1
|
Jiang Z, Wu Z, Liu R, Du Q, Fu X, Li M, Kuang Y, Lin S, Wu J, Xie W, Shi G, Peng Y, Zheng F. Effect of polymorphisms in drug metabolism and transportation on plasma concentration of atorvastatin and its metabolites in patients with chronic kidney disease. Front Pharmacol 2023; 14:1102810. [PMID: 36923356 PMCID: PMC10010391 DOI: 10.3389/fphar.2023.1102810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
Dyslipidemia due to renal insufficiency is a common complication in patients with chronic kidney diseases (CKD), and a major risk factor for the development of cardiovascular events. Atorvastatin (AT) is mainly used in the treatment of dyslipidemia in patients with CKD. However, response to the atorvastatin varies inter-individually in clinical applications. We examined the association between polymorphisms in genes involved in drug metabolism and transport, and plasma concentrations of atorvastatin and its metabolites (2-hydroxy atorvastatin (2-AT), 2-hydroxy atorvastatin lactone (2-ATL), 4-hydroxy atorvastatin (4-AT), 4-hydroxy atorvastatin lactone (4-ATL), atorvastatin lactone (ATL)) in kidney diseases patients. Genotypes were determined using TaqMan real time PCR in 212 CKD patients, treated with 20 mg of atorvastatin daily for 6 weeks. The steady state plasma concentrations of atorvastatin and its metabolites were quantified using ultraperformance liquid chromatography in combination with triple quadrupole mass spectrometry (UPLC-MS/MS). Univariate and multivariate analyses showed the variant in ABCC4 (rs3742106) was associated with decreased concentrations of AT and its metabolites (2-AT+2-ATL: β = -0.162, p = 0.028 in the dominant model; AT+2-AT+4-AT: β = -0.212, p = 0.028 in the genotype model), while patients carrying the variant allele ABCC4-rs868853 (β = 0.177, p = 0.011) or NR1I2-rs6785049 (β = 0.123, p = 0.044) had higher concentrations of 2-AT+2-ATL in plasma compared with homozygous wildtype carriers. Luciferase activity was enhanced in HepG2 cells harboring a construct expressing the rs3742106-T allele or the rs868853-G allele (p < 0.05 for each) compared with a construct expressing the rs3742106G or the rs868853-A allele. These findings suggest that two functional polymorphisms in the ABCC4 gene may affect transcriptional activity, thereby directly or indirectly affecting release of AT and its metabolites from hepatocytes into the circulation.
Collapse
Affiliation(s)
- Zebin Jiang
- Clinical Pharmacology Laboratory, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zemin Wu
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Ruixue Liu
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Qin Du
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Xian Fu
- Clinical Pharmacology Laboratory, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Min Li
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Yongjun Kuang
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Shen Lin
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Jiaxuan Wu
- Department of Anesthesiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Weiji Xie
- Department of Nephrology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Yanqiang Peng
- Department of Nephrology, First Affiliated Hospital of Shantou University Medical College, Shantou, China
- *Correspondence: Fuchun Zheng, ; Yanqiang Peng,
| | - Fuchun Zheng
- Clinical Pharmacology Laboratory, First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Pharmacology, Shantou University Medical College, Shantou, China
- *Correspondence: Fuchun Zheng, ; Yanqiang Peng,
| |
Collapse
|
2
|
Dagli-Hernandez C, Borges JB, Marçal EDSR, de Freitas RCC, Mori AA, Gonçalves RM, Faludi AA, de Oliveira VF, Ferreira GM, Bastos GM, Zhou Y, Lauschke VM, Cerda A, Hirata MH, Hirata RDC. Genetic Variant ABCC1 rs45511401 Is Associated with Increased Response to Statins in Patients with Familial Hypercholesterolemia. Pharmaceutics 2022; 14:944. [PMID: 35631530 PMCID: PMC9144204 DOI: 10.3390/pharmaceutics14050944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Statins are the first-line treatment for familial hypercholesterolemia (FH), but response is highly variable due to genetic and nongenetic factors. Here, we explored the association between response and genetic variability in 114 Brazilian adult FH patients. Specifically, a panel of 84 genes was analyzed by exon-targeted gene sequencing (ETGS), and the functional impact of variants in pharmacokinetic (PK) genes was assessed using an array of functionality prediction methods. Low-density lipoprotein cholesterol (LDL-c) response to statins (reduction ≥ 50%) and statin-related adverse event (SRAE) risk were assessed in carriers of deleterious variants in PK-related genes using multivariate linear regression analyses. Fifty-eight (50.8%) FH patients responded to statins, and 24 (21.0%) had SRAE. Results of the multivariate regression analysis revealed that ABCC1 rs45511401 significantly increased LDL-c reduction after statin treatment (p < 0.05). In silico analysis of the amino-acid change using molecular docking showed that ABCC1 rs45511401 possibly impairs statin efflux. Deleterious variants in PK genes were not associated with an increased risk of SRAE. In conclusion, the deleterious variant ABCC1 rs45511401 enhanced LDL-c response in Brazilian FH patients. As such, this variant might be a promising candidate for the individualization of statin therapy.
Collapse
Affiliation(s)
- Carolina Dagli-Hernandez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (J.B.B.); (E.d.S.R.M.); (R.C.C.d.F.); (A.A.M.); (V.F.d.O.); (G.M.F.); (M.H.H.)
- Department of Physiology and Pharmacology, Karolinska Institutet, 171177 Stockholm, Sweden; (Y.Z.); (V.M.L.)
| | - Jéssica Bassani Borges
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (J.B.B.); (E.d.S.R.M.); (R.C.C.d.F.); (A.A.M.); (V.F.d.O.); (G.M.F.); (M.H.H.)
- Laboratory of Molecular Research in Cardiology, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil;
| | - Elisangela da Silva Rodrigues Marçal
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (J.B.B.); (E.d.S.R.M.); (R.C.C.d.F.); (A.A.M.); (V.F.d.O.); (G.M.F.); (M.H.H.)
- Laboratory of Molecular Research in Cardiology, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil;
| | - Renata Caroline Costa de Freitas
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (J.B.B.); (E.d.S.R.M.); (R.C.C.d.F.); (A.A.M.); (V.F.d.O.); (G.M.F.); (M.H.H.)
| | - Augusto Akira Mori
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (J.B.B.); (E.d.S.R.M.); (R.C.C.d.F.); (A.A.M.); (V.F.d.O.); (G.M.F.); (M.H.H.)
| | - Rodrigo Marques Gonçalves
- Medical Clinic Division, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil; (R.M.G.); (A.A.F.)
| | - Andre Arpad Faludi
- Medical Clinic Division, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil; (R.M.G.); (A.A.F.)
| | - Victor Fernandes de Oliveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (J.B.B.); (E.d.S.R.M.); (R.C.C.d.F.); (A.A.M.); (V.F.d.O.); (G.M.F.); (M.H.H.)
| | - Glaucio Monteiro Ferreira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (J.B.B.); (E.d.S.R.M.); (R.C.C.d.F.); (A.A.M.); (V.F.d.O.); (G.M.F.); (M.H.H.)
| | - Gisele Medeiros Bastos
- Laboratory of Molecular Research in Cardiology, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil;
- Department of Teaching and Research, Real e Benemerita Associação Portuguesa de Beneficiencia, Sao Paulo 01323-001, Brazil
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, 171177 Stockholm, Sweden; (Y.Z.); (V.M.L.)
| | - Volker M. Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, 171177 Stockholm, Sweden; (Y.Z.); (V.M.L.)
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstr. 112, 70376 Stuttgart, Germany
- University of Tuebingen, Geschwister-Scholl-Platz, 72074 Tübingen, Germany
| | - Alvaro Cerda
- Center of Excellence in Translational Medicine, CEMT-BIOREN & Department of Basic Sciences, Universidad de La Frontera, Av. Alemania 0458, Temuco 4810296, Chile;
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (J.B.B.); (E.d.S.R.M.); (R.C.C.d.F.); (A.A.M.); (V.F.d.O.); (G.M.F.); (M.H.H.)
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (J.B.B.); (E.d.S.R.M.); (R.C.C.d.F.); (A.A.M.); (V.F.d.O.); (G.M.F.); (M.H.H.)
| |
Collapse
|
3
|
Pharmacogenomics of statins: lipid response and other outcomes in Brazilian cohorts. Pharmacol Rep 2021; 74:47-66. [PMID: 34403130 DOI: 10.1007/s43440-021-00319-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 01/20/2023]
Abstract
Statins are inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase, a key enzyme in cholesterol biosynthesis, that are highly effective in reducing plasma low-density lipoprotein (LDL) cholesterol and decreasing the risk of cardiovascular events. In recent years, a multitude of variants in genes involved in pharmacokinetics (PK) and pharmacodynamics (PD) have been suggested to influence the cholesterol-lowering response. However, the vast majority of studies have analyzed the pharmacogenetic associations in populations in Europe and the USA, whereas data in other populations, including Brazil, are mostly lacking. This narrative review provides an update of clinical studies on statin pharmacogenomics in Brazilian cohorts exploring lipid-lowering response, adverse events and pleiotropic effects. We find that variants in drug transporter genes (SLCO1B1 and ABCB1) positively impacted atorvastatin and simvastatin response, whereas variants in genes of drug metabolizing enzymes (CYP3A5) decreased response. Furthermore, multiple associations of variants in PD genes (HMGCR, LDLR and APOB) with statin response were identified. Few studies have explored statin-related adverse events, and only ABCB1 but not SLCO1B1 variants were robustly associated with increased risk in Brazil. Statin-related pleiotropic effects were shown to be influenced by variants in PD (LDLR, NR1H2) and antioxidant enzyme (NOS3, SOD2, MTHFR, SELENOP) genes. The findings of these studies indicate that statin pharmacogenomic associations are distinctly different in Brazil compared to other populations. This review also discusses the clinical implications of pharmacogenetic studies and the rising importance of investigating rare variants to explore their association with statin response.
Collapse
|
4
|
Gachpazan M, Kashani H, Khazaei M, Hassanian SM, Rezayi M, Asgharzadeh F, Ghayour-Mobarhan M, Ferns GA, Avan A. The Impact of Statin Therapy on the Survival of Patients with Gastrointestinal Cancer. Curr Drug Targets 2020; 20:738-747. [PMID: 30539694 DOI: 10.2174/1389450120666181211165449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/25/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022]
Abstract
Statins are 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors that may play an important role in the evolution of cancers, due to their effects on cancer cell metabolism. Statins affect several potential pathways, including cell proliferation, angiogenesis, apoptosis and metastasis. The number of trials assessing the putative clinical benefits of statins in cancer is increasing. Currently, there are several trials listed on the global trial identifier website clinicaltrials.gov. Given the compelling evidence from these trials in a variety of clinical settings, there have been calls for a clinical trial of statins in the adjuvant gastrointestinal cancer setting. However, randomized controlled trials on specific cancer types in relation to statin use, as well as studies on populations without a clinical indication for using statins, have elucidated some potential underlying biological mechanisms, and the investigation of different statins is probably warranted. It would be useful for these trials to incorporate the assessment of tumour biomarkers predictive of statin response in their design. This review summarizes the recent preclinical and clinical studies that assess the application of statins in the treatment of gastrointestinal cancers with particular emphasize on their association with cancer risk.
Collapse
Affiliation(s)
- Meysam Gachpazan
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies; Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hoda Kashani
- Department of Modern Sciences and Technologies; Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biochemistry; Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezayi
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies; Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fereshteh Asgharzadeh
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, United Kingdom
| | - Amir Avan
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies; Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Hirata RDC, Cerda A, Genvigir FDV, Hirata MH. Pharmacogenetic implications in the management of metabolic diseases in Brazilian populations. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000001005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
6
|
Schumacher T, Benndorf RA. ABC Transport Proteins in Cardiovascular Disease-A Brief Summary. Molecules 2017; 22:molecules22040589. [PMID: 28383515 PMCID: PMC6154303 DOI: 10.3390/molecules22040589] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/29/2017] [Accepted: 04/03/2017] [Indexed: 12/17/2022] Open
Abstract
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters may play an important role in the pathogenesis of atherosclerotic vascular diseases due to their involvement in cholesterol homeostasis, blood pressure regulation, endothelial function, vascular inflammation, as well as platelet production and aggregation. In this regard, ABC transporters, such as ABCA1, ABCG5 and ABCG8, were initially found to be responsible for genetically-inherited syndromes like Tangier diseases and sitosterolemia. These findings led to the understanding of those transporter’s function in cellular cholesterol efflux and thereby also linked them to atherosclerosis and cardiovascular diseases (CVD). Subsequently, further ABC transporters, i.e., ABCG1, ABCG4, ABCB6, ABCC1, ABCC6 or ABCC9, have been shown to directly or indirectly affect cellular cholesterol efflux, the inflammatory response in macrophages, megakaryocyte proliferation and thrombus formation, as well as vascular function and blood pressure, and may thereby contribute to the pathogenesis of CVD and its complications. Furthermore, ABC transporters, such as ABCB1, ABCC2 or ABCG2, may affect the safety and efficacy of several drug classes currently in use for CVD treatment. This review will give a brief overview of ABC transporters involved in the process of atherogenesis and CVD pathology. It also aims to briefly summarize the role of ABC transporters in the pharmacokinetics and disposition of drugs frequently used to treat CVD and CVD-related complications.
Collapse
Affiliation(s)
- Toni Schumacher
- Institute of Pharmacy, Department of Clinical Pharmacy and Pharmacotherapy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, D-06120 Halle (Saale), Germany.
| | - Ralf A Benndorf
- Institute of Pharmacy, Department of Clinical Pharmacy and Pharmacotherapy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, D-06120 Halle (Saale), Germany.
| |
Collapse
|
7
|
Arrigoni E, Del Re M, Fidilio L, Fogli S, Danesi R, Di Paolo A. Pharmacogenetic Foundations of Therapeutic Efficacy and Adverse Events of Statins. Int J Mol Sci 2017; 18:ijms18010104. [PMID: 28067828 PMCID: PMC5297738 DOI: 10.3390/ijms18010104] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 12/11/2022] Open
Abstract
Background: In the era of precision medicine, more attention is paid to the search for predictive markers of treatment efficacy and tolerability. Statins are one of the classes of drugs that could benefit from this approach because of their wide use and their incidence of adverse events. Methods: Literature from PubMed databases and bibliography from retrieved publications have been analyzed according to terms such as statins, pharmacogenetics, epigenetics, toxicity and drug–drug interaction, among others. The search was performed until 1 October 2016 for articles published in English language. Results: Several technical and methodological approaches have been adopted, including candidate gene and next generation sequencing (NGS) analyses, the latter being more robust and reliable. Among genes identified as possible predictive factors associated with statins toxicity, cytochrome P450 isoforms, transmembrane transporters and mitochondrial enzymes are the best characterized. Finally, the solute carrier organic anion transporter family member 1B1 (SLCO1B1) transporter seems to be the best target for future studies. Moreover, drug–drug interactions need to be considered for the best approach to personalized treatment. Conclusions: Pharmacogenetics of statins includes several possible genes and their polymorphisms, but muscular toxicities seem better related to SLCO1B1 variant alleles. Their analysis in the general population of patients taking statins could improve treatment adherence and efficacy; however, the cost–efficacy ratio should be carefully evaluated.
Collapse
Affiliation(s)
- Elena Arrigoni
- Clinical Pharmacology and Pharmacogenetic Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Marzia Del Re
- Clinical Pharmacology and Pharmacogenetic Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Leonardo Fidilio
- Clinical Pharmacology and Pharmacogenetic Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Stefano Fogli
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy.
| | - Romano Danesi
- Clinical Pharmacology and Pharmacogenetic Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Antonello Di Paolo
- Clinical Pharmacology and Pharmacogenetic Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| |
Collapse
|
8
|
Rodrigues AC, Neri EA, Veríssimo-Filho S, Rebouças NA, Hirata RDC, Yu AM. Atorvastatin attenuation of ABCB1 expression is mediated by microRNA miR-491-3p in Caco-2 cells. Eur J Pharm Sci 2016; 93:431-6. [PMID: 27575876 DOI: 10.1016/j.ejps.2016.08.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/01/2016] [Accepted: 08/23/2016] [Indexed: 12/11/2022]
Abstract
AIM Atorvastatin, a HMG-CoA reductase inhibitor, used in the treatment of hypercholesterolemia, has been previously shown to regulate ABCB1 expression in vivo and in vitro. We hypothesized that the statin could regulate gene expression of ABCB1 transporter via microRNAs. METHODS Expression of microRNAs and ABCB1 mRNA was examined in atorvastatin-treated and control cells using real-time PCR. miR-491-3P mimic and inhibitor were transfected in Caco-2 and ABCB1 expression was monitored by western blot and real-time PCR. RESULTS In HepG2 cells, none of the microRNAs predicted to target ABCB1 3'UTR was regulated by atorvastatin treatment. In agreement with this, ABCB1 3'UTR activity was not modulated in HepG-2 cells after 48h-treatment as measured by luciferase assay. In Caco-2 cells, atorvastatin treatment provoked a decrease in luciferase activity and, accordingly, miR-491-3p was upregulated about 2.7 times after 48h-statin treatment. Luciferase analysis of miR-491-3p with a mimetic or inhibitor of miR-491-3p revealed that this microRNA could target ABCB1 3'UTR, as after miR-491-3p inhibition, ABCB1 levels were increased by two-fold, and miR-491-3p superexpression decreased ABCB1 3'UTR activity. Finally, functional analysis revealed that treatment with miR-491-3p inhibitor could reverses atorvastatin attenuation of ABCB1 (Pg-p) protein levels. CONCLUSION Our results suggest atorvastatin control ABCB1 expression via miR-491-3p in Caco-2 cells. This finding may be an important mechanism of statin drug-drug interaction, since common concomitant drugs used in the prevention of cardiovascular diseases are ABCB1 substrates.
Collapse
Affiliation(s)
- Alice C Rodrigues
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil.
| | - Elida Adalgisa Neri
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Sidney Veríssimo-Filho
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Nancy Amaral Rebouças
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Rosario D C Hirata
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California-Davis, Sacramento, CA, United States
| |
Collapse
|
9
|
Behdad N, Kojuri J, Azarpira N, Masoomi A, Namazi S. Association of ABCB1 (C3435T) and ABCC1 (G2012T) Polymorphisms with Clinical Response to Atorvastatin in Iranian Patients with Primary Hyperlipidemia. IRANIAN BIOMEDICAL JOURNAL 2016; 21:120-5. [PMID: 27238935 PMCID: PMC5274711 DOI: 10.18869/acadpub.ibj.21.2.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Atorvastatin is prescribed for the primary and the secondary prevention of coronary artery diseases. A wide variation in inter-individual statin response suggests that genetic differences may contribute to this variation. This study investigated the association of ABCB1 (C3435T) and ABCC1 (G2012T) polymorphisms with clinical response to atorvastatin in Iranian primary hyperlipidemic patients. METHODS Individuals (n=179) with primary hypercholesterolemia were enrolled, and peripheral blood samples were collected. Genotyping of two polymorphisms were performed by amplification refractory mutation system PCR. RESULTS Following four weeks of treatment, a significant reduction of LDL-C was observed in variant groups (CT+TT) of ABCB1 (P=0.018) and wild-type group (GG) of ABCC1 genes (P=0.029). Logistic regression analysis revealed a significant difference between male and female responses to 10 mg/day atorvastatin (P=0.004, odds ratio=0.2, CI 95%=0.06-0.6). CONCLUSION Our finding indicated that these polymorphisms may be attributed to LDL-C serum levels in the primary hypercholesterolemia patients receiving atorvastatin.
Collapse
Affiliation(s)
- Niusha Behdad
- Department of Pharmacotherapy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Javad Kojuri
- Department of Cardiology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Masoomi
- Department of Pharmacotherapy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soha Namazi
- Department of Pharmacotherapy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
van der Weide K, Loovers H, Pondman K, Bogers J, van der Straaten T, Langemeijer E, Cohen D, Commandeur J, van der Weide J. Genetic risk factors for clozapine-induced neutropenia and agranulocytosis in a Dutch psychiatric population. THE PHARMACOGENOMICS JOURNAL 2016; 17:471-478. [PMID: 27168101 DOI: 10.1038/tpj.2016.32] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/03/2016] [Accepted: 04/15/2016] [Indexed: 12/21/2022]
Abstract
Prescription of clozapine is complicated by the occurrence of clozapine-induced reduction of neutrophils. The aim of this study was to identify genetic risk factors in a population of 310 Dutch patients treated with clozapine, including 38 patients developing neutropenia and 31 patients developing agranulocytosis. NQO2 1541AA (NRH quinone oxidoreductase 2; protects cells against oxidative metabolites) was present at a higher frequency in agranulocytosis patients compared with control (23% versus 7%, P=0.03), as was ABCB1 (ABC-transporter-B1; drug efflux transporter) 3435TT (32% versus 20%, P=0.05). In patients developing neutropenia, ABCB1 3435TT and homozygosity for GSTT1null (glutathione-S-transferase; conjugates reactive clozapine metabolites into glutathione) were more frequent compared with control (34% versus 20%, P=0.05 and 31% versus 14%, P=0.03), whereas GSTM1null was less frequent in these patients (31% versus 52%, P=0.03). To investigate whether combinations of the identified genetic risk factors have a higher predictive value, should be confirmed in a larger case-control study.
Collapse
Affiliation(s)
- K van der Weide
- Department of Clinical Chemistry, St Jansdal Hospital, Harderwijk, The Netherlands
| | - H Loovers
- Department of Clinical Chemistry, St Jansdal Hospital, Harderwijk, The Netherlands.,Psychiatric Hospital GGz Centraal, Dependance Meerkanten, Ermelo, The Netherlands
| | - K Pondman
- Department of Clinical Chemistry, St Jansdal Hospital, Harderwijk, The Netherlands
| | - J Bogers
- Mental Health Services Rivierduinen, Oegstgeest, The Netherlands
| | - T van der Straaten
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - E Langemeijer
- Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - D Cohen
- Mental Health Services North-Holland North, Heerhugowaard, The Netherlands
| | - J Commandeur
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU Amsterdam, Amsterdam, The Netherlands
| | - J van der Weide
- Department of Clinical Chemistry, St Jansdal Hospital, Harderwijk, The Netherlands.,Psychiatric Hospital GGz Centraal, Dependance Meerkanten, Ermelo, The Netherlands
| |
Collapse
|
11
|
Su J, Xu H, Yang J, Yu Q, Yang S, Zhang J, Yao Q, Zhu Y, Luo Y, Ji L, Zheng Y, Yu J. ABCB1 C3435T polymorphism and the lipid-lowering response in hypercholesterolemic patients on statins: a meta-analysis. Lipids Health Dis 2015; 14:122. [PMID: 26438079 PMCID: PMC4594898 DOI: 10.1186/s12944-015-0114-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/02/2015] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND A number of researches have evaluated the association between the ABCB1 polymorphism and the lipid-lowering response of statins, but the results have been inconclusive. To examine the lipid-lowering efficacy and safety associated with the ABCB1 C3435T polymorphism in hypercholesterolemic patients receiving statin, all available studies were included in this meta-analysis. METHODS A systematic search for eligible studies in the Cochrane library database, Scopus and PubMed was performed. Articles meeting the inclusion criteria were comprehensively reviewed, and the available data were accumulated by the meta-analysis. RESULTS The results indicated that the comparisons of CC+CT vs. TT were associated with a significant elevation of the serum HDL-C levels after statin treatment (CC+CT vs. TT: MD, 2.46; 95 % CI, 0.36 to 4.55; P = 0.02), and the ABCB1 C3435T variant in homozygotes was correlated with decreases in LDL-C (CC vs. TT: MD, 2.29; 95 % CI, 0.37 to 4.20; P = 0.02) as well as TC (CC vs. TT: MD, 3.05; 95 % CI, 0.58 to 5.53; P = 0.02) in patients treated with statin. However, we did not observe a significant association in the TG group or an association between other genetic models serum lipid parameters. In addition, statin treatment more than 5 months led to a higher risk of muscle toxicity. CONCLUSIONS The evidence from the meta-analysis demonstrated that the ABCB1 C3435T polymorphism may represent a pharmacogenomic biomarker for predicting treatment outcomes in patients on statins and that statin treatment for more than 5 months can increase the risk of myopathy.
Collapse
Affiliation(s)
- Jia Su
- Department of Gerontology, Ningbo No.1 Hospital, Ningbo, Zhejiang Province, 315010, People's Republic of China.
| | - Hongyu Xu
- Department of Gerontology, Ningbo No.1 Hospital, Ningbo, Zhejiang Province, 315010, People's Republic of China.
| | - Jun Yang
- Department of Gerontology, Ningbo No.1 Hospital, Ningbo, Zhejiang Province, 315010, People's Republic of China.
| | - Qinglin Yu
- Department of Traditional Chinese Internal Medicine, Ningbo No.1 Hospital, Ningbo, Zhejiang Province, People's Republic of China.
| | - Shujun Yang
- Department of Hematology, Ningbo No.1 Hospital, Ningbo, Zhejiang Province, People's Republic of China.
| | - Jianjiang Zhang
- Department of Gerontology, Ningbo No.1 Hospital, Ningbo, Zhejiang Province, 315010, People's Republic of China.
| | - Qi Yao
- Department of Gerontology, Ningbo No.1 Hospital, Ningbo, Zhejiang Province, 315010, People's Republic of China.
| | - Yunyun Zhu
- Department of Gerontology, Ningbo No.1 Hospital, Ningbo, Zhejiang Province, 315010, People's Republic of China.
| | - Yuan Luo
- Department of Gerontology, Ningbo No.1 Hospital, Ningbo, Zhejiang Province, 315010, People's Republic of China.
| | - Lindan Ji
- Department of Biochemistry, School of Medicine, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China.
| | - Yibo Zheng
- Department of Gerontology, Ningbo No.1 Hospital, Ningbo, Zhejiang Province, 315010, People's Republic of China.
| | - Jingbo Yu
- Department of Gerontology, Ningbo No.1 Hospital, Ningbo, Zhejiang Province, 315010, People's Republic of China.
| |
Collapse
|
12
|
Abstract
BACKGROUND This represents the first update of this review, which was published in 2012. Atorvastatin is one of the most widely prescribed drugs and the most widely prescribed statin in the world. It is therefore important to know the dose-related magnitude of effect of atorvastatin on blood lipids. OBJECTIVES Primary objective To quantify the effects of various doses of atorvastatin on serum total cholesterol, low-density lipoprotein (LDL)-cholesterol, high-density lipoprotein (HDL)-cholesterol and triglycerides in individuals with and without evidence of cardiovascular disease. The primary focus of this review was determination of the mean per cent change from baseline of LDL-cholesterol. Secondary objectives • To quantify the variability of effects of various doses of atorvastatin.• To quantify withdrawals due to adverse effects (WDAEs) in placebo-controlled randomised controlled trials (RCTs). SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (Issue 11, 2013), MEDLINE (1966 to December Week 2 2013), EMBASE (1980 to December Week 2 2013), Web of Science (1899 to December Week 2 2013) and BIOSIS Previews (1969 to December Week 2 2013). We applied no language restrictions. SELECTION CRITERIA Randomised controlled and uncontrolled before-and-after trials evaluating the dose response of different fixed doses of atorvastatin on blood lipids over a duration of three to 12 weeks. DATA COLLECTION AND ANALYSIS Two review authors independently assessed eligibility criteria for studies to be included and extracted data. We collected information on withdrawals due to adverse effects from placebo-controlled trials. MAIN RESULTS In this update, we found an additional 42 trials and added them to the original 254 studies. The update consists of 296 trials that evaluated dose-related efficacy of atorvastatin in 38,817 participants. Included are 242 before-and-after trials and 54 placebo-controlled RCTs. Log dose-response data from both trial designs revealed linear dose-related effects on blood total cholesterol, LDL-cholesterol, HDL-cholesterol and triglycerides. The Summary of findings table 1 documents the effect of atorvastatin on LDL-cholesterol over the dose range of 10 to 80 mg/d, which is the range for which this systematic review acquired the greatest quantity of data. Over this range, blood LDL-cholesterol is decreased by 37.1% to 51.7% (Summary of findings table 1). The slope of dose-related effects on cholesterol and LDL-cholesterol was similar for atorvastatin and rosuvastatin, but rosuvastatin is about three-fold more potent. Subgroup analyses suggested that the atorvastatin effect was greater in females than in males and was greater in non-familial than in familial hypercholesterolaemia. Risk of bias for the outcome of withdrawals due to adverse effects (WDAEs) was high, but the mostly unclear risk of bias was judged unlikely to affect lipid measurements. Withdrawals due to adverse effects were not statistically significantly different between atorvastatin and placebo groups in these short-term trials (risk ratio 0.98, 95% confidence interval 0.68 to 1.40). AUTHORS' CONCLUSIONS This update resulted in no change to the main conclusions of the review but significantly increases the strength of the evidence. Studies show that atorvastatin decreases blood total cholesterol and LDL-cholesterol in a linear dose-related manner over the commonly prescribed dose range. New findings include that atorvastatin is more than three-fold less potent than rosuvastatin, and that the cholesterol-lowering effects of atorvastatin are greater in females than in males and greater in non-familial than in familial hypercholesterolaemia. This review update does not provide a good estimate of the incidence of harms associated with atorvastatin because included trials were of short duration and adverse effects were not reported in 37% of placebo-controlled trials.
Collapse
Affiliation(s)
- Stephen P Adams
- University of British ColumbiaDepartment of Anesthesiology, Pharmacology and Therapeutics2176 Health Sciences Mall, Medical Block CVancouverBCCanadaV6T 1Z3
| | - Michael Tsang
- McMaster UniversityDepartment of Internal Medicine, Internal Medicine Residency Office, Faculty of Medicine1200 Main Street WestHSC 3W10HamiltonONCanadaL8N 3N5
| | - James M Wright
- University of British ColumbiaDepartment of Anesthesiology, Pharmacology and Therapeutics2176 Health Sciences Mall, Medical Block CVancouverBCCanadaV6T 1Z3
| | | |
Collapse
|
13
|
Reiner Z. Resistance and intolerance to statins. Nutr Metab Cardiovasc Dis 2014; 24:1057-1066. [PMID: 24996502 DOI: 10.1016/j.numecd.2014.05.009] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 04/30/2014] [Accepted: 05/06/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Many patients treated with statins are considered statin-resistant because they fail to achieve adequate reduction of low density lipoprotein cholesterol (LDL-C) levels. Some patients are statin-intolerant because they are unable to tolerate statin therapy at all or to tolerate a full therapeutic statin dose because of adverse effects, particularly myopathy and increased activity of liver enzymes. RESULTS The resistance to statins has been associated with polymorphisms in the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA-R), P-glycoprotein (Pg-P/ABCB1), breast cancer resistance protein (BCRP/ABCG2), multidrug resistance-associated proteins (MRP1/ABCC1 and MRP2/ABCC2), organic anion transporting polypeptides (OATP), RHOA, Nieman-Pick C1-like1 protein (NPC1L1), farnesoid X receptor (FXR), cholesterol 7alpha-hydroxylase (CYP7A1), Apolipoprotein E (ApoE), proprotein convertase subtilisin/kexin type 9 (PCSK9), low density lipoprotein receptor (LDLR), lipoprotein (a) (LPA), cholesteryl ester transfer protein (CETP), and tumor necrosis factor α (TNF-α) genes. However, currently, there is still not enough evidence to advocate pharmacogenetic testing before initiating statin therapy. Patients with inflammatory states and HIV infection also have diminished LDL-C lowering as a response to statin treatment. Pseudo-resistance due to nonadherence or non-persistence in real-life circumstances is probably the main cause of insufficient LDL-C response to statin treatment. CONCLUSIONS If a patient is really statin-resistant or statin-intolerant, several other treatment possibilities are nowadays available: ezetimibe alone or in combination with bile acid sequestrants, and possibly in the near future mipomersen, lomitapide, or monoclonal antibodies against PCSK9.
Collapse
Affiliation(s)
- Z Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia.
| |
Collapse
|
14
|
Sałacka A, Bińczak-Kuleta A, Kaczmarczyk M, Hornowska I, Safranow K, Clark JSC. Possible association of ABCB1:c.3435T>C polymorphism with high-density-lipoprotein-cholesterol response to statin treatment--a pilot study. Bosn J Basic Med Sci 2014; 14:144-9. [PMID: 25172973 DOI: 10.17305/bjbms.2014.3.43] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 08/14/2014] [Accepted: 07/25/2014] [Indexed: 01/11/2023] Open
Abstract
The gene product ABCB1 (formerly MDR1 or P-glycoprotein) is hypothesized to be involved in cholesterol cellular trafficking, redistribution and intestinal re-absorption. Carriers of the ABCB1:3435T allele have previously been associated with decreases in ABCB1 mRNA and protein concentrations and have been correlated with changes in serum lipid concentrations. The aim of this study was to investigate possible association between the ABCB1:3435T>C polymorphism and changes in lipids in patients following statin treatment. Outpatients (n=130) were examined: 43 men (33%), 87 women (67%): treated with atorvastatin or simvastatin (all patients with equivalent dose of 20 or 40 mg/d simvastatin). Blood was taken for ABCB1:3435T>C genotyping, and before and after statin treatment for lipid concentration determination (total cholesterol, high-density-lipoprotein-cholesterol (HDL-C), triglycerides). Change (Δ) in lipid parameters, calculated as differences between measurements before and after treatment, were analyzed with multiple regression adjustments: gender, diabetes, age, body mass index, equivalent statin dose, length of treatment. Univariate and multivariate analyses showed significant differences in ΔHDL-C (univariate p=0.029; multivariate p=0.036) and %ΔHDL-C (univariate p=0.021; multivariate p=0.023) between patients with TT (-0.05 ± 0.13 g/l; -6.8% ± 20%; respectively) and CC+CT genotypes (0.004 ± 0.15 g/l; 4.1 ± 26%; respectively). Reduction of HDL-C in homozygous ABCB1:3435TT patients suggests this genotype could be associated with a reduction in the benefits of statin treatment.
Collapse
Affiliation(s)
- Anna Sałacka
- Department of Family Medicine, Pomeranian Medical University, Szczecin, Poland.
| | | | | | | | | | | |
Collapse
|
15
|
Li Q, Hong J, Wu J, Huang ZX, Li QJ, Yin RX, Lin QZ, Wang F. The role of common variants of ABCB1 and CYP7A1 genes in serum lipid levels and lipid-lowering efficacy of statin treatment: a meta-analysis. J Clin Lipidol 2014; 8:618-629. [PMID: 25499945 DOI: 10.1016/j.jacl.2014.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 07/23/2014] [Accepted: 07/30/2014] [Indexed: 01/17/2023]
Abstract
BACKGROUND The relation between the ABCB1 and CYP7A1 genes and serum lipid levels and lipid-lowering efficacy of statin treatment is inconsistent. OBJECTIVE The purpose of this meta-analysis was to explore the associations between the ABCB1 and CYP7A1 genes and serum lipid levels and lipid-lowering efficacy of statin treatment. METHODS MEDLINE, EMBASE, and the Cochrane Library databases were searched systematically for studies of associations between relevant single nucleotide polymorphisms C3435 T (ABCB1), G2677 A/T (ABCB1), and A-204C (CYP7A1) and serum lipid levels or statin treatment. Associations were assessed in pooled data by calculating mean difference with 95% confidence intervals. RESULTS Seventeen studies with 4890 patients were included in this meta-analysis. The "AA" group at A-204C (CYP7A1) had lower serum total cholesterol (TC) levels than "AC + CC" group. The "AA" group at A-204C (CYP7A1) had greater reduction in low-density lipoprotein cholesterol (LDL-C) with statin treatment than "AC + CC" group. The "GG" group at G2677 A/T (ABCB1) had less reduction in TC and LDL-C with statin treatment than "non-GG" group. CONCLUSIONS The A-204C (CYP7A1) polymorphism was associated with the level of TC and the lipid-lowering efficacy of statin treatment in the level of LDL-C. The G2677 A/T (ABCB1) polymorphism was associated with the lipid-lowering efficacy of statin treatment in the levels of LDL-C and TC.
Collapse
Affiliation(s)
- Qing Li
- Department of Internal Medicine, Affiliated Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jiang Hong
- Department of Internal Medicine, Affiliated Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Wu
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Zhen-Xing Huang
- Department of Endocrinology, Institute of the First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Qing-Jie Li
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Rui-Xing Yin
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Quan-Zhen Lin
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Fang Wang
- Department of Cardiology, Affiliated Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
16
|
Au A, Baba AA, Azlan H, Norsa'adah B, Ankathil R. Clinical impact of ABCC1 and ABCC2 genotypes and haplotypes in mediating imatinib resistance among chronic myeloid leukaemia patients. J Clin Pharm Ther 2014; 39:685-90. [PMID: 25060527 DOI: 10.1111/jcpt.12197] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 07/03/2014] [Indexed: 11/30/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE The introduction and success of imatinib mesylate (IM) has brought about a paradigm shift in chronic myeloid leukaemia (CML) treatment. However, despite the high efficacy of IM, clinical resistance develops due to a heterogeneous array of mechanisms. Pharmacogenetic variability as a result of genetic polymorphisms could be one of the most important factors influencing resistance to IM. The aim of this study was to investigate the association between genetic variations in drug efflux transporter ABCC1 (MRP1) and ABCC2 (MRP2) genes and response to IM in patients with CML. METHODS We genotyped 215 Malaysian patients with CML (comprising of two groups with 108 IM resistant and 107 IM responsive) for polymorphisms of ABCC1 (2012G>T and 2168G>A) and ABCC2 (-24C>T, 1249G>A and 3972C>T) genes. Genotype, allele and haplotype frequencies were compared between two groups of patients. Patients with CML were further stratified according to their clinical response to IM into those having cytogenetics and molecular responses, and the associations with genotypes were evaluated. RESULTS AND DISCUSSION We observed no significant differences in the distribution of any of the tested genotypes between the investigated groups. However, on evaluating the risk association, ABCC2 T₋₂₄ G₁₂₄₉ T₃₉₇₂ haplotype was found to be associated with IM resistance (P = 0·046). These results suggest that haplotype variants -24T and 3972T might be associated with lower expression of ABCC2 protein and reduced transport activity and hence might be contributing to development of IM resistance. WHAT IS NEW AND CONCLUSION Our results suggest the ABCC2 T₋₂₄ G₁₂₄₉ T₃₉₇₂ haplotype was associated with imatinib resistance. However, the evidence is as yet insufficient to establish this haplotype as a predictive biomarker for response to the drug.
Collapse
Affiliation(s)
- A Au
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | | | | | | | | |
Collapse
|
17
|
Do MDR1 and SLCO1B1 polymorphisms influence the therapeutic response to atorvastatin? A study on a cohort of Egyptian patients with hypercholesterolemia. Mol Diagn Ther 2014; 17:299-309. [PMID: 23677857 DOI: 10.1007/s40291-013-0038-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Statins are among the most prescribed drugs worldwide to reduce the risk of cardiovascular events. Interindividual variability in drug response is a major clinical problem and is of concern during drug development. Statins, such as atorvastatin, are taken orally and access to their site of action in the liver is greatly facilitated by both intestinal and hepatic transporters. OBJECTIVE To examine the impact of polymorphisms of the multidrug resistance 1(MDR1) and solute carrier organic anion transporter 1B1 (SLCO1B1) genes on the therapeutic response to atorvastatin as well as the presence of gender-gene interaction. METHODS Serum lipid levels were determined at baseline and 4 weeks following 40 mg/day atorvastatin treatment in 50 Egyptian hypercholesterolemic patients (27 males and 23 females). Identification of MDR1 C3435T and SLCO1B1 A388G gene polymorphisms was performed using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. RESULTS Treatment with atorvastatin resulted in a mean reduction of total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), and triglyceride (TG) of 8.7 %, 9.2 %, and 4.1 %, respectively, and a mean increase of high density lipoprotein cholesterol (HDL-C) of 1 %. Baseline and post-treatment HDL-C levels were statistically significantly higher in the MDR 1 TT homozygotes when compared with the CC wild type. The percentage change in TC, LDL-C, TG, and HDL-C did not show any statistically significant difference when compared among the different MDR 1 C3435T or SLCO1B1 A388G genotypes. The SLCO1B1 GG homozygotes showed a decrease in TG, whereas there was an increase in TG following atorvastatin treatment in AA and AG carriers in females; however, males did not show any statistically significant difference. There was no statistically significant association between either the coronary artery disease (CAD) risk factors (family history of CAD, hypertension, diabetes mellitus, smoking) or concomitant medications with the percentage change in different lipid parameters. CONCLUSION MDR1 C3435T was associated with baseline and post-treatment HDL-C variation. SLCO1B1 A388G showed gender-related effects on TG change following atorvastatin treatment. None of the comorbidities or the concomitant medications influenced the percentage change of lipid parameters following atorvastatin treatment. The results of this study may lead to an improved understanding of the genetic determinants of lipid response to atorvastatin treatment.
Collapse
|
18
|
Yin J, Zhang J. Multidrug resistance-associated protein 1 (MRP1/ABCC1) polymorphism: from discovery to clinical application. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2013; 36:927-38. [PMID: 22086004 DOI: 10.3969/j.issn.1672-7347.2011.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Multidrug resistance-associated protein 1(MRP1/ABCC1) is the first identified member of ABCC subfamily which belongs to ATP-binding cassette (ABC) transporter superfamily. It is ubiquitously expressed in almost all human tissues and transports a wide spectrum of substrates including drugs, heavy metal anions, toxicants, and conjugates of glutathione, glucuronide and sulfate. With the advance of sequence technology, many MRP1/ABCC1 polymorphisms have been identified. Accumulating evidences show that some polymorphisms are significantly associated with drug resistance and disease susceptibility. In vitro reconstitution studies have also unveiled the mechanism for some polymorphisms. In this review, we present recent advances in understanding the role and mechanism of MRP1/ABCC1 polymorphisms in drug resistance, toxicity, disease susceptibility and severity, prognosis prediction, and Methods to select and predict functional polymorphisms.
Collapse
Affiliation(s)
- Jiye Yin
- Department of Pharmacology/Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | |
Collapse
|
19
|
Abstract
There is great variation in drug-response phenotypes, and a “one size fits all” paradigm for drug delivery is flawed. Pharmacogenomics is the study of how human genetic information impacts drug response, and it aims to improve efficacy and reduced side effects. In this article, we provide an overview of pharmacogenetics, including pharmacokinetics (PK), pharmacodynamics (PD), gene and pathway interactions, and off-target effects. We describe methods for discovering genetic factors in drug response, including genome-wide association studies (GWAS), expression analysis, and other methods such as chemoinformatics and natural language processing (NLP). We cover the practical applications of pharmacogenomics both in the pharmaceutical industry and in a clinical setting. In drug discovery, pharmacogenomics can be used to aid lead identification, anticipate adverse events, and assist in drug repurposing efforts. Moreover, pharmacogenomic discoveries show promise as important elements of physician decision support. Finally, we consider the ethical, regulatory, and reimbursement challenges that remain for the clinical implementation of pharmacogenomics.
Collapse
|
20
|
Abstract
BACKGROUND Atorvastatin is one of the most widely prescribed drugs and the most widely prescribed statin in the world. It is therefore important to know the dose-related magnitude of effect of atorvastatin on blood lipids. OBJECTIVES To quantify the dose-related effects of atorvastatin on blood lipids and withdrawals due to adverse effects (WDAE). SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL) on The Cochrane Library Issue 4, 2011, MEDLINE (1966 to November 2011), EMBASE (1980 to November 2011), ISI Web of Science (1899 to November 2011) and BIOSIS Previews (1969 to November 2011). No language restrictions were applied. SELECTION CRITERIA Randomised controlled and uncontrolled before-and-after trials evaluating the dose response of different fixed doses of atorvastatin on blood lipids over a duration of 3 to 12 weeks. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trial quality and extracted data. WDAE information was collected from the placebo-controlled trials. MAIN RESULTS Two hundred fifty-four trials evaluated the dose-related efficacy of atorvastatin in 33,505 participants. Log dose-response data revealed linear dose-related effects on blood total cholesterol, low-density lipoprotein (LDL)-cholesterol and triglycerides. Combining all the trials using the generic inverse variance fixed-effect model for doses of 10 to 80 mg/day resulted in decreases of 36% to 53% for LDL-cholesterol. There was no significant dose-related effects of atorvastatin on blood high-density lipoprotein (HDL)-cholesterol. WDAE were not statistically different between atorvastatin and placebo for these short-term trials (risk ratio 0.99; 95% confidence interval 0.68 to 1.45). AUTHORS' CONCLUSIONS Blood total cholesterol, LDL-cholesterol and triglyceride lowering effect of atorvastatin was dependent on dose. Log dose-response data was linear over the commonly prescribed dose range. Manufacturer-recommended atorvastatin doses of 10 to 80 mg/day resulted in 36% to 53% decreases of LDL-cholesterol. The review did not provide a good estimate of the incidence of harms associated with atorvastatin because of the short duration of the trials and the lack of reporting of adverse effects in 37% of the placebo-controlled trials.
Collapse
Affiliation(s)
- Stephen P Adams
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver,
| | | | | |
Collapse
|
21
|
Luchessi AD, Silbiger VN, Cerda A, Hirata RDC, Carracedo A, Brion M, Iñiguez A, Bravo M, Bastos G, Sousa AGMR, Hirata MH. Increased clopidogrel response is associated with ABCC3 expression: A pilot study. Clin Chim Acta 2012; 413:417-21. [DOI: 10.1016/j.cca.2011.10.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/11/2011] [Accepted: 10/11/2011] [Indexed: 01/19/2023]
|
22
|
Pharmacogenetics of OATP transporters reveals that SLCO1B1 c.388A>G variant is determinant of increased atorvastatin response. Int J Mol Sci 2011; 12:5815-27. [PMID: 22016628 PMCID: PMC3189752 DOI: 10.3390/ijms12095815] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 12/03/2022] Open
Abstract
Aims The relationship between variants in SLCO1B1 and SLCO2B1 genes and lipid-lowering response to atorvastatin was investigated. Material and Methods One-hundred-thirty-six unrelated individuals with hypercholesterolemia were selected and treated with atorvastatin (10 mg/day/4 weeks). They were genotyped with a panel of ancestry informative markers for individual African component of ancestry (ACA) estimation by SNaPshot® and SLCO1B1 (c.388A>G, c.463C>A and c.521T>C) and SLCO2B1 (−71T>C) gene polymorphisms were identified by TaqMan® Real-time PCR. Results Subjects carrying SLCO1B1 c.388GG genotype exhibited significantly high low-density lipoprotein (LDL) cholesterol reduction relative to c.388AA+c.388AG carriers (41 vs. 37%, p = 0.034). Haplotype analysis revealed that homozygous of SLCO1B1*15 (c.521C and c.388G) variant had similar response to statin relative to heterozygous and non-carriers. A multivariate logistic regression analysis confirmed that c.388GG genotype was associated with higher LDL cholesterol reduction in the study population (OR: 3.2, CI95%:1.3–8.0, p < 0.05). Conclusion SLCO1B1 c.388A>G polymorphism causes significant increase in atorvastatin response and may be an important marker for predicting efficacy of lipid-lowering therapy.
Collapse
|
23
|
Suarez-Kurtz G. Pharmacogenetics in the brazilian population. Front Pharmacol 2010; 1:118. [PMID: 21833165 PMCID: PMC3153000 DOI: 10.3389/fphar.2010.00118] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 08/27/2010] [Indexed: 12/23/2022] Open
Abstract
Brazil is the fifth largest country in the world and its present population, in excess of 190;million, is highly heterogeneous, as a result of centuries of admixture between Amerindians, Europeans, and Sub-Saharan Africans. The estimated individual proportions of biogeographical ancestry vary widely and continuously among Brazilians: most individuals, irrespective of self-identification as White, Brown or Black - the major categories of the Brazilian Census "race/color" system - have significant degrees of European and African ancestry, while a sizeable number display also Amerindian ancestry. These features have important pharmacogenetic (PGx) implications: first, extrapolation of PGx data from relatively well-defined ethnic groups is clearly not applicable to the majority of Brazilians; second, the frequency distribution of polymorphisms in pharmacogenes (e.g., CYP3A5, CYP2C9, GSTM1, ABCB1, GSTM3, VKORC, etc) varies continuously among Brazilians and is not captured by race/color self-identification; third, the intrinsic heterogeneity of the Brazilian population must be acknowledged in the design and interpretation of PGx studies in order to avoid spurious conclusions based on improper matching of study cohorts. The peculiarities of PGx in Brazilians are illustrated with data for different therapeutic groups, such as anticoagulants, HIV protease inhibitors and non-steroidal antinflammatory drugs, and the challenges and advantages created by population admixture for the study and implementation of PGx are discussed. PGx data for Amerindian groups and Brazilian-born, first-generation Japanese are presented to illustrate the rich diversity of the Brazilian population. Finally, I introduce the reader to the Brazilian Pharmacogenetic Network or Refargen, a nation-wide consortium of research groups, with the mission to provide leadership in PGx research and education in Brazil, with a population health impact.
Collapse
Affiliation(s)
- Guilherme Suarez-Kurtz
- Divisão de Farmacologia, Coordenação de Pesquisa, Instituto Nacional de CâncerRio de Janeiro, Brazil
| |
Collapse
|
24
|
Rodrigues AC. Efflux and uptake transporters as determinants of statin response. Expert Opin Drug Metab Toxicol 2010; 6:621-32. [PMID: 20367534 DOI: 10.1517/17425251003713519] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
IMPORTANCE OF THE FIELD The important role of drug transporters in drug absorption and disposition has been well documented. Statins are subjected to active transport of membrane proteins of the superfamilies ATP-binding cassette and solute carrier, and there is limited understanding of the mechanisms by which differences in transporter expression and activity contributes to variability of pharmacokinetics (PKs)/pharmacodynamics (PDs) of statins. AREAS COVERED IN THIS REVIEW This review aims to discuss the roles of drug transporters in the PKs and PDs of statins, and in drug interactions with statins. WHAT THE READER WILL GAIN A comprehensive summary of the literature on this subject including in vitro and in vivo observations. TAKE HOME MESSAGE In vivo and in vitro studies have shown that efflux and uptake transporters modulate the PKs/PDs of statins. Until now organic anion transporting polypeptides (OATP)1B1 variants have been considered major factors in limiting the uptake of statins and increasing statin exposure, and, consequently, increasing risk of myopathy. Further studies in pharmacogenetics and in vitro models to assess statin disposition and toxicity are required to understand the contribution of others transporters, such as multidrug resistance-associated protein (MRP)1, MRP2, breast cancer resistance protein, OATP2B1, OAT1B3 and OATP1A2, in interindividual variability to statins efficacy and safety.
Collapse
Affiliation(s)
- Alice C Rodrigues
- University of Sao Paulo, Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Av. Prof. Lineu Prestes, 580, bl17s, Sao Paulo 05508-000, SP, Brazil.
| |
Collapse
|
25
|
Rodrigues AC, Curi R, Hirata MH, Hirata RDC. Decreased ABCB1 mRNA expression induced by atorvastatin results from enhanced mRNA degradation in HepG2 cells. Eur J Pharm Sci 2009; 37:486-91. [DOI: 10.1016/j.ejps.2009.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 03/19/2009] [Accepted: 04/15/2009] [Indexed: 10/20/2022]
|
26
|
Genvigir FDV, Hirata MH, Hirata RDC. ABCA1 expression and statins: inhibitory effect in peripheral blood mononuclear cells. Pharmacogenomics 2009; 10:997-1005. [DOI: 10.2217/pgs.09.30] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The ATP-binding cassette transporter A1 (ABCA1) has an essential role in the formation of nascent high-density lipoprotein particles and also participates in the cholesterol efflux from macrophages in the artery wall. Several substances, such as statins, or even gene variants are able to modulate ABCA1 expression. There is strong evidence that statin treatment downregulates the ABCA1 expression in nonloaded macrophages. Interestingly, in cholesterol-loaded macrophages, which are more relevant to atherogenesis, this effect is lost. We observed an inhibitory effect of atorvastatin in peripheral blood mononuclear cells of hypercholesterolemic individuals. Moreover, in these individuals, the ABCA1 -14C>T polymorphism was associated with high baseline gene-expression levels. Other studies are needed to evaluate how relevant these findings are to the formation of arterial foam cells in vivo.
Collapse
Affiliation(s)
- Fabiana DV Genvigir
- Department of Clinical & Toxicological Analysis, School of Pharmaceutical Sciences, University of Sao Paulo, Avenue Professor Lineu Prestes, 580, B.17, 05508-900, Sao Paulo, Brazil
| | - Mario H Hirata
- Department of Clinical & Toxicological Analysis, School of Pharmaceutical Sciences, University of Sao Paulo, Avenue Professor Lineu Prestes, 580, B.17, 05508-900, Sao Paulo, Brazil
| | - Rosario DC Hirata
- Department of Clinical & Toxicological Analysis, School of Pharmaceutical Sciences, University of Sao Paulo, Avenue Professor Lineu Prestes, 580, B.17, 05508-900, Sao Paulo, Brazil
| |
Collapse
|
27
|
Rodrigues AC, Hirata MH, Hirata RDC. Impact of cholesterol on ABC and SLC transporters expression and function and its role in disposition variability to lipid-lowering drugs. Pharmacogenomics 2009; 10:1007-16. [DOI: 10.2217/pgs.09.18] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
This report focuses on the effects of cholesterol on the expression and function of the ATP-binding cassette (ABCB1, ABCG2 and ABCC2) and solute-linked carrier (SLCO1B1 and SLCO2B1) drug transporters with a particular focus on the potential impact of cholesterol on lipid-lowering drug disposition. Statins are the most active agents in the treatment of hypercholesterolemia. However, considerable interindividual variation exists in the response to statin therapy. Therefore, it would be huge progress if factors were identified that reliably differentiate between responders and nonresponders. Many studies have suggested that plasma lipid concentrations can affect drug disposition of compounds, such as ciclosporin and amphotericin B. Both compounds are able to affect the expression and function of ABC transporters. Although still speculative, these effects might be owing to the regulation of drug transporters by plasma cholesterol levels. Studies with normo- and hyper-cholesterolemic individuals, before and after atorvastatin treatment, have demonstrated that plasma cholesterol levels are correlated with drug transporter expression, as well as being related to atorvastatin’s cholesterol-lowering effect. The mechanism influencing the correlation between cholesterol levels and the expression and function of drug transporters remains unclear. Some studies provide strong evidence that nuclear receptors, such as the pregnane X receptor and the constitutive androstane receptor, mediate this effect. In the near future, pharmacogenomic studies with individuals in a pathological state should be performed in order to identify whether high plasma cholesterol levels might be a factor contributing to interindividual oral drug bioavailability.
Collapse
Affiliation(s)
- Alice Cristina Rodrigues
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenue Professor Lineu Prestes, 580, B17, Sao Paulo, SP, 05508-900, Brazil
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenue Professor Lineu Prestes, 580, B17, Sao Paulo, SP, 05508-900, Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenue Professor Lineu Prestes, 580, B17, Sao Paulo, SP, 05508-900, Brazil
| |
Collapse
|
28
|
Hamidovic A, Hahn K, Kolesar J. Clinical significance of ABCB1 genotyping in oncology. J Oncol Pharm Pract 2009; 16:39-44. [PMID: 19401306 DOI: 10.1177/1078155209104380] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND P-glycoprotein (Pgp) is a drug efflux pump that transports natural products, including taxanes and other chemotherapeutic agents, from cells. Several frequent polymorphisms in ATP binding cassette gene B1 (ABCB1) may influence Pgp levels and drug efflux. The purpose of this review was to assess the clinical significance of ABCB1 polymorphisms in oncology. METHODS Peer-reviewed studies were identified through a search of PubMed/MEDLINE (1990-2008) and the ASCO abstracts (2003-2008) database. Included studies described clinical trials where ABCB1 genotyping was performed in patients with cancer. Search terms included ABCB1, Pgp, docetaxel, paclitaxel, irinotecan, imatinib, and anticancer agent. Studies were excluded if the manuscript was not available in English. RESULTS The influence of polymorphisms in ABCB1 2677G>T/A, 3435C>T, and 1236C>T and progression-free and overall survival in 309 patients from the Australian Ovarian Cancer Study treated with paclitaxel/carboplatin demonstrated that compared to homozygote GG carriers at 2677, women with the minor T/A alleles were significantly less likely to relapse following treatment. Other trials of ABCB1 genotyping in breast and prostate cancer patients receiving taxanes have shown inconsistent results. Pharmacokinetic studies where ABCB1 was genotyped and patients received irinotecan or imatinib have also shown inconsistent results. CONCLUSION A number of commercially available drugs are substrates for Pgp, and the ABCB1-variant genotypes are frequent and functionally significant, which may have future implications for drug dosing.
Collapse
Affiliation(s)
- Alma Hamidovic
- University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, USA
| | | | | |
Collapse
|