicology 2017; 376:30-43. [DOI: 10.1016/j.tox.2016.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 05/25/2016] [Accepted: 06/10/2016] [Indexed: 01/01/2023]
|
15
|
Gorecki L, Korabecny J, Musilek K, Malinak D, Nepovimova E, Dolezal R, Jun D, Soukup O, Kuca K. SAR study to find optimal cholinesterase reactivator against organophosphorous nerve agents and pesticides. Arch Toxicol 2016; 90:2831-2859. [PMID: 27582056 DOI: 10.1007/s00204-016-1827-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 08/22/2016] [Indexed: 01/13/2023]
Abstract
Irreversible inhibition of acetylcholinesterase (AChE) by organophosphates leads to many failures in living organism and ultimately in death. Organophosphorus compounds developed as nerve agents such as tabun, sarin, soman, VX and others belong to the most toxic chemical warfare agents and are one of the biggest threats to the modern civilization. Moreover, misuse of nerve agents together with organophosphorus pesticides (e.g. malathion, paraoxon, chlorpyrifos, etc.) which are annually implicated in millions of intoxications and hundreds of thousand deaths reminds us of insufficient protection against these compounds. Basic treatments for these intoxications are based on immediate administration of atropine and acetylcholinesterase reactivators which are currently represented by mono- or bis-pyridinium aldoximes. However, these antidotes are not sufficient to ensure 100 % treatment efficacy even they are administered immediately after intoxication, and in general, they possess several drawbacks. Herein, we have reviewed new efforts leading to the development of novel reactivators and proposition of new promising strategies to design novel and effective antidotes. Structure-activity relationships and biological activities of recently proposed acetylcholinesterase reactivators are discussed and summarized. Among further modifications of known oximes, the main attention has been paid to dual binding site ligands of AChE as the current mainstream strategy. We have also discussed new chemical entities as potential replacement of oxime functional group.
Collapse
Affiliation(s)
- Lukas Gorecki
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - David Malinak
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.,Department of Physiology and Pathophysiology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00, Ostrava, Czech Republic
| | - Eugenie Nepovimova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Rafael Dolezal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Daniel Jun
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic. .,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic.
| |
Collapse
|
16
|
Toxicology of organophosphorus compounds in view of an increasing terrorist threat. Arch Toxicol 2016; 90:2131-2145. [DOI: 10.1007/s00204-016-1772-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/16/2016] [Indexed: 12/19/2022]
|
17
|
Zhuang Q, Young A, Callam CS, McElroy CA, Ekici ÖD, Yoder RJ, Hadad CM. Efforts toward treatments against aging of organophosphorus-inhibited acetylcholinesterase. Ann N Y Acad Sci 2016; 1374:94-104. [PMID: 27327269 DOI: 10.1111/nyas.13124] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 11/26/2022]
Abstract
Aging is a dealkylation reaction of organophosphorus (OP)-inhibited acetylcholinesterase (AChE). Despite many studies to date, aged AChE cannot be reactivated directly by traditional pyridinium oximes. This review summarizes strategies that are potentially valuable in the treatment against aging in OP poisoning. Among them, retardation of aging seeks to lower the rate of aging through the use of AChE effectors. These drugs should be administered before AChE is completely aged. For postaging treatment, realkylation of aged AChE by appropriate alkylators may pave the way for oxime treatment by neutralizing the oxyanion at the active site of aged AChE. The other two strategies, upregulation of AChE expression and introduction of exogenous AChE, cannot resurrect aged AChE but may compensate for lowered active AChE levels by in situ production or external introduction of active AChE. Upregulation of AChE expression can be triggered by some peptides. Sources of exogenous AChE can be whole blood or purified AChE, either from human or nonhuman species.
Collapse
Affiliation(s)
- Qinggeng Zhuang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Amneh Young
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Christopher S Callam
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Craig A McElroy
- College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Özlem Dogan Ekici
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio.,Department of Chemistry and Biochemistry, The Ohio State University-Newark, Newark, Ohio
| | - Ryan J Yoder
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio.,Department of Chemistry and Biochemistry, The Ohio State University-Marion, Marion, Ohio
| | - Christopher M Hadad
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| |
Collapse
|
18
|
Ye C, Wang MQ, Zhong X, Chen S, Chai Y, Yuan R. Highly sensitive electrochemiluminescenc assay of acetylcholinesterase activity based on dual biomarkers using Pd-Au nanowires as immobilization platform. Biosens Bioelectron 2015; 79:34-40. [PMID: 26686921 DOI: 10.1016/j.bios.2015.11.096] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/27/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
Abstract
One-dimensional Pd-Au nanowires (Pd-Au NWs) were prepared and applied to fabricate an electrochemiluminescence (ECL) biosensor for the detection of acetylcholinesterase (AChE) activity. Compared with single-component of Pd or Au, the bimetallic nanocomposite of Pd-Au NWs offers a larger surface area for the immobilization of enzyme, and displays superior electrocatalytic activity and efficient electron transport capacity. In the presence of AChE and choline oxidase (ChOx), acetylcholine (ATCl) is hydrolyzed by AChE to generate thiocholine, then thiocholine is catalyzed by ChOx to produce H2O2 in situ, which serves as the coreactant to effectively enhance the ECL intensity in luminol-ECL system. The detection principle is based on the inhibited AChE and reactivated AChE as dual biomarkers, in which AChE was inhibited by organophosphorus (OP) agents, and then reactivated by obidoxime. Such dual biomarkers method can achieve credible evaluation for AChE activity via providing AChE activity before and after reactivation. The liner range for AChE activity detection was from 0.025 U L(-1) to 25 KU L(-1) with a low detection limit down to 0.0083 U L(-1).
Collapse
Affiliation(s)
- Cui Ye
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education (Southwest University), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Min-Qiang Wang
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Xia Zhong
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education (Southwest University), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Shihong Chen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education (Southwest University), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yaqin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education (Southwest University), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education (Southwest University), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
19
|
Application of a dynamic in vitro model with real-time determination of acetylcholinesterase activity for the investigation of tabun analogues and oximes. Toxicol In Vitro 2015; 30:514-20. [DOI: 10.1016/j.tiv.2015.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 08/22/2015] [Accepted: 09/01/2015] [Indexed: 11/17/2022]
|
20
|
Lo R, Ganguly B. Can hydroxylamine be a more potent nucleophile for the reactivation of tabun-inhibited AChE than prototype oxime drugs? An answer derived from quantum chemical and steered molecular dynamics studies. MOLECULAR BIOSYSTEMS 2015; 10:2368-83. [PMID: 24964273 DOI: 10.1039/c4mb00083h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Organophosphorus nerve agents are highly toxic compounds which strongly inhibit acetylcholinesterase (AChE) in the blood and in the central nervous system (CNS). Tabun is one of the highly toxic organophosphorus (OP) compounds and is resistant to many oxime drugs formulated for the reactivation of AChE. The reactivation mechanism of tabun-conjugated AChE with various drugs has been examined with density functional theory and ab initio quantum chemical calculations. The presence of a lone-pair located on the amidic group resists the nucleophilic attack at the phosphorus center of the tabun-conjugated AChE. We have shown that the newly designed drug candidate N-(pyridin-2-yl)hydroxylamine, at the MP2/6-31+G*//M05-2X/6-31G* level in the aqueous phase with the polarizable continuum solvation model (PCM), is more effective in reactivating the tabun-conjugated AChE than typical oxime drugs. The rate determining activation barrier with N-(pyridin-2-yl)hydroxylamine was found to be ∼1.7 kcal mol(-1), which is 7.2 kcal mol(-1) lower than the charged oxime trimedoxime (one of the most efficient reactivators in tabun poisonings). The greater nucleophilicity index (ω(-)) and higher CHelpG charge of pyridinylhydroxylamine compared to TMB4 support this observation. Furthermore, we have also examined the reactivation process of tabun-inhibited AChE with some other bis-quaternary oxime drug candidates such as methoxime (MMB4) and obidoxime. The docking analysis suggests that charged bis-quaternary pyridinium oximes have greater binding affinity inside the active-site gorge of AChE compared to the neutral pyridinylhydroxylamine. The peripheral ligand attached to the neutral pyridinylhydroxylamine enhanced the binding with the aromatic residues in the active-site gorge of AChE through effective π-π interactions. Steered molecular dynamics (SMD) simulations have also been performed with the charged oxime (TMB4) and the neutral hydroxylamine. From protein-drug interaction parameters (rupture force profiles, hydrogen bonds, hydrophobic interactions), geometry and the orientation of the drug candidates, the hydroxylamine is suggested to orchestrate the reactivation process better than TMB4. Furthermore, the calculated log P values show the effective penetration of the neutral drug candidate through the blood-brain barrier. The toxicity measurements and the IC50 values (a measure of the intrinsic affinity toward AChE) suggest that the pyridinylhydroxylamine compound could have similar toxic behavior compared to the prototype oxime antidotes used for reactivation purposes. The newly designed pyridinylhydroxylamine drug candidate can be an effective antidote both kinetically and structurally to reactivate the tabun-inhibited enzyme.
Collapse
Affiliation(s)
- Rabindranath Lo
- Computation and Simulation Unit (Analytical Discipline and Centralized Instrument Facility), CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, India-364 002.
| | | |
Collapse
|
21
|
Pathak AK, Bandyopadhyay T. Ortho-7 bound to the active-site gorge of free and OP-conjugated acetylcholinesterase: cation-π interactions. Biopolymers 2015; 105:10-20. [PMID: 26270602 DOI: 10.1002/bip.22712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/10/2015] [Accepted: 08/10/2015] [Indexed: 02/02/2023]
Abstract
Despite the immense importance of cation-π interactions prevailing in bispyridinium drug acetylcholinesterase (AChE) complexes, a precise description of cation-π interactions at molecular level has remained elusive. Here, we consider a bispyridinium drug, namely, ortho-7 in three different structures of AChE, with and without complexation with organophosphorus (OP) compounds for detailed investigation using all atom molecular dynamics simulation. By quantum mechanical calculations, Y72, W86, Y124, W286, Y337, and Y341 aromatic residues of the enzyme are investigated for possible cation-π interactions with ortho-7. The cation-π interactions in each of the protein-drug complexes are studied using distance, angle, a suitable functional form of them, and electrostatic criteria. The variation of cation-π functional is remarkably consistent with that of the Columbic variation. It is clearly observed that cation-π interactions for some of the residues in the catalytic active site (CAS) and peripheral anionic site (PAS) of the enzyme are either enhanced or reduced based on the nature of OP conjugation (i.e., nerve gas, tabun or pesticide, fenamiphos) when compared with the OP-free enzyme. The strength of cation-π interaction is strongly dependent on the type OP conjugation. The effect of conjugation at CAS is also seen to influence the cation-π interaction at the PAS region. The variation of cation-π interactions on the type of conjugating OP compounds might be suggestive of a reason as to why wide spectrum drug against any OP poisoning is yet to arrive in the market.
Collapse
Affiliation(s)
- Arup Kumar Pathak
- Theoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Tusar Bandyopadhyay
- Theoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai, 400085, India
| |
Collapse
|
22
|
Bhattacharjee AK, Marek E, Le HT, Ratcliffe R, DeMar JC, Pervitsky D, Gordon RK. Discovery of non-oxime reactivators using an in silico pharmacophore model of reactivators for DFP-inhibited acetylcholinesterase. Eur J Med Chem 2015; 90:209-20. [DOI: 10.1016/j.ejmech.2014.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 11/03/2014] [Accepted: 11/05/2014] [Indexed: 10/24/2022]
|
23
|
Crow BS, Pantazides BG, Quiñones-González J, Garton JW, Carter MD, Perez JW, Watson CM, Tomcik DJ, Crenshaw MD, Brewer BN, Riches JR, Stubbs SJ, Read RW, Evans RA, Thomas JD, Blake TA, Johnson RC. Simultaneous measurement of tabun, sarin, soman, cyclosarin, VR, VX, and VM adducts to tyrosine in blood products by isotope dilution UHPLC-MS/MS. Anal Chem 2014; 86:10397-405. [PMID: 25286390 DOI: 10.1021/ac502886c] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This work describes a new specific, sensitive, and rapid stable isotope dilution method for the simultaneous detection of the organophosphorus nerve agents (OPNAs) tabun (GA), sarin (GB), soman (GD), cyclosarin (GF), VR, VX, and VM adducts to tyrosine (Tyr). Serum, plasma, and lysed whole blood samples (50 μL) were prepared by protein precipitation followed by digestion with Pronase. Specific Tyr adducts were isolated from the digest by a single solid phase extraction (SPE) step, and the analytes were separated by reversed-phase ultra high performance liquid chromatography (UHPLC) gradient elution in less than 2 min. Detection was performed on a triple quadrupole tandem mass spectrometer using time-triggered selected reaction monitoring (SRM) in positive electrospray ionization (ESI) mode. The calibration range was characterized from 0.100-50.0 ng/mL for GB- and VR-Tyr and 0.250-50.0 ng/mL for GA-, GD-, GF-, and VX/VM-Tyr (R(2) ≥ 0.995). Inter- and intra-assay precision had coefficients of variation of ≤17 and ≤10%, respectively, and the measured concentration accuracies of spiked samples were within 15% of the targeted value for multiple spiking levels. The limit of detection was calculated to be 0.097, 0.027, 0.018, 0.074, 0.023, and 0.083 ng/mL for GA-, GB-, GD-, GF-, VR-, and VX/VM-Tyr, respectively. A convenience set of 96 serum samples with no known nerve agent exposure was screened and revealed no baseline values or potential interferences. This method provides a simple and highly specific diagnostic tool that may extend the time postevent that a confirmation of nerve agent exposure can be made with confidence.
Collapse
Affiliation(s)
- Brian S Crow
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention , Atlanta, Georgia 30341, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Reactivation kinetics of 31 structurally different bispyridinium oximes with organophosphate-inhibited human butyrylcholinesterase. Arch Toxicol 2014; 89:405-14. [DOI: 10.1007/s00204-014-1288-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/28/2014] [Indexed: 02/02/2023]
|
25
|
Pathak AK, Bandyopadhyay T. Unbinding free energy of acetylcholinesterase bound oxime drugs along the gorge pathway from metadynamics-umbrella sampling investigation. Proteins 2014; 82:1799-818. [PMID: 24549829 DOI: 10.1002/prot.24533] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/17/2014] [Accepted: 01/28/2014] [Indexed: 12/20/2022]
Abstract
Because of the pivotal role that the nerve enzyme, acetylcholinesterase plays in terminating nerve impulses at cholinergic synapses. Its active site, located deep inside a 20 Å gorge, is a vulnerable target of the lethal organophosphorus compounds. Potent reactivators of the intoxicated enzyme are nucleophiles, such as bispyridinium oxime that binds to the peripheral anionic site and the active site of the enzyme through suitable cation-π interactions. Atomic scale molecular dynamics and free energy calculations in explicit water are used to study unbinding pathways of two oxime drugs (Ortho-7 and Obidoxime) from the gorge of the enzyme. The role of enzyme-drug cation-π interactions are explored with the metadynamics simulation. The metadynamics discovered potential of mean force (PMF) of the unbinding events is refined by the umbrella sampling (US) corrections. The bidimensional free energy landscape of the metadynamics runs are further subjected to finite temperature string analysis to obtain the transition tube connecting the minima and bottlenecks of the unbinding pathway. The PMF is also obtained from US simulations using the biasing potential constructed from the transition tube and are found to be consistent with the metadynamics-US corrected results. Although experimental structural data clearly shows analogous coordination of the two drugs inside the gorge in the bound state, the PMF of the drug trafficking along the gorge pathway point, within an equilibrium free energy context, to a multistep process that differs from one another. Routes, milestones and subtlety toward the unbinding pathway of the two oximes at finite temperature are identified.
Collapse
Affiliation(s)
- Arup K Pathak
- Theoretical Chemistry Section, Chemistry Group, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | | |
Collapse
|
26
|
Sharma R, Gupta B, Acharya J, Kaushik M, Ghosh KK. Interactions between xylene-linked carbamoyl bis-pyridinium mono-oximes and organophosphates inhibited-AChE: A kinetic study. Toxicology 2014; 316:1-8. [DOI: 10.1016/j.tox.2013.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/21/2013] [Accepted: 11/25/2013] [Indexed: 10/25/2022]
|
27
|
Esposito EX, Stouch TR, Wymore T, Madura JD. Exploring the physicochemical properties of oxime-reactivation therapeutics for cyclosarin, sarin, tabun, and VX inactivated acetylcholinesterase. Chem Res Toxicol 2014; 27:99-110. [PMID: 24443939 DOI: 10.1021/tx400350b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The inactivation of acetylcholinesterase (AChE) by organophosphorus agent (OP) compounds is a serious problem regardless of how the individual was exposed. The reactivation of OP-inactivated AChE is dependent on the OP conjugate, and commonly a specific oxime is better at reactivating a specific OP conjugate than several diverse OP conjugates. The presented research explores the physicochemical properties needed for the reactivation of OP-inactivated AChE. Four different OPs, cyclosarin, sarin, tabun, and VX, were analyzed using the same set of oxime reactivators. A trial descriptor pool of semiempirical, traditional, and molecular interaction field descriptors was used to construct an ensemble of QSAR models for each OP-conjugate pair. Based on the molecular information and the cross-validation ability, individual QSAR models were selected to be part of an OP-conjugate consensus model. The OP-conjugate specific models provide important insight into the physicochemical properties required to reactivate the OP conjugates of interest. The reactivation of AChE inactivated with either cyclosarin or tabun requires the oxime therapeutic to possess an overall polar-positive surface area. Oxime therapeutics for the reactivation of sarin-inactivated AChE are conformationally dependent while oxime reverse therapeutics for VX require a compact region with a highly hydrophilic region and two positively charged pyridine rings.
Collapse
|
28
|
Lo R, Chandar NB, Kesharwani MK, Jain A, Ganguly B. In silico studies in probing the role of kinetic and structural effects of different drugs for the reactivation of tabun-inhibited AChE. PLoS One 2013; 8:e79591. [PMID: 24312449 PMCID: PMC3846473 DOI: 10.1371/journal.pone.0079591] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/27/2013] [Indexed: 11/24/2022] Open
Abstract
We have examined the reactivation mechanism of the tabun-conjugated AChE with various drugs using density functional theory (DFT) and post-Hartree-Fock methods. The electronic environments and structural features of neutral oximes (deazapralidoxime and 3-hydroxy-2-pyridinealdoxime) and charged monopyridinium oxime (2-PAM) and bispyridinium oxime (Ortho-7) are different, hence their efficacy varies towards the reactivation process of tabun-conjugated AChE. The calculated potential energy surfaces suggest that a monopyridinium reactivator is less favorable for the reactivation of tabun-inhibited AChE compared to a bis-quaternary reactivator, which substantiates the experimental study. The rate determining barrier with neutral oximes was found to be ∼2.5 kcal/mol, which was ∼5.0 kcal/mol lower than charged oxime drugs such as Ortho-7. The structural analysis of the calculated geometries suggest that the charged oximes form strong O…H and N…H hydrogen bonding and C-H…π non-bonding interaction with the tabun-inhibited enzyme to stabilize the reactant complex compared to separated reactants, which influences the activation barrier. The ability of neutral drugs to cross the blood-brain barrier was also found to be superior to charged antidotes, which corroborates the available experimental observations. The calculated activation barriers support the superiority of neutral oximes for the activation of tabun-inhibited AChE compared to charged oximes. However, they lack effective interactions with their peripheral sites. Docking studies revealed that the poor binding affinity of simple neutral oxime drugs such as 3-hydroxy-2-pyridinealdoxime inside the active-site gorge of AChE was significantly augmented with the addition of neutral peripheral units compared to conventional charged peripheral sites. The newly designed oxime drug 2 appears to be an attractive candidate as efficient antidote to kinetically and structurally reactivate the tabun-inhibited enzyme.
Collapse
Affiliation(s)
- Rabindranath Lo
- Computation and Simulation Unit (Analytical Discipline and Centralized Instrument Facility), CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
| | - Nellore Bhanu Chandar
- Computation and Simulation Unit (Analytical Discipline and Centralized Instrument Facility), CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research, CSIR-CSMCRI, Bhavnagar, Gujarat, India
| | - Manoj K. Kesharwani
- Computation and Simulation Unit (Analytical Discipline and Centralized Instrument Facility), CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
| | - Aastha Jain
- Computation and Simulation Unit (Analytical Discipline and Centralized Instrument Facility), CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
| | - Bishwajit Ganguly
- Computation and Simulation Unit (Analytical Discipline and Centralized Instrument Facility), CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research, CSIR-CSMCRI, Bhavnagar, Gujarat, India
- * E-mail:
| |
Collapse
|
29
|
Carter MD, Crow BS, Pantazides BG, Watson CM, Thomas JD, Blake TA, Johnson RC. Direct quantitation of methyl phosphonate adducts to human serum butyrylcholinesterase by immunomagnetic-UHPLC-MS/MS. Anal Chem 2013; 85:11106-11. [PMID: 24205842 DOI: 10.1021/ac4029714] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydrolysis of G- and V-series organophosphorus nerve agents (OPNAs) containing a phosphorus-methyl bond yields a methylphosphonic acid (MeP) product when adducted to human butyrylcholinesterase (BChE). The MeP adduct is considered a sign of "aging" and results in loss of the o-alkyl identifier specific to each nerve agent. After aging has occurred, common therapeutics such as oximes cannot reactivate the cholinesterase enzyme and relieve cholinergic inhibition. Until now, a direct, quantitative method for determination of the MeP adduct to BChE was unavailable. Aged adducts in serum samples were processed by immunomagnetic separation of BChE by antibody conjugated bead, isotope-dilution, pepsin digestion, followed by UHPLC separation and detection by conventional electrospray ionization-tandem mass spectrometry (ESI-MS/MS). Ions were detected in selected reaction monitoring (SRM) mode, and transition m/z 874.3 → 778.3 was used for quantitation. The analytical response ratio was linearly proportional to the serum concentration of MeP-adducted peptide (MeP-P) over the nominal concentration range of 2.0-250 ng/mL, with a coefficient of determination of R(2) ≥ 0.997. Intrarun accuracy, expressed as %Relative Error (%RE), was ≤13.5%, 16.3%, and 3.20% at 2.0, 16, and 250 ng/mL, respectively; the corresponding precision expressed as %RSD was ≤11.9%, 6.15%, and 3.39%. Interday %RSD was ≤7.13%, 5.69%, and 1.91%. Recovery of MeP-P from serum was ≥68% across the validated concentration range, and contributions from matrix effects were minimal. The method provides a direct, quantitative measurement of MeP-P found in clinical samples suspected of nerve agent exposure and subjected to such post-sampling stresses as elevated temperature and extended shipping.
Collapse
Affiliation(s)
- Melissa D Carter
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention , Atlanta, Georgia 30341, United States
| | | | | | | | | | | | | |
Collapse
|
30
|
Elsinghorst PW, Worek F, Thiermann H, Wille T. Drug development for the management of organophosphorus poisoning. Expert Opin Drug Discov 2013; 8:1467-77. [PMID: 24125474 DOI: 10.1517/17460441.2013.847920] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The continuous application of organophosphate pesticides in developing countries, in addition to the remaining stock piles of chemical warfare nerve agents and their possible use is a significant threat to the public. Yet, today's options for a treatment of organophosphorus poisonings are still inadequate. AREAS COVERED This article provides a concise overview of current and future research trying to improve both prophylaxis and treatment of organophosphorus intoxications. The authors provide a summary of current oxime therapy and highlight several new concepts to overcome existing gaps. This overview of therapeutic options is accompanied by two sections on cyclodextrins, related compounds and bioscavengers, which may be used for either prophylaxis or treatment. For both groups, the authors review current drug design and screening approaches, the resulting developments and future challenges. EXPERT OPINION While the search for one multipotent oxime has been a fruitless endeavor, combination of multiple oximes with complemental and systemic reactivity appears as a valuable concept. Development of potential scavengers, be it cyclodextrins or bioscavengers, is still hampered by insufficient efficacy of these compounds. Future strategies will aim at improving their catalytic efficacy while minimizing immunogenicity.
Collapse
Affiliation(s)
- Paul Wilhelm Elsinghorst
- Bundeswehr Institute of Pharmacology and Toxicology , Neuherbergstraße 11, D-80937 München , Germany +49 89 3168 2305 ; +49 89 3168 2333 ;
| | | | | | | |
Collapse
|
31
|
Hong SP, Gibbs ST, Kobs DJ, Hawk MA, Croutch CR, Osheroff MR, Johnson JD, Burback BL. Comparative Toxicokinetics of MMB4 DMS in Rats, Rabbits, Dogs, and Monkeys Following Single and Repeated Intramuscular Administration. Int J Toxicol 2013; 32:38S-48S. [DOI: 10.1177/1091581813488631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
1,1′-Methylenebis[4-[(hydroxyimino)methyl]-pyridinium] (MMB4) dimethanesulfonate (DMS) is a bisquaternary pyridinium aldoxime that reactivates acetylcholinesterase inhibited by organophosphorus nerve agent. Time courses of MMB4 concentrations in plasma were characterized following 7-day repeated intramuscular (IM) administrations of MMB4 DMS to male and female Sprague-Dawley rats, New Zealand White rabbits, beagle dogs (single dose only), and rhesus monkeys at drug dose levels used in earlier toxicology studies. In general, there were no significant differences in MMB4 toxicokinetic (TK) parameters between males and females for all the species tested in these studies. After a single IM administration to rats, rabbits, dogs, and monkeys, MMB4 DMS was rapidly absorbed, resulting in average Tmax values ranging from 5 to 30 minutes. Although Cmax values did not increase dose proportionally, the overall exposure to MMB4 in these preclinical species, as indicated by area under the curve (AUC) extrapolated to the infinity (AUC∞) values, increased in an approximately dose-proportional manner. The MMB4 DMS was extensively absorbed into the systemic circulation after IM administration as demonstrated by greater than 80% absolute bioavailability values for rats, rabbits, and dogs. Repeated administrations of MMB4 DMS for 7 days did not overtly alter TK parameters for MMB4 in rats, rabbits, and monkeys (150 and 300 mg/kg/d dose groups only). However, Cmax and AUC values decreased in monkeys given 450 and 600 mg/kg IM doses of MMB4 DMS following repeated administrations for 7 days. Based on the TK results obtained from the current study and published investigations, it was found that the apparent volume of distribution and clearance values were similar among various preclinical species, except for the rat.
Collapse
|
32
|
Hrabetz H, Thiermann H, Felgenhauer N, Zilker T, Haller B, Nährig J, Saugel B, Eyer F. Organophosphate poisoning in the developed world - a single centre experience from here to the millennium. Chem Biol Interact 2013; 206:561-8. [PMID: 23685200 DOI: 10.1016/j.cbi.2013.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 12/20/2022]
Abstract
Organophosphate (OP) poisoning is still associated with high morbidity and mortality rates, both in resource-poor settings and in well-developed countries. Despite numerous publications dealing with this particular poison, detailed clinical data on more severe overdoses with these agents are relatively sparsely reported. A retrospective study was consequently conducted on 33 patients with OP poisoning admitted to our intensive care unit (ICU) to provide additional data on clinical features. We included moderate to severe poisonings between 2000 and 2012 who required admission to ICU. Patients ingested dimethyl-OPs in 19 cases, diethyl-OPs in 8 cases and otherwise classified OPs in 6 cases. Death (5/33) occurred rather late and only one of these fatalities died during on-going cholinergic crisis. Of the survivors (28/33), 71% recovered fully while 29% showed predominantly neurological disabilities before being transferred to neurologic rehabilitation. Aspiration pneumonia predominated in 27/33 patients and one patient died in refractory acute respiratory distress syndrome (ARDS). The intermediate syndrome occurred twice and cardiopulmonary resuscitation had to be performed in 6/33 patients. Fatalities showed a higher Poison-severity-score, APACHE-II-score and SOFA-score on admission compared with survivors and they showed significantly longer QTc-time in the ECG, lower systolic blood pressure and heart rate, a lower pH and a lower base excess on admission. Patients with diethyl-OPs required intubation significantly earlier and showed lower and more sustained inhibited activity of the plasma-cholinesterase on admission compared with patients ingesting dimethyl-OPs. Treatment with atropine and obidoxime was comparable between these groups and severity of poisoning, outcome, hemodynamics on admission, duration of mechanical ventilation and length of stay in the ICU did not significantly differ between the involved group of dimethyl- and diethyl-OPs. We conclude that the fatality rate in our patient cohort treated in a well-staffed and equipped ICU of a developed country is quite similarly high compared with the rate observed in developing countries. Patients died rather late when severe cholinergic crisis had mostly been overcome and death was therefore related to non-poison specific complications.
Collapse
Affiliation(s)
- Heidi Hrabetz
- Department of Clinical Toxicology, II. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Čolović MB, Krstić DZ, Lazarević-Pašti TD, Bondžić AM, Vasić VM. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol 2013; 11:315-35. [PMID: 24179466 PMCID: PMC3648782 DOI: 10.2174/1570159x11311030006] [Citation(s) in RCA: 1413] [Impact Index Per Article: 128.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 01/04/2013] [Accepted: 02/02/2013] [Indexed: 12/12/2022] Open
Abstract
Acetylcholinesterase is involved in the termination of impulse transmission by rapid hydrolysis of the neurotransmitter acetylcholine in numerous cholinergic pathways in the central and peripheral nervous systems. The enzyme inactivation, induced by various inhibitors, leads to acetylcholine accumulation, hyperstimulation of nicotinic and muscarinic receptors, and disrupted neurotransmission. Hence, acetylcholinesterase inhibitors, interacting with the enzyme as their primary target, are applied as relevant drugs and toxins. This review presents an overview of toxicology and pharmacology of reversible and irreversible acetylcholinesterase inactivating compounds. In the case of reversible inhibitors being commonly applied in neurodegenerative disorders treatment, special attention is paid to currently approved drugs (donepezil, rivastigmine and galantamine) in the pharmacotherapy of Alzheimer's disease, and toxic carbamates used as pesticides. Subsequently, mechanism of irreversible acetylcholinesterase inhibition induced by organophosphorus compounds (insecticides and nerve agents), and their specific and nonspecific toxic effects are described, as well as irreversible inhibitors having pharmacological implementation. In addition, the pharmacological treatment of intoxication caused by organophosphates is presented, with emphasis on oxime reactivators of the inhibited enzyme activity administering as causal drugs after the poisoning. Besides, organophosphorus and carbamate insecticides can be detoxified in mammals through enzymatic hydrolysis before they reach targets in the nervous system. Carboxylesterases most effectively decompose carbamates, whereas the most successful route of organophosphates detoxification is their degradation by corresponding phosphotriesterases.
Collapse
Affiliation(s)
- Mirjana B Čolović
- Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Danijela Z Krstić
- University School of Medicine, Institute of Medical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Tamara D Lazarević-Pašti
- Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Aleksandra M Bondžić
- Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Vesna M Vasić
- Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
34
|
New modified β-cyclodextrin derivatives as detoxifying agents of chemical warfare agents (II). In vitro detoxification of cyclosarin (GF): General screening and toxicokinetic aspects of OP scavengers. Toxicol Lett 2013. [DOI: 10.1016/j.toxlet.2012.11.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Kalakuntla RK, Wille T, Le Provost R, Letort S, Reiter G, Müller S, Thiermann H, Worek F, Gouhier G, Lafont O, Estour F. New modified β-cyclodextrin derivatives as detoxifying agents of chemical warfare agents (I). Synthesis and preliminary screening: evaluation of the detoxification using a half-quantitative enzymatic assay. Toxicol Lett 2012. [PMID: 23201439 DOI: 10.1016/j.toxlet.2012.11.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Current treatments of organophosphorus nerve agents poisoning are imperfect, and more efficient medical countermeasures need to be developed. Chemical scavengers based on β-cyclodextrin displayed promising results, but further investigations have to be performed to evaluate the possibility of application of substituted cyclodextrins as potential detoxification agents. Herein, five new cyclodextrins scavengers were synthesized. New optimal conditions for regioselectively monosubstitution of β-cyclodextrin at O-2 position were then studied to access to key intermediates. After these optimizations, a new series of three permethylated derivatives was developed, and two compounds bearing an α-nucleophilic group via a three carbon atoms linker were prepared. The ability of these five scavengers to detoxify nerve agents (cyclosarin, soman, tabun and VX) was evaluated by a semi-quantitative biological assay. All the modified cyclodextrins significantly decreased the inhibitory effect of chemical warfare G agents on acetylcholinesterase activity. For this purpose, we showed that the specific interactions between the organophosphorus compound and the oligosaccharidic moiety of the scavenger played a pivotal role in the detoxification process.
Collapse
Affiliation(s)
- Raman Kumar Kalakuntla
- Université de Rouen, UMR 6014 CNRS & FR 3038, IRCOF, 1 rue Tesnière, 76821 Mont-Saint-Aignan Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Estévez J, Mangas I, Sogorb MÁ, Vilanova E. Interactions of neuropathy inducers and potentiators/promoters with soluble esterases. Chem Biol Interact 2012. [PMID: 23200747 DOI: 10.1016/j.cbi.2012.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Organophosphorus compounds (OPs) cause neurotoxic disorders through interactions with well-known target esterases, such as acetylcholinesterase and neuropathy target esterase (NTE). However, the OPs can potentially interact with other esterases of unknown significance. Therefore, identifying, characterizing and elucidating the nature and functional significance of the OP-sensitive pool of esterases in the central and peripheral nervous systems need to be investigated. Kinetic models have been developed and applied by considering multi-enzymatic systems, inhibition, spontaneous reactivation, the chemical hydrolysis of the inhibitor and "ongoing inhibition" (inhibition during the substrate reaction time). These models have been applied to discriminate enzymatic components among the esterases in nerve tissues of adult chicken, this being the experimental model for delayed neuropathy and to identify different modes of interactions between OPs and soluble brain esterases. The covalent interaction with the substrate catalytic site has been demonstrated by time-progressive inhibition during ongoing inhibition. The interaction of sequential exposure to an esterase inhibitor has been tested in brain soluble fraction where exposure to one inhibitor at a non inhibitory concentration has been seen to modify sensitivity to further exposure to others. The effect has been suggested to be caused by interaction with sites other than the inhibition site at the substrate catalytic site. This kind of interaction among esterase inhibitors should be considered to study the potentiation/promotion phenomenon, which is observed when some esterase inhibitors enhance the severity of the OP induced neuropathy if they are dosed after a non neuropathic low dose of a neuropathy inducer.
Collapse
Affiliation(s)
- Jorge Estévez
- University Miguel Hernandez of Elche, Institute of Bioengineering, Unit of Toxicology and Chemical Safety, Alicante, Spain
| | | | | | | |
Collapse
|
37
|
Maxwell DM, Brecht KM, Sweeney RE. A common mechanism for resistance to oxime reactivation of acetylcholinesterase inhibited by organophosphorus compounds. Chem Biol Interact 2012; 203:72-6. [PMID: 22982773 DOI: 10.1016/j.cbi.2012.08.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/22/2012] [Accepted: 08/24/2012] [Indexed: 11/24/2022]
Abstract
Administration of oxime therapy is currently the standard approach used to reverse the acute toxicity of organophosphorus (OP) compounds, which is usually attributed to OP inhibition of acetylcholinesterase (AChE). Rate constants for reactivation of OP-inhibited AChE by even the best oximes, such as HI-6 and obidoxime, can vary >100-fold between OP-AChE conjugates that are easily reactivated and those that are difficult to reactivate. To gain a better understanding of this oxime specificity problem for future design of improved reactivators, we conducted a QSAR analysis for oxime reactivation of AChE inhibited by OP agents and their analogues. Our objective was to identify common mechanism(s) among OP-AChE conjugates of phosphates, phosphonates and phosphoramidates that result in resistance to oxime reactivation. Our evaluation of oxime reactivation of AChE inhibited by a sarin analogue, O-methyl isopropylphosphonofluoridate, or a cyclosarin analogue, O-methyl cyclohexylphosphonofluoridate, indicated that AChE inhibited by these analogues was at least 70-fold more difficult to reactivate than AChE inhibited by sarin or cyclosarin. In addition, AChE inhibited by an analogue of tabun (i.e., O-ethyl isopropylphosphonofluoridate) was nearly as resistant to reactivation as tabun-inhibited AChE. QSAR analysis of oxime reactivation of AChE inhibited by these OP compounds and others suggested that the presence of both a large substituent (i.e., ≥ the size of dimethylamine) and an alkoxy substituent in the structure of OP compounds is the common feature that results in resistance to oxime reactivation of OP-AChE conjugates whether the OP is a phosphate, phosphonate or phosphoramidate.
Collapse
Affiliation(s)
- Donald M Maxwell
- US Army Medical Research Institute of Chemical Defense, Pharmacology Branch, 3100 Ricketts Point Road, Aberdeen Proving Ground, MD 21010-5400, United States.
| | | | | |
Collapse
|
38
|
Barcelos RP, de Lima Portella R, Lugokenski TH, da Rosa EJF, Amaral GP, Garcia LFM, Bresolin L, Carratu V, Soares FAA, de Vargas Barbosa NB. Isatin-3-N4-benzilthiosemicarbazone, a non-toxic thiosemicarbazone derivative, protects and reactivates rat and human cholinesterases inhibited by methamidophos in vitro and in silico. Toxicol In Vitro 2012; 26:1030-9. [DOI: 10.1016/j.tiv.2012.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/09/2012] [Accepted: 04/10/2012] [Indexed: 11/27/2022]
|
39
|
Matos KS, da Cunha EF, da Silva Gonçalves A, Wilter A, Kuča K, França TC, Ramalho TC. First principles calculations of thermodynamics and kinetic parameters and molecular dynamics simulations of acetylcholinesterase reactivators: can mouse data provide new insights into humans? J Biomol Struct Dyn 2012; 30:546-58. [DOI: 10.1080/07391102.2012.687521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
40
|
Sinha V, Ganguly B, Bandyopadhyay T. Energetics of Ortho-7 (oxime drug) translocation through the active-site gorge of tabun conjugated acetylcholinesterase. PLoS One 2012; 7:e40188. [PMID: 22808117 PMCID: PMC3394793 DOI: 10.1371/journal.pone.0040188] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 06/02/2012] [Indexed: 11/19/2022] Open
Abstract
Oxime drugs translocate through the 20 Å active-site gorge of acetylcholinesterase in order to liberate the enzyme from organophosphorus compounds' (such as tabun) conjugation. Here we report bidirectional steered molecular dynamics simulations of oxime drug (Ortho-7) translocation through the gorge of tabun intoxicated enzyme, in which time dependent external forces accelerate the translocation event. The simulations reveal the participation of drug-enzyme hydrogen bonding, hydrophobic interactions and water bridges between them. Employing nonequilibrium theorems that recovers the free energy from irreversible work done, we reconstruct potential of mean force along the translocation pathway such that the desired quantity represents an unperturbed system. The potential locates the binding sites and barriers for the drug to translocate inside the gorge. Configurational entropic contribution of the protein-drug binding entity and the role of solvent translational mobility in the binding energetics is further assessed.
Collapse
Affiliation(s)
- Vivek Sinha
- Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, Nadia, India
| | - Bishwajit Ganguly
- Analytical Science Discipline, Central Salt & Marine Chemical Research Institute (Council of Scientific and Industrial Research), Bhavnagar, Gujarat, India
| | - Tusar Bandyopadhyay
- Theoretical Chemistry Section, Chemistry Group, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| |
Collapse
|
41
|
Lugokenski TH, Gubert P, Bueno DC, Nogara PA, de Aquino Saraiva R, Barcelos RP, Carratu VS, Bresolin L, de Vargas Barbosa NB, Pereira ME, da Rocha JBT, Soares FAA. Effect of different oximes on rat and human cholinesterases inhibited by methamidophos: a comparative in vitro and in silico study. Basic Clin Pharmacol Toxicol 2012; 111:362-70. [PMID: 22703537 DOI: 10.1111/j.1742-7843.2012.00912.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Accepted: 05/25/2012] [Indexed: 11/29/2022]
Abstract
Methamidophos is one of the most toxic organophosphorus (OP) compounds. It acts via phosphorylation of a serine residue in the active site of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), leading to enzyme inactivation. Different oximes have been developed to reverse this inhibition. Thus, our work aimed to test the protective or reactivation capability of pralidoxime and obidoxime, as well as two new oximes synthesised in our laboratory, on human and rat cholinesterases inhibited by methamidophos. In addition, we performed molecular docking studies in non-aged methamidophos-inhibited AChE to understand the mechanisms involved. Our results suggested that pralidoxime protected and reactivated methamidophos-inhibited rat brain AChE. Regarding human erythrocyte AChE, all oximes tested protected and reactivated the enzyme, with the best reactivation index observed at the concentration of 50 μM. Concerning BChE, butane-2,3-dionethiosemicarbazone oxime (oxime 1) was able to protect and reactivate the methamidophos-inhibited BChE by 45% at 50 μM, whereas 2(3-(phenylhydrazono)butan-2-one oxime (oxime 2) reactivated 28% of BChE activity at 100 μM. The two classical oximes failed to reactivate BChE. The molecular docking study demonstrated that pralidoxime appears to be better positioned in the active site to attack the O-P moiety of the inhibited enzyme, being near the oxyanion hole, whereas our new oximes were stably positioned in the active site in a manner similar to that of obidoxime. In conclusion, our work demonstrated that the newly synthesised oximes were able to reactivate not only human erythrocyte AChE but also human plasma BChE, which could represent an advantage in the treatment of OP compounds poisoning.
Collapse
|
42
|
Worek F, Wille T, Koller M, Thiermann H. Reactivation kinetics of a series of related bispyridinium oximes with organophosphate-inhibited human acetylcholinesterase—Structure–activity relationships. Biochem Pharmacol 2012; 83:1700-6. [DOI: 10.1016/j.bcp.2012.03.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
Mercey G, Verdelet T, Renou J, Kliachyna M, Baati R, Nachon F, Jean L, Renard PY. Reactivators of acetylcholinesterase inhibited by organophosphorus nerve agents. Acc Chem Res 2012; 45:756-66. [PMID: 22360473 DOI: 10.1021/ar2002864] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Since the September 11, 2001, terrorist attacks in the United States, the specter of a chemical threat against civilian populations has renewed research interest in chemical warfare agents, their mechanisms of action, and treatments that reverse their effects. In this Account, we focus specifically on organophosphorus nerve agents (OPNAs). Although some OPNAs are used as pest control, the most toxic chemicals in this class are used as chemical warfare agents in armed conflicts. The acute toxicity of OPNAs results from the irreversible inhibition of acetylcholinesterase (AChE, EC 3.1.1.7) via the formation of a covalent P-O bond at the serine hydroxyl group in the enzyme active site. AChE breaks down the neurotransmitter acetylcholine at neuronal synapses and neuromuscular junctions. The irreversible inhibition of AChE causes the neurotransmitter to accumulate in the synaptic cleft, leading to overstimulation of cholinergic receptors, seizures, respiratory arrest, and death. The current treatment for OPNA poisoning combines an antimuscarinic drug (e.g., atropine), an anticonvulsant drug (e.g., diazepam), and an AChE reactivator of the pyridinium aldoxime family (pralidoxime, trimedoxime, obidoxime, HI-6, HLö-7). Because of their high nucleophilicity, oximes can displace the phosphyl group from the catalytic serine, thus restoring the enzyme's catalytic activity. During 50 years of research in the reactivator field, researchers have synthesized and tested numerous structural modifications of monopyridinium oximes and bispyridinium oximes. In the past decade, medicinal chemists have focused their research on the more efficient bispyridinium reactivators, but all known reactivators have several drawbacks. First, due to their permanent positive charge, they do not cross the blood-brain barrier (BBB) efficiently and do not readily reactivate AChE in the central nervous system. Second, no single oxime is efficient against a wide variety of OPNAs. Third, oximes cannot reactivate "aged" AChE. This Account summarizes recent strategies for the development of AChE reactivators capable of crossing the BBB. The use of nanoparticulate transport and inhibition of P-glycoprotein efflux pumps improves BBB transport of these AChE reactivators. Chemical modifications that increased the lipophilicity of the pyridinium aldoximes, the addition of a fluorine atom and the replacement of a pyridyl ring with a dihydropyridyl moiety, enhances BBB permeability. The glycosylation of pyridine aldoximes facilitates increased BBB penetration via the GLUT-1 transport system. The development of novel uncharged reactivators that can move efficiently across the BBB represents one of the most promising of these new strategies.
Collapse
Affiliation(s)
- Guillaume Mercey
- Equipe de Chimie Bio-Organique, COBRA - CNRS UMR 6014 & FR 3038, Rue Lucien Tesnière, 76131 Mont-Saint-Aignan, France
- Université de Rouen, Place Emile Blondel, 76821, Mont-Saint-Aignan, France
| | - Tristan Verdelet
- Equipe de Chimie Bio-Organique, COBRA - CNRS UMR 6014 & FR 3038, Rue Lucien Tesnière, 76131 Mont-Saint-Aignan, France
- Université de Rouen, Place Emile Blondel, 76821, Mont-Saint-Aignan, France
| | - Julien Renou
- Equipe de Chimie Bio-Organique, COBRA - CNRS UMR 6014 & FR 3038, Rue Lucien Tesnière, 76131 Mont-Saint-Aignan, France
- Université de Rouen, Place Emile Blondel, 76821, Mont-Saint-Aignan, France
| | - Maria Kliachyna
- Faculté de Pharmacie, Université de Strasbourg, CNRS UMR 7199, Laboratoire des Systèmes Chimiques Fonctionnels, 74 route du Rhin, BP 60024, 67401 Illkirch, France
| | - Rachid Baati
- Faculté de Pharmacie, Université de Strasbourg, CNRS UMR 7199, Laboratoire des Systèmes Chimiques Fonctionnels, 74 route du Rhin, BP 60024, 67401 Illkirch, France
| | - Florian Nachon
- Département de Toxicologie, Institut de Recherche Biomédicale des Armées, 24 Avenue des Maquis du Grésivaudan, BP87, 38702 La Tronche, France
| | - Ludovic Jean
- Equipe de Chimie Bio-Organique, COBRA - CNRS UMR 6014 & FR 3038, Rue Lucien Tesnière, 76131 Mont-Saint-Aignan, France
- Université de Rouen, Place Emile Blondel, 76821, Mont-Saint-Aignan, France
| | - Pierre-Yves Renard
- Equipe de Chimie Bio-Organique, COBRA - CNRS UMR 6014 & FR 3038, Rue Lucien Tesnière, 76131 Mont-Saint-Aignan, France
- Université de Rouen, Place Emile Blondel, 76821, Mont-Saint-Aignan, France
- Institut Universitaire de France, 103 Boulevard Saint Michel, 75005 Paris, France
| |
Collapse
|
44
|
Mangas I, Vilanova E, Estévez J. NTE and non-NTE esterases in brain membrane: kinetic characterization with organophosphates. Toxicology 2012; 297:17-25. [PMID: 22503708 DOI: 10.1016/j.tox.2012.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 03/27/2012] [Accepted: 03/29/2012] [Indexed: 10/28/2022]
Abstract
Some effects of organophosphorus compounds (OPs) esters cannot be explained by action on currently recognized targets. In this work, we evaluate and characterize the interaction (inhibition, reactivation and "ongoing inhibition") of two model compounds: paraoxon (non-neuropathy-inducer) and mipafox (neuropathy-inducer), with esterases of chicken brain membranes, an animal model, tissue and fractions, where neuropathy target esterase (NTE) was first described and isolated. Four enzymatic components were discriminated. The relative sensitivity of time-progressive inhibition differed for paraoxon and mipafox. The most sensitive component for paraoxon was also the most sensitive component for mipafox (EPα: 4.4-8.3% of activity), with I(50) (30 min) of 15-43 nM with paraoxon and 29 nM with mipafox, and it spontaneously reactivated after inhibition with paraoxon. The second most sensitive component to paraoxon (EPβ: 38.3% of activity) had I(50) (30 min) of 1540 nM, and was practically resistant to mipafox. The third component (EPγ: 38.6-47.6% of activity) was paraoxon-resistant and sensitive to micromolar concentrations of mipafox; this component meets the operational criteria of being NTE (target of organophosphorus-induced delayed neuropathy). It had I(50) (30 min) of 5.3-6.6 μM with mipafox. The fourth component (EPδ: 9.8-10.7% of activity) was practically resistant to both inhibitors. Two paraoxon-resistant and mipafox-sensitive esterases were found using the sequential assay removing paraoxon, but only one was paraoxon-resistant and mipafox-sensitive according to the assay without removing paraoxon. We demonstrate that this apparent discrepancy, interpreted as reversible NTE inhibition with paraoxon, is the result of spontaneous reactivation after paraoxon inhibition of a non-NTE component. Some of these esterases' sensitivity to OPs suggests that they may play a role in toxicity in low-level exposure to organophosphate compounds or have a protective effect related with spontaneous reactivation. The kinetic characterization of these components will facilitate further studies for isolation and molecular characterization.
Collapse
Affiliation(s)
- Iris Mangas
- Unidad de Toxicología, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avda. Universidad s.n. ES-03202, Elche, Alicante, Spain.
| | | | | |
Collapse
|
45
|
Li Y, Du L, Hu Y, Sun X, Hu J. Theoretical study on the aging and reactivation mechanism of tabun-inhibited acetylcholinesterase by using the quantum mechanical / molecular mechanical method. CAN J CHEM 2012. [DOI: 10.1139/v2012-007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The organophosphorous compound tabun is highly neurotoxic because of its irreversible inhibition on acetylcholinesterase (AChE). It is wildly used as a warfare agent in the military. In this work, the aging and reactivation mechanism of tabun-inhibited AChE were studied by using the quantum mechanical / molecular mechanical (QM/MM) method. Geometry optimization of the stationary points were performed at the B3LYP/6–31G(d) level. Single-point energies were computed at the B3LYP/6–311++G(d,p) level. On the basis of the QM/MM results, a conclusion that the C–O bond scission is caused by water attack on the ethoxy group in the aging mechanism can be drawn. The reactivation process initialed by the antidotes CH2NO– or HLÖ-7 consists of three elemental steps, the nucleophilic attack on the P atom by the antidote, the dephosphorylation process, and the decomposition of the antidote–tabun complex. The highest energy barriers of the aging reaction, CH2NO–-induced reactivation, and HLÖ-7-induced reactivation are 19.9, 20.0, and 14.8 kcal/mol (1 cal = 4.184 J), respectively. The relative lower overall energy barrier of HLÖ-7-induced reactivation compared with that of the aging reaction indicates that HLÖ-7 is able to reactivate tabun-inhibited AChE. In addition, whether a newly designed antidote is able to reactivate tabun-inhibited AChE can be examined by the inequation X < 19.9 kcal/mol,where X means the highest energy barrier of the reactivation reaction of the newly designed antidote.
Collapse
Affiliation(s)
- Yanwei Li
- Environment Research Institute, Shandong University, Jinan 250100, P.R. China
| | - Likai Du
- Institute of Theoretical Chemistry, Shandong University, Jinan 250100, P.R. China
| | - Yueming Hu
- Environment Research Institute, Shandong University, Jinan 250100, P.R. China
| | - Xiaomin Sun
- Environment Research Institute, Shandong University, Jinan 250100, P.R. China
| | - Jingtian Hu
- Environment Research Institute, Shandong University, Jinan 250100, P.R. China
| |
Collapse
|
46
|
Seeger T, Eichhorn M, Lindner M, Niessen K, Tattersall J, Timperley C, Bird M, Green A, Thiermann H, Worek F. Restoration of soman-blocked neuromuscular transmission in human and rat muscle by the bispyridinium non-oxime MB327 in vitro. Toxicology 2012; 294:80-4. [DOI: 10.1016/j.tox.2012.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/02/2012] [Accepted: 02/04/2012] [Indexed: 11/17/2022]
|
47
|
Worek F, von der Wellen J, Musilek K, Kuca K, Thiermann H. Reactivation kinetics of a homologous series of bispyridinium bis-oximes with nerve agent-inhibited human acetylcholinesterase. Arch Toxicol 2012; 86:1379-86. [PMID: 22437842 DOI: 10.1007/s00204-012-0842-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/06/2012] [Indexed: 10/28/2022]
Abstract
The reactivation of organophosphorus compound (OP)-inhibited acetylcholinesterase (AChE) by oximes is inadequate in case of different OP nerve agents. This fact led to the synthesis of numerous novel oximes by different research groups in order to identify more effective reactivators. In the present study, we investigated the reactivation kinetics of a homologous series of bispyridinium bis-oximes bearing a (E)-but-2-ene linker with tabun-, sarin-, and cyclosarin-inhibited human AChE. In part, marked differences in affinity and reactivity of the investigated oximes toward OP-inhibited human AChE were recorded. These properties depended on the position of the oxime groups and the inhibitor. None of the tested oximes was equally effective against all used OPs. In addition, the data indicate that a (E)-but-2-ene linker decreased in most cases the reactivating potency in comparison to oximes bearing an oxybismethylene linker, e.g., obidoxime and HI-6. The results of this study give further insight into structural requirements for oxime reactivators, underline the necessity to investigate the kinetic interactions of oximes and AChE with structurally different OP inhibitors, and point to the difficulty to develop an oxime reactivator which is efficient against a broad spectrum of OPs.
Collapse
Affiliation(s)
- Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany.
| | | | | | | | | |
Collapse
|
48
|
Discovery of non-oxime reactivators using an in silico pharmacophore model of oxime reactivators of OP-inhibited acetylcholinesterase. Eur J Med Chem 2012; 49:229-38. [DOI: 10.1016/j.ejmech.2012.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/26/2011] [Accepted: 01/07/2012] [Indexed: 11/30/2022]
|
49
|
Worek F, Eyer P, Thiermann H. Determination of acetylcholinesterase activity by the Ellman assay: a versatile tool for in vitro research on medical countermeasures against organophosphate poisoning. Drug Test Anal 2011; 4:282-91. [PMID: 21998030 DOI: 10.1002/dta.337] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/01/2011] [Accepted: 07/05/2011] [Indexed: 11/08/2022]
Abstract
Inhibition of acetylcholinesterase (AChE) is the main mechanism of action of organophosphorus compounds (OP), and AChE reactivators (oximes) are at present the only causal therapeutic approach. Being the key target of OP toxicity, AChE may serve as a valuable tool for diagnosis of OP exposure as well as for the investigation of the kinetics of interactions between OP and oximes. At present, the rapid, simple, and cheap spectrophotometric Ellman assay is widely used for diagnosis, therapeutic monitoring and in vitro kinetic investigations. Application of the assay for investigation of the interactions between AChE, inhibitors, and oximes requires the consideration of potential matrix effects (e.g. hemoglobin), side reactions (e.g. oximolysis of substrate) and other determinants (e.g. pH, temperature). By taking these factors into account, the Ellman assay allows the precise and reproducible determination of kinetic constants as a basis for the understanding of toxic OP effects and for the development of improved therapies against poisoning by OP. In addition, advanced applications of the Ellman assay, for example, in a dynamic in vitro model for the real-time activity determination of membrane-bound AChE, enables the proper investigation of relevant tissue, primarily respiratory muscle, and extends the applicability of this method.
Collapse
Affiliation(s)
- Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, Munich, Germany.
| | | | | |
Collapse
|
50
|
Docking studies and effects of syn-anti isomery of oximes derived from pyridine imidazol bicycled systems as potential human acetylcholinesterase reactivators. J Appl Biomed 2011. [DOI: 10.2478/v10136-009-0037-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|