1
|
Kaftan G, Erdoğan MA, El-Shazly M, Lu MC, Shih SP, Lin HY, Saso L, Armagan G. Heteronemin promotes iron-dependent cell death in pancreatic cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1865-1874. [PMID: 37773525 DOI: 10.1007/s00210-023-02736-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
The marine environment has been recognized as a prolific source of potent bioactive compounds with significant anticancer properties. Among these, heteronemin, a sesterterpenoid-type natural product, has shown promise. This study delves into the potential of heteronemin as a ferroptotic agent against pancreatic cancer, using the Panc-1 cell line as a model. The cytotoxic potential of heteronemin was assessed using cell viability assays. Furthermore, its effect on lipid peroxidation was determined spectrophotometrically, while the changes it induced in autophagy- and ferritin-related protein expressions were evaluated using immunoblotting techniques. Various cell-based tests were employed to scrutinize its anticancer efficacy. Heteronemin displayed a notable cytotoxic effect, reducing cell viability by 50% at a concentration of 55 nM. This cytotoxicity was discernibly linked to ferroptosis, as evidenced by the reversal of cell death upon treatment with the ferroptosis inhibitor, ferrostatin-1. Heteronemin treatment led to a marked increase in ferroptosis markers and malondialdehyde (MDA) levels. Conversely, the expression of glutathione peroxidase-4 (GPX4), a key anti-ferroptotic protein, was suppressed. Furthermore, significant modulations in the expression of ferritinophagy- and iron-related proteins such as Atg5, Atg7, FTL, STEAP3, and DMT-1 were evident post-treatment (p < 0.05). This study underscores the potential of heteronemin as a ferroptosis inducer in pancreatic cancer cells. Given its robust cytotoxicity, heteronemin emerges as a promising lead compound for further exploration in cancer therapeutics.
Collapse
Affiliation(s)
- Gizem Kaftan
- Doctoral Degree Program in Biochemistry, Graduate School of Health Sciences, Ege University, 35100, Bornova, Izmir, Turkey
- Department of Biochemistry, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, 03100, Afyonkarahisar, Turkey
| | - Mümin Alper Erdoğan
- Department of Physiology, Faculty of Medicine, Izmir Katip Çelebi University, Çiğli, Izmir, Turkey
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street, Abassia, 11566, Cairo, Egypt
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Mei-Chin Lu
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, 944, Taiwan
- National Museum of Marine Biology & Aquarium, Pingtung, 944, Taiwan
| | - Shou-Ping Shih
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University (NSYSU), 70 Lien-Hai Road, Kaohsiung, 80424, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.
| | - Hung-Yu Lin
- School of Medicine, College of Medicine, I-SHOU University, Kaohsiung, Taiwan
- Division of Urology, Department of Surgery, E-Da Cancer & E-Da Hospital, Kaohsiung, 824, Taiwan
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. Le Aldo Moro 5, 00185, Rome, Italy
| | - Güliz Armagan
- Department of Biochemistry, Faculty of Pharmacy, Ege University, 35100, Bornova, Izmir, Turkey.
| |
Collapse
|
2
|
Okoro CO, Fatoki TH. A Mini Review of Novel Topoisomerase II Inhibitors as Future Anticancer Agents. Int J Mol Sci 2023; 24:ijms24032532. [PMID: 36768852 PMCID: PMC9916523 DOI: 10.3390/ijms24032532] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Several reviews of inhibitors of topoisomerase II have been published, covering research before 2018. Therefore, this review is focused primarily on more recent publications with relevant points from the earlier literature. Topoisomerase II is an established target for anticancer drugs, which are further subdivided into poisons and catalytic inhibitors. While most of the topoisomerase II-based drugs in clinical use are mostly topoisomerase II poisons, their mechanism of action has posed severe concern due to DNA damaging potential, including the development of multi-drug resistance. As a result, we are beginning to see a gradual paradigm shift towards non-DNA damaging agents, such as the lesser studied topoisomerase II catalytic inhibitors. In addition, this review describes some novel selective catalytic topoisomerase II inhibitors. The ultimate goal is to bring researchers up to speed by curating and delineating new scaffolds as the leads for the optimization and development of new potent, safe, and selective agents for the treatment of cancer.
Collapse
|
3
|
Sugumaran A, Pandiyan R, Kandasamy P, Antoniraj MG, Navabshan I, Sakthivel B, Dharmaraj S, Chinnaiyan SK, Ashokkumar V, Ngamcharussrivichai C. Marine biome-derived secondary metabolites, a class of promising antineoplastic agents: A systematic review on their classification, mechanism of action and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155445. [PMID: 35490806 DOI: 10.1016/j.scitotenv.2022.155445] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/10/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Cancer is one of the most deadly diseases on the planet. Over the past decades, numerous antineoplastic compounds have been discovered from natural resources such as medicinal plants and marine species as part of multiple drug discovery initiatives. Notably, several marine flora (e.g. Ascophyllum nodosum, Sargassum thunbergii) have been identified as a rich source for novel cytotoxic compounds of different chemical forms. Despite the availability of enormous chemically enhanced new resources, the anticancer potential of marine flora and fauna has received little attention. Interestingly, numerous marine-derived secondary metabolites (e.g., Cytarabine, Trabectedin) have exhibited anticancer effects in preclinical cancer models. Most of the anticancer drugs obtained from marine sources stimulated apoptotic signal transduction pathways in cancer cells, such as the intrinsic and extrinsic pathways. This review highlights the sources of different cytotoxic secondary metabolites obtained from marine bacteria, algae, fungi, invertebrates, and vertebrates. Furthermore, this review provides a comprehensive overview of the utilisation of numerous marine-derived cytotoxic compounds as anticancer drugs, as well as their modes of action (e.g., molecular target). Finally, it also discusses the future prospects of marine-derived drug developments and their constraints.
Collapse
Affiliation(s)
- Abimanyu Sugumaran
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Rajesh Pandiyan
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai 600073, India
| | - Palanivel Kandasamy
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, Inselspital, University of Bern, Bern, Switzerland; Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Mariya Gover Antoniraj
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Science, Ben-Gurion University of Negev, Israel
| | - Irfan Navabshan
- Crescent School of Pharmacy, B.S. Abdur Rahman Cresent Institute of Science and Technology, Chennai, India
| | | | - Selvakumar Dharmaraj
- Department of Marine Biotechnology, Academy of Maritime Education and Training [AMET] (Deemed to be University), Chennai 603112, Tamil Nadu, India
| | - Santhosh Kumar Chinnaiyan
- Department of Pharmaceutics, Srikrupa Institute of Pharmaceutical Sciences, Velikatta, Kondapak, Siddipet, Telangana State 502277, India.
| | - Veeramuthu Ashokkumar
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India; Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand.
| | - Chawalit Ngamcharussrivichai
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Chaudhry GES, Md Akim A, Sung YY, Sifzizul TMT. Cancer and apoptosis: The apoptotic activity of plant and marine natural products and their potential as targeted cancer therapeutics. Front Pharmacol 2022; 13:842376. [PMID: 36034846 PMCID: PMC9399632 DOI: 10.3389/fphar.2022.842376] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 07/13/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer is a multifactorial, multi-stage disease, including complex cascades of signaling pathways—the cell growth governed by dysregulated and abrupt cell division. Due to the complexity and multi-regulatory cancer progression, cancer is still a challenging disease to treat and survive. The screening of extracts and fractions from plants and marine species might lead to the discovery of more effective compounds for cancer therapeutics. The isolated compounds and reformed analogs were known as future prospective contenders for anti-cancer chemotherapy. For example, Taxol, a potent mitotic inhibitor discovered from Taxus brevifolia, suppresses cell growth and arrest, induces apoptosis, and inhibits proliferation. Similarly, marine sponges show remarkable tumor chemo preventive and chemotherapeutic potential. However, there is limited research to date. Several plants and marine-derived anti-cancer compounds having the property to induce apoptosis have been approved for clinical trials. The anti-cancer activity kills the cell and slows the growth of cancer cells. Among cell death mechanisms, apoptosis induction is a more profound mechanism of cell death triggered by naturally isolated anti-cancer agents. Evading apoptosis is the major hurdle in killing cancer cells, a mechanism mainly regulated as intrinsic and extrinsic. However, it is possible to modify the apoptosis-resistant phenotype of the cell by altering many of these mechanisms. Various extracts and fractions successfully induce apoptosis, cell-cycle modulation, apoptosis, and anti-proliferative activity. Therefore, there is a pressing need to develop new anti-cancer drugs of natural origins to reduce the effects on normal cells. Here, we’ve emphasized the most critical elements: i) A better understanding of cancer progression and development and its origins, ii) Molecular strategies to inhibit the cell proliferation/Carcino-genesis, iii) Critical regulators of cancer cell proliferation and development, iv) Signaling Pathways in Apoptosis: Potential Targets for targeted therapeutics, v) Why Apoptosis induction is mandatory for effective chemotherapy, vi) Plants extracts/fractions as potential apoptotic inducers, vii) Marine extracts as Apoptotic inducers, viii) Marine isolated Targeted compounds as Apoptotic inducers (FDA Approved/treatment Phase). This study provides a potential therapeutic option for cancer, although more clinical studies are needed to verify its efficacy in cancer chemotherapy.
Collapse
Affiliation(s)
- Gul-e-Saba Chaudhry
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
- *Correspondence: Gul-e-Saba Chaudhry, ,
| | - Abdah Md Akim
- Department of Biomedical Sciences, Faculty of Medicine and Health sciences, University of Putra Malaysia, Seri Kembangan, Malaysia
| | - Yeong Yik Sung
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | | |
Collapse
|
5
|
Wang K, Chen YF, Yang YCSH, Huang HM, Lee SY, Shih YJ, Li ZL, Whang-Peng J, Lin HY, Davis PJ. The power of heteronemin in cancers. J Biomed Sci 2022; 29:41. [PMID: 35705962 PMCID: PMC9202199 DOI: 10.1186/s12929-022-00816-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022] Open
Abstract
Heteronemin (Haimian jing) is a sesterterpenoid-type natural marine product that is isolated from sponges and has anticancer properties. It inhibits cancer cell proliferation via different mechanisms, such as reactive oxygen species (ROS) production, cell cycle arrest, apoptosis as well as proliferative gene changes in various types of cancers. Recently, the novel structure and bioactivity evaluation of heteronemin has received extensive attention. Hormones control physiological activities regularly, however, they may also affect several abnormalities such as cancer. L-Thyroxine (T4), steroid hormones, and epidermal growth factor (EGF) up-regulate the accumulation of checkpoint programmed death-ligand 1 (PD-L1) and promote inflammation in cancer cells. Heteronemin suppresses PD-L1 expression and reduces the PD-L1-induced proliferative effect. In the current review, we evaluated research and evidence regarding the antitumor effects of heteronemin and the antagonizing effects of non-peptide hormones and growth factors on heteronemin-induced anti-cancer properties and utilized computational molecular modeling to explain how these ligands interacted with the integrin αvβ3 receptors. On the other hand, thyroid hormone deaminated analogue, tetraiodothyroacetic acid (tetrac), modulates signal pathways and inhibits cancer growth and metastasis. The combination of heteronemin and tetrac derivatives has been demonstrated to compensate for anti-proliferation in cancer cells under different circumstances. Overall, this review outlines the potential of heteronemin in managing different types of cancers that may lead to its clinical development as an anticancer agent.
Collapse
Affiliation(s)
- Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taipei, 11031, Taiwan
| | - Yi-Fong Chen
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yu-Chen S H Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, 11031, Taiwan
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Sheng-Yang Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 11031, Taiwan.,Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ya-Jung Shih
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taipei, 11031, Taiwan.,Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Zi-Lin Li
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taipei, 11031, Taiwan.,Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jacqueline Whang-Peng
- Cancer Center, Wan Fang Hospital, Taipei Medical University, No. 111, Section 3, Xinglong Road, Wenshan District, Taipei City, 116, Taipei, 11031, Taiwan.
| | - Hung-Yun Lin
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan. .,Cancer Center, Wan Fang Hospital, Taipei Medical University, No. 111, Section 3, Xinglong Road, Wenshan District, Taipei City, 116, Taipei, 11031, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan. .,Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan. .,Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, 12144, USA.
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, 12144, USA.,Department of Medicine, Albany Medical College, Albany, NY12144, USA
| |
Collapse
|
6
|
Wei J, Liu Y, Teng F, Li L, Zhong S, Luo H, Huang Z. Anticancer effects of marine compounds blocking the nuclear factor kappa B signaling pathway. Mol Biol Rep 2022; 49:9975-9995. [PMID: 35674876 DOI: 10.1007/s11033-022-07556-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/03/2022] [Indexed: 11/26/2022]
Abstract
The abnormal expression of nuclear factor kappa B (NF-κB) target genes is closely related to the occurrence, metastasis, and invasion of tumor cells and is an inhibitor of their apoptosis. In recent years, the unique biodiversity in the marine environment has aroused great interest. Many studies indicate that some marine compounds exert anticancer effects on most common human tumors by modulating the NF-κB signaling pathway. In this study, 26 marine compounds that reduce cancer cell survival by suppressing the NF-κB signaling pathway were reviewed. They were derived from a wide range of sources, including sponges, fungi, algae and their derivatives or metabolites. These marine compounds exert antitumor effects through the canonical, noncanonical and atypical NF-κB signaling pathways; however, most of their anticancer targets and mechanisms remain unclear, and more research is needed in the future. Our article provides comprehensive information for researchers investigating the bioactivities of marine compounds and developing marine-derived anticancer drugs.
Collapse
Affiliation(s)
- Jiaen Wei
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, Guangdong, China
| | - Yaqi Liu
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, Guangdong, China
| | - Fei Teng
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, Guangdong, China
| | - Linshan Li
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, Guangdong, China
| | - Shanhong Zhong
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, Guangdong, China
| | - Hui Luo
- Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, Guangdong, China.
| | - Zunnan Huang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, Guangdong, China.
- Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, Guangdong, China.
| |
Collapse
|
7
|
Amewu RK, Sakyi PO, Osei-Safo D, Addae-Mensah I. Synthetic and Naturally Occurring Heterocyclic Anticancer Compounds with Multiple Biological Targets. Molecules 2021; 26:7134. [PMID: 34885716 PMCID: PMC8658833 DOI: 10.3390/molecules26237134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 01/09/2023] Open
Abstract
Cancer is a complex group of diseases initiated by abnormal cell division with the potential of spreading to other parts of the body. The advancement in the discoveries of omics and bio- and cheminformatics has led to the identification of drugs inhibiting putative targets including vascular endothelial growth factor (VEGF) family receptors, fibroblast growth factors (FGF), platelet derived growth factors (PDGF), epidermal growth factor (EGF), thymidine phosphorylase (TP), and neuropeptide Y4 (NY4), amongst others. Drug resistance, systemic toxicity, and drug ineffectiveness for various cancer chemo-treatments are widespread. Due to this, efficient therapeutic agents targeting two or more of the putative targets in different cancer cells are proposed as cutting edge treatments. Heterocyclic compounds, both synthetic and natural products, have, however, contributed immensely to chemotherapeutics for treatments of various diseases, but little is known about such compounds and their multimodal anticancer properties. A compendium of heterocyclic synthetic and natural product multitarget anticancer compounds, their IC50, and biological targets of inhibition are therefore presented in this review.
Collapse
Affiliation(s)
- Richard Kwamla Amewu
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
| | - Patrick Opare Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Sunyani P.O. Box 214, Ghana
| | - Dorcas Osei-Safo
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
| | - Ivan Addae-Mensah
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
| |
Collapse
|
8
|
Chen HL, Su YC, Chen HC, Su JH, Wu CY, Wang SW, Lin IP, Chen CY, Lee CH. Heteronemin Suppresses Lymphangiogenesis through ARF-1 and MMP-9/VE-Cadherin/Vimentin. Biomedicines 2021; 9:biomedicines9091109. [PMID: 34572295 PMCID: PMC8471334 DOI: 10.3390/biomedicines9091109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
Lymphatic metastasis is a biological procedure associated with the pathogenesis of several diseases, especially in tumor metastasis. Therefore, regulation of lymphangiogenesis has become a promising strategy for cancer therapy. In this study, we aimed to investigate the anti-lymphangiogenic effect of heteronemin (SP-1) isolated from the sponge Hyrtios sp. in vitro and in vivo. Human lymphatic endothelial cells (LECs) were utilized to evaluate the anti-lymphangiogenic effect of SP-1 in vitro. Molecular docking, western blotting, flow-cytometry, MTT and ELISA were performed to investigate the mechanism of action. For in vivo approaches, the transgenic (fli1:EGFP; gata1:DsRed) zebrafish and mouse ear sponges were used. Molecular docking studies showed that SP-1 is a potent vascular endothelial growth factor receptor 3 (VEGFR-3)-binding compound. Treatment of LEC with SP-1 reduced the phosphorylation of VEGFR-3. SP-1 suppressed the development of the thoracic duct in zebrafish and mouse lymphangiogenesis ear sponges in vivo. Mechanistically, SP-1 induced the cell cycle arrest of LECs in the G0/G1 phase and reduced the downstream of VEGFR-3, such as phosphorylated MEK/ERK and NF-κB. In addition, SP-1 inhibited LECs' tubulogenesis and migration through the ARF-1 and MMP-9/VE-cadherin/vimentin. Overall, anti-lymphangiogenic properties of SP-1 occur by downregulating the VEGFR-3 cascade, ARF-1 and MMP-9/VE-cadherin/vimentin. Collectively, these results proposed that SP-1 might be a potential candidate for the treatment of lymphangiogenesis-associated diseases.
Collapse
Affiliation(s)
- Hsien-Lin Chen
- Division of General Surgery, Department of Surgery, Liuying Chi-Mei Medical, Tainan 73657, Taiwan;
| | - Yu-Chieh Su
- Department of Medicine, School of Medicine, I-Shou University, Kaohsiung 840203, Taiwan;
- Division of Hematology-Oncology, Department of Internal Medicine, E-Da Hospital, Kaohsiung 824410, Taiwan
| | - Huang-Chi Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 81267, Taiwan;
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Jui-Hsin Su
- National Museum of Marine Biology & Aquarium, Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 94401, Taiwan;
| | - Chang-Yi Wu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City 252005, Taiwan;
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - In-Pin Lin
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Chung-Yi Chen
- Department of Nutrition and Health Science, School of Medical and Health Sciences, Fooyin University, Kaohsiung 83102, Taiwan;
| | - Chien-Hsing Lee
- Department of Pharmacology, School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Correspondence: ; Tel.: +886-7312-1101 (ext. 2139); Fax: +886-7323-4686
| |
Collapse
|
9
|
Yang YCSH, Li ZL, Huang TY, Su KW, Lin CY, Huang CH, Chen HY, Lu MC, Huang HM, Lee SY, Whang-Peng J, Lin HY, Davis PJ, Wang K. Effect of Estrogen on Heteronemin-Induced Anti-proliferative Effect in Breast Cancer Cells With Different Estrogen Receptor Status. Front Cell Dev Biol 2021; 9:688607. [PMID: 34381775 PMCID: PMC8350732 DOI: 10.3389/fcell.2021.688607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022] Open
Abstract
Estrogen (E2) has multiple functions in breast cancers including stimulating cancer growth and interfering with chemotherapeutic efficacy. Heteronemin, a marine sesterterpenoid-type natural product, has cytotoxicity on cancer cells. Breast cancer cell lines, MCF-7 and MDA-MB-231, were used for investigating mechanisms involved in inhibitory effect of E2 on heteronemin-induced anti-proliferation in breast cancer cells with different estrogen receptor (ER) status. Cytotoxicity was detected by cell proliferation assay and flow cytometry, gene expressions were determined by qPCR, mechanisms were investigated by Western blot and Mitochondrial ROS assay. Heteronemin exhibited potent cytotoxic effects against both ER-positive and ER-negative breast cancer cells. E2 stimulated cell growth in ER-positive breast cancer cells. Heteronemin induced anti-proliferation via suppressing activation of ERK1/2 and STAT3. Heteronemin suppressed E2-induced proliferation in both breast cancer cells although some gene expressions and anti-proliferative effects were inhibited in the presence of E2 in MCF-7 and MDA-MB-231 cells with a higher concentration of heteronemin. Heteromenin decreased the Bcl-2/Bax ratio to inhibit proliferation in MDA-MB-231 but not in MCF-7 cells. Both heteronemin and E2 increased mitochondrial reactive oxygen species but combined treatment reversed superoxide dismutase (SOD)s accumulation in MCF-7 cells. Heteronemin caused G0/G1 phase arrest and reduced the percentage of cells in the S phase to suppress cancer cell growth. In conclusion, Heteronemin suppressed both ER-positive and ER-negative breast cancer cell proliferation. Interactions between E2 and heteronemin in signal transduction, gene expressions, and biological activities provide insights into the complex pathways by which anti-proliferation is induced by heteronemin in E2-replete environments.
Collapse
Affiliation(s)
- Yu-Chen S H Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Zi-Lin Li
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tung-Yung Huang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Wei Su
- Department of Dentistry, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
| | - Chi-Yu Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Hung Huang
- Division of Cardiology, Department of Internal Medicine, Cathay General Hospital, Taipei, Taiwan
| | - Han-Yu Chen
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Mei-Chin Lu
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan.,Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Yang Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan
| | - Jaqueline Whang-Peng
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hung-Yun Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States.,Department of Medicine, Albany Medical College, Albany, NY, United States
| | - Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
10
|
Ganamé HT, Karanga Y, Tapsoba I, Dicato M, Diederich MF, Cerella C, Sawadogo RW. Phytochemical Screening and Antioxidant and Cytotoxic Effects of Acacia macrostachya. PLANTS 2021; 10:plants10071353. [PMID: 34371557 PMCID: PMC8309326 DOI: 10.3390/plants10071353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022]
Abstract
Acacia macrostachya is used in Burkina Faso folk medicine for the treatment of inflammation and cancer. The purpose of this study was to evaluate the antioxidant and cytotoxic effects of this plant. The cytotoxic effects of root (dichloromethane B1 and methanol B2) and stem (dichloromethane B3 and methanol B4) bark extracts of A. macrostachya were assessed on chronic K562 and acute U937 myeloid leukemia cancer cells using trypan blue, Hoechst, and MitoTracker Red staining methods. The antioxidant content of extracts was evaluated using DPPH (2,2-diphenyl-1-picryl-hydrazyl) and FRAP (ferric reducing antioxidant power) methods. The root bark extracts B1 and B2 of A. macrostachya demonstrated higher cytotoxicity with IC50 values in a low µg/mL range on both U937 and K562 cells, while the stem bark B4 extract selectively affected U937 cells. Overall, healthy proliferating peripheral blood mononuclear cells (pPBMCs) were not or barely impacted in the range of concentrations cytotoxic to cancer cells. In addition, A. macrostachya exhibited significant antioxidant content with 646.06 and 428.08 µg ET/mg of extract for the B4 and B2 extracts, respectively. Phytochemical screening showed the presence of flavonoids, tannins, alkaloids, and terpenoids/steroids. The results of this study highlight the interest of A. macrostachya extracts for the isolation of anticancer molecules.
Collapse
Affiliation(s)
- Hamidou Têeda Ganamé
- Laboratoire de Chimie Analytique, Environnementale et Bio-Organique (LCAEBiO), Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso; (H.T.G.); (Y.K.); (I.T.)
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Hôpital Kirchberg, L-2540 Luxembourg, Luxembourg;
| | - Yssouf Karanga
- Laboratoire de Chimie Analytique, Environnementale et Bio-Organique (LCAEBiO), Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso; (H.T.G.); (Y.K.); (I.T.)
- Laboratoire de Chimie des Matériaux et de l’Environnement (LCME), Université Norbert ZONGO, Avce Maurice Yameogo, Koudougou BP 376, Burkina Faso
| | - Issa Tapsoba
- Laboratoire de Chimie Analytique, Environnementale et Bio-Organique (LCAEBiO), Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso; (H.T.G.); (Y.K.); (I.T.)
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Hôpital Kirchberg, L-2540 Luxembourg, Luxembourg;
| | | | - Claudia Cerella
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Hôpital Kirchberg, L-2540 Luxembourg, Luxembourg;
- Correspondence: (C.C.); (R.W.S.); Tel.: +352-2468-4050 (C.C.); +226-70-24-57-96 (R.W.S.)
| | - Richard Wamtinga Sawadogo
- Institut de Recherche en Sciences de la Santé (IRSS/CNRST), Ouagadougou 03 BP 7192, Burkina Faso
- Correspondence: (C.C.); (R.W.S.); Tel.: +352-2468-4050 (C.C.); +226-70-24-57-96 (R.W.S.)
| |
Collapse
|
11
|
Chang WT, Bow YD, Fu PJ, Li CY, Wu CY, Chang YH, Teng YN, Li RN, Lu MC, Liu YC, Chiu CC. A Marine Terpenoid, Heteronemin, Induces Both the Apoptosis and Ferroptosis of Hepatocellular Carcinoma Cells and Involves the ROS and MAPK Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7689045. [PMID: 33488943 PMCID: PMC7803406 DOI: 10.1155/2021/7689045] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/27/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of death, resulting in over 700 thousand deaths annually worldwide. Chemotherapy is the primary therapeutic strategy for patients with late-stage HCC. Heteronemin is a marine natural product isolated from Hippospongia sp. that has been found to protect against carcinogenesis in cholangiocarcinoma, prostate cancer, and acute myeloid leukemia. In this study, heteronemin was found to inhibit the proliferation of the HCC cell lines HA22T and HA59T and induce apoptosis via the caspase pathway. Heteronemin treatment also induced the formation of reactive oxygen species (ROS), which are associated with heteronemin-induced cell death, and to trigger ROS removal by mitochondrial SOD2 rather than cytosolic SOD1. The mitogen-activated protein kinase (MAPK) signaling pathway was associated with ROS-induced cell death, and heteronemin downregulated the expression of ERK, a MAPK that is associated with cell proliferation. Inhibitors of JNK and p38, which are MAPKs associated with apoptosis, restored heteronemin-induced cell death. In addition, heteronemin treatment reduced the expression of GPX4, a protein that inhibits ferroptosis, which is a novel form of nonapoptotic programmed cell death. Ferroptosis inhibitor treatment also restored heteronemin-induced cell death. Thus, with appropriate structural modification, heteronemin can act as a potent therapeutic against HCC.
Collapse
Affiliation(s)
- Wen-Tsan Chang
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Digestive Disease Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yung-Ding Bow
- Ph.D. Program in Life Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Pei-Jung Fu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chang-Yi Wu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yi-Hua Chang
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yen-Ni Teng
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 700, Taiwan
| | - Ruei-Nian Li
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Mei-Chin Lu
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 944, Taiwan
| | - Yi-Chang Liu
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chien-Chih Chiu
- Center for Cancer Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- The Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
12
|
12-Deacetyl-12-epi-Scalaradial, a Scalarane Sesterterpenoid from a Marine Sponge Hippospongia sp., Induces HeLa Cells Apoptosis via MAPK/ERK Pathway and Modulates Nuclear Receptor Nur77. Mar Drugs 2020; 18:md18070375. [PMID: 32708154 PMCID: PMC7403966 DOI: 10.3390/md18070375] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/12/2020] [Accepted: 07/18/2020] [Indexed: 12/22/2022] Open
Abstract
12-Deacetyl-12-epi-scalaradial, a scalarane sesterterpenoid from a marine sponge Hippospongia sp, has been reported to possess cytotoxic activity on HepG2, MCF-7, and HCT-116 cells. However, there is no research to indicate that 12-deacetyl-12-epi-scalaradial exhibited anticancer effect on cervical cancer HeLa cells. The aim of this study was to investigate the anticancer activity of 12-deacetyl-12-epi-scalaradial against HeLa cells and to explore the mechanism. The results from a methylthiazolyldiphenyl-tetrazolium (MTT) assay suggested that 12-deacetyl-12-epi-scalaradial suppressed the proliferation of HeLa cells and flow cytometry analysis showed 12-deacetyl-12-epi-scalaradial could induce the apoptosis of HeLa cells in dose- and time-dependent manner. Western blotting analysis demonstrated that 12-deacetyl-12-epi-scalaradial triggered apoptosis via mediating the extrinsic pathway and was found to suppress MAPK/ERK pathway which was associate with cancer cell death. Nur77, a critical number of orphan nuclear receptors, plays diverse roles in tumor development as a transcription factor and has been considered as a promising anticancer drug target. The dual-luciferase reporter assays suggested that 12-deacetyl-12-epi-scalaradial could selectively enhance the trans-activation activity of Nur77. Furthermore, Western blotting analysis and fluorescence quenching showed that 12-deacetyl-12-epi-scalaradial could induce the phosphorylation of Nur77 and interact with the ligand-binding domain (LBD) of Nur77. Our research confirmed 12-deacetyl-12-epi-scalaradial as a potential agent for cervical cancer therapy and provided a view that 12-deacetyl-12-epi-scalaradial may be a modulator of Nur77.
Collapse
|
13
|
Florean C, Dicato M, Diederich M. Immune-modulating and anti-inflammatory marine compounds against cancer. Semin Cancer Biol 2020; 80:58-72. [PMID: 32070764 DOI: 10.1016/j.semcancer.2020.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
The recent advances in cancer immunotherapy confirm the crucial role of the immune system in cancer progression and treatment. Chronic inflammation and reduced immune surveillance are both features of the tumor microenvironment. Strategies aimed at reverting pro-tumor inflammation and stimulating the antitumor immune components are being actively searched, and the anticancer effects of many candidate drugs have been linked to their ability to modulate the immune system. Marine organisms constitute a rich reservoir of new bioactive molecules; some of them have already been exploited for pharmaceutical use, whereas many others are undergoing clinical or preclinical investigations for the treatment of different diseases, including cancer. In this review, we will discuss the immune-modulatory properties of marine compounds for their potential use in cancer prevention and treatment and as possible tools in the context of cancer immunotherapy.
Collapse
Affiliation(s)
- Cristina Florean
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, L-2540 Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, L-2540 Luxembourg
| | - Marc Diederich
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
14
|
Oceans as a Source of Immunotherapy. Mar Drugs 2019; 17:md17050282. [PMID: 31083446 PMCID: PMC6562586 DOI: 10.3390/md17050282] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023] Open
Abstract
Marine flora is taxonomically diverse, biologically active, and chemically unique. It is an excellent resource, which offers great opportunities for the discovery of new biopharmaceuticals such as immunomodulators and drugs targeting cancerous, inflammatory, microbial, and fungal diseases. The ability of some marine molecules to mediate specific inhibitory activities has been demonstrated in a range of cellular processes, including apoptosis, angiogenesis, and cell migration and adhesion. Immunomodulators have been shown to have significant therapeutic effects on immune-mediated diseases, but the search for safe and effective immunotherapies for other diseases such as sinusitis, atopic dermatitis, rheumatoid arthritis, asthma and allergies is ongoing. This review focuses on the marine-originated bioactive molecules with immunomodulatory potential, with a particular focus on the molecular mechanisms of specific agents with respect to their targets. It also addresses the commercial utilization of these compounds for possible drug improvement using metabolic engineering and genomics.
Collapse
|
15
|
|
16
|
Novanna M, Ethiraj K, Kannadasan S. An Overview of Synthesis of Indole Alkaloids and Biological Activities of Secondary Metabolites Isolated from Hyrtios Species. Mini Rev Med Chem 2019; 19:194-205. [DOI: 10.2174/1389557518666181102110537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/03/2017] [Accepted: 03/06/2017] [Indexed: 11/22/2022]
Abstract
Marine sponges are a rich source of more than 50% of marine natural compounds that have
been isolated from marine organisms. This review article is focused on the importance of biologically
active and pharmaceutically important secondary metabolites extracted from one of the important
classes of marine sponge Hyrtios sp. This review also deals with reported synthetic routes of some indole
alkaloids extracted from the marine sponge Hyrtios sp. A range of bioactivities displayed by
indole-based alkaloids is described.
Collapse
Affiliation(s)
- M. Novanna
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore-632014, Tamil Nadu, India
| | - K.R. Ethiraj
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore-632014, Tamil Nadu, India
| | - S. Kannadasan
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore-632014, Tamil Nadu, India
| |
Collapse
|
17
|
Ercolano G, De Cicco P, Ianaro A. New Drugs from the Sea: Pro-Apoptotic Activity of Sponges and Algae Derived Compounds. Mar Drugs 2019; 17:E31. [PMID: 30621025 PMCID: PMC6356258 DOI: 10.3390/md17010031] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 12/12/2022] Open
Abstract
Natural compounds derived from marine organisms exhibit a wide variety of biological activities. Over the last decades, a great interest has been focused on the anti-tumour role of sponges and algae that constitute the major source of these bioactive metabolites. A substantial number of chemically different structures from different species have demonstrated inhibition of tumour growth and progression by inducing apoptosis in several types of human cancer. The molecular mechanisms by which marine natural products activate apoptosis mainly include (1) a dysregulation of the mitochondrial pathway; (2) the activation of caspases; and/or (3) increase of death signals through transmembrane death receptors. This great variety of mechanisms of action may help to overcome the multitude of resistances exhibited by different tumour specimens. Therefore, products from marine organisms and their synthetic derivates might represent promising sources for new anticancer drugs, both as single agents or as co-adjuvants with other chemotherapeutics. This review will focus on some selected bioactive molecules from sponges and algae with pro-apoptotic potential in tumour cells.
Collapse
Affiliation(s)
- Giuseppe Ercolano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.
| | - Paola De Cicco
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.
| | - Angela Ianaro
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.
| |
Collapse
|
18
|
Isolation of anticancer and anti-trypanosome secondary metabolites from the endophytic fungus Aspergillus flocculus via bioactivity guided isolation and MS based metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1106-1107:71-83. [PMID: 30658264 DOI: 10.1016/j.jchromb.2018.12.032] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/03/2018] [Accepted: 12/28/2018] [Indexed: 11/21/2022]
Abstract
This study aims to identify bioactive anticancer and anti-trypanosome secondary metabolites from the fermentation culture of Aspergillus flocculus endophyte assisted by modern metabolomics technologies. The endophyte was isolated from the stem of the medicinal plant Markhamia platycalyx and identified using phylogenetics. Principle component analysis was employed to screen for the optimum growth endophyte culturing conditions and revealing that the 30-days rice culture (RC-30d) provided the highest levels of the bioactive agents. To pinpoint for active chemicals in endophyte crude extracts and successive fractions, a new application of molecular interaction network is implemented to correlate the chemical and biological profiles of the anti-trypanosome active fractions to highlight the metabolites mediating for bioactivity prior to purification trials. Multivariate data analysis (MVDA), with the aid of dereplication studies, efficiently annotated the putatively active anticancer molecules. The small-scale RC-30d fungal culture was purified using high-throughput chromatographic techniques to yield compound 1, a novel polyketide molecule though inactive. Whereas, active fractions revealed from the bioactivity guided fractionation of medium scale RC-30d culture were further purified to yield 7 metabolites, 5 of which namely cis-4-hydroxymellein, 5-hydroxymellein, diorcinol, botryoisocoumarin A and mellein, inhibited the growth of chronic myelogenous leukemia cell line K562 at 30 μM. 3-Hydroxymellein and diorcinol exhibited a respective inhibition of 56% and 97% to the sleeping sickness causing parasite Trypanosoma brucei brucei. More interestingly, the anti-trypanosomal activity of A. flocculus extract appeared to be mediated by the synergistic effect of the active steroidal compounds i.e. ergosterol peroxide, ergosterol and campesterol. The isolated structures were elucidated by using 1D, 2D NMR and HR-ESIMS.
Collapse
|
19
|
Florean C, Kim KR, Schnekenburger M, Kim HJ, Moriou C, Debitus C, Dicato M, Al-Mourabit A, Han BW, Diederich M. Synergistic AML Cell Death Induction by Marine Cytotoxin (+)-1( R), 6( S), 1'( R), 6'( S), 11( R), 17( S)-Fistularin-3 and Bcl-2 Inhibitor Venetoclax. Mar Drugs 2018; 16:md16120518. [PMID: 30572618 PMCID: PMC6316187 DOI: 10.3390/md16120518] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 11/23/2022] Open
Abstract
Treatment of acute myeloid leukemia (AML) patients is still hindered by resistance and relapse, resulting in an overall poor survival rate. Recently, combining specific B-cell lymphoma (Bcl)-2 inhibitors with compounds downregulating myeloid cell leukemia (Mcl)-1 has been proposed as a new effective strategy to eradicate resistant AML cells. We show here that 1(R), 6(S), 1’(R), 6’(S), 11(R), 17(S)-fistularin-3, a bromotyrosine compound of the fistularin family, isolated from the marine sponge Suberea clavata, synergizes with Bcl-2 inhibitor ABT-199 to efficiently kill Mcl-1/Bcl-2-positive AML cell lines, associated with Mcl-1 downregulation and endoplasmic reticulum stress induction. The absolute configuration of carbons 11 and 17 of the fistularin-3 stereoisomer was fully resolved in this study for the first time, showing that the fistularin we isolated from the marine sponge Subarea clavata is in fact the (+)-11(R), 17(S)-fistularin-3 stereoisomer keeping the known configuration 1(R), 6(S), 1’(R), and 6’(S) for the verongidoic acid part. Docking studies and in vitro assays confirm the potential of this family of molecules to inhibit DNA methyltransferase 1 activity.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/administration & dosage
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cell Line, Tumor
- Cell Survival/drug effects
- Drug Screening Assays, Antitumor
- Drug Synergism
- Endoplasmic Reticulum Stress/drug effects
- HL-60 Cells
- Humans
- Isoxazoles/administration & dosage
- Isoxazoles/chemistry
- Isoxazoles/isolation & purification
- Isoxazoles/pharmacology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Molecular Docking Simulation
- Porifera/chemistry
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Sulfonamides/administration & dosage
- Sulfonamides/pharmacology
- Tyrosine/administration & dosage
- Tyrosine/analogs & derivatives
- Tyrosine/chemistry
- Tyrosine/isolation & purification
- Tyrosine/pharmacology
- U937 Cells
Collapse
Affiliation(s)
- Cristina Florean
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg.
| | - Kyung Rok Kim
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| | - Michael Schnekenburger
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg.
| | - Hyun-Jung Kim
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea.
| | - Céline Moriou
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, University of Paris-Saclay, 1, Avenue de la Terrasse, 91198 Gif-Sur-Yvette, France.
| | - Cécile Debitus
- LEMAR, IRD, UBO, CNRS, IFREMER, IUEM, 29280 Plouzané, France.
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg.
| | - Ali Al-Mourabit
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, University of Paris-Saclay, 1, Avenue de la Terrasse, 91198 Gif-Sur-Yvette, France.
| | - Byung Woo Han
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| | - Marc Diederich
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| |
Collapse
|
20
|
Della Sala G, Agriesti F, Mazzoccoli C, Tataranni T, Costantino V, Piccoli C. Clogging the Ubiquitin-Proteasome Machinery with Marine Natural Products: Last Decade Update. Mar Drugs 2018; 16:E467. [PMID: 30486251 PMCID: PMC6316072 DOI: 10.3390/md16120467] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/11/2018] [Accepted: 11/22/2018] [Indexed: 01/08/2023] Open
Abstract
The ubiquitin-proteasome pathway (UPP) is the central protein degradation system in eukaryotic cells, playing a key role in homeostasis maintenance, through proteolysis of regulatory and misfolded (potentially harmful) proteins. As cancer cells produce proteins inducing cell proliferation and inhibiting cell death pathways, UPP inhibition has been exploited as an anticancer strategy to shift the balance between protein synthesis and degradation towards cell death. Over the last few years, marine invertebrates and microorganisms have shown to be an unexhaustive factory of secondary metabolites targeting the UPP. These chemically intriguing compounds can inspire clinical development of novel antitumor drugs to cope with the incessant outbreak of side effects and resistance mechanisms induced by currently approved proteasome inhibitors (e.g., bortezomib). In this review, we report about (a) the role of the UPP in anticancer therapy, (b) chemical and biological properties of UPP inhibitors from marine sources discovered in the last decade, (c) high-throughput screening techniques for mining natural UPP inhibitors in organic extracts. Moreover, we will tell about the fascinating story of salinosporamide A, the first marine natural product to access clinical trials as a proteasome inhibitor for cancer treatment.
Collapse
Affiliation(s)
- Gerardo Della Sala
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy.
| | - Francesca Agriesti
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy.
| | - Carmela Mazzoccoli
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy.
| | - Tiziana Tataranni
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy.
| | - Valeria Costantino
- The NeaNat Group, Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, Italy.
| | - Claudia Piccoli
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy.
- Department of Clinical and Experimental Medicine, University of Foggia, via L. Pinto c/o OO.RR., 71100 Foggia, Italy.
| |
Collapse
|
21
|
Chen YC, Lu MC, El-Shazly M, Lai KH, Wu TY, Hsu YM, Lee YL, Liu YC. Breaking down Leukemia Walls: Heteronemin, a Sesterterpene Derivative, Induces Apoptosis in Leukemia Molt4 Cells through Oxidative Stress, Mitochondrial Dysfunction and Induction of Talin Expression. Mar Drugs 2018; 16:md16060212. [PMID: 29914195 PMCID: PMC6025351 DOI: 10.3390/md16060212] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022] Open
Abstract
Heteronemin, the most abundant secondary metabolite in the sponge Hippospongia sp., exhibited potent cytotoxic activity against several cancer cell lines. It increased the percentage of apoptotic cells and reactive oxygen species (ROS) in Molt4 cells. The use of ROS scavenger, N-acetyl cysteine (NAC), suppressed both the production of ROS from mitochondria and cell apoptosis that were induced by heteronemin treatment. Heteronemin upregulated talin and phosphorylated talin expression in Molt4 cells but it only upregulated the expression of phosphorylated talin in HEK293 cells. However, pretreatment with NAC reversed these effects. Talin siRNA reversed the activation of pro-apoptotic cleaved caspases 3 and 9. On the other hand, the downstream proteins including FAK and NF-κB (p65) were not affected. In addition, we confirmed that heteronemin directly modulated phosphorylated talin expression through ROS generation resulting in cell apoptosis, but it did not affect talin/FAK complex. Furthermore, heteronemin interfered with actin microfilament and caused morphology changes. Taken together, these findings suggest that the cytotoxic effect of heteronemin is associated with oxidative stress and induction of phosphorylated talin expression. Our results suggest that heteronemin represents an interesting candidate which can be further developed as a drug lead against leukemia.
Collapse
Affiliation(s)
- Yu-Cheng Chen
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 404, Taiwan.
| | - Mei-Chin Lu
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 944, Taiwan.
- National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan.
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street, Abassia, Cairo 11566, Egypt.
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11432, Egypt.
| | - Kuei-Hung Lai
- National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan.
| | - Tung-Ying Wu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yu-Ming Hsu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yi-Lun Lee
- Department of Urology, Sinying Hospital, Ministry of Health and Welfare, Tainan 730, Taiwan.
| | - Yi-Chang Liu
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
22
|
Lee MG, Liu YC, Lee YL, El-Shazly M, Lai KH, Shih SP, Ke SC, Hong MC, Du YC, Yang JC, Sung PJ, Wen ZH, Lu MC. Heteronemin, a Marine Sesterterpenoid-Type Metabolite, Induces Apoptosis in Prostate LNcap Cells via Oxidative and ER Stress Combined with the Inhibition of Topoisomerase II and Hsp90. Mar Drugs 2018; 16:md16060204. [PMID: 29890785 PMCID: PMC6025191 DOI: 10.3390/md16060204] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 05/31/2018] [Accepted: 06/09/2018] [Indexed: 12/11/2022] Open
Abstract
Heteronemin, a marine sesterterpenoid-type natural product, possesses diverse bioactivities, especially antitumor effect. Accumulating evidence shows that heteronemin may act as a potent anticancer agent in clinical therapy. To fully understand the antitumor mechanism of heteronemin, we further explored the precise molecular targets in prostate cancer cells. Initially, heteronemin exhibited potent cytotoxic effect against LNcap and PC3 prostate cancer cells with IC50 1.4 and 2.7 μM after 24 h, respectively. In the xenograft animal model, the tumor size was significantly suppressed to about 51.9% in the heteronemin-treated group in comparison with the control group with no significant difference in the mice body weights. In addition, the results of a cell-free system assay indicated that heteronemin could act as topoisomerase II (topo II) catalytic inhibitor through the elimination of essential enzymatic activity of topoisomerase IIα expression. We found that the use of heteronemin-triggered apoptosis by 20.1⁻68.3%, caused disruption of mitochondrial membrane potential (MMP) by 66.9⁻99.1% and promoted calcium release by 1.8-, 2.0-, and 2.1-fold compared with the control group in a dose-dependent manner, as demonstrated by annexin-V/PI, rhodamine 123 and Fluo-3 staining assays, respectively. Moreover, our findings indicated that the pretreatment of LNcap cells with an inhibitor of protein tyrosine phosphatase (PTPi) diminished growth inhibition, oxidative and Endoplasmic Reticulum (ER) stress, as well as activation of Chop/Hsp70 induced by heteronemin, suggesting PTP activation plays a crucial rule in the cytotoxic activity of heteronemin. Using molecular docking analysis, heteronemin exhibited more binding affinity to the N-terminal ATP-binding pocket of Hsp90 protein than 17-AAG, a standard Hsp90 inhibitor. Finally, heteronemin promoted autophagy and apoptosis through the inhibition of Hsp 90 and topo II as well as PTP activation in prostate cancer cells. Taken together, these multiple targets present heteronemin as an interesting candidate for its future development as an antiprostatic agent.
Collapse
Affiliation(s)
- Man-Gang Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
- Division of Urology, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan.
- Division of Urology, Department of Surgery, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 813, Taiwan.
| | - Yi-Chang Liu
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yi-Lun Lee
- Department of Urology, Sinying Hospital, Ministry of Health and Welfare, Tainan 730, Taiwan.
| | - Mohamed El-Shazly
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street, Abassia, Cairo 115, Egypt.
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 114, Egypt.
| | - Kuei-Hung Lai
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan.
- National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan.
| | - Shou-Ping Shih
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, 70 Lien-Hai Road, Kaohsiung 804, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan.
| | - Seng-Chung Ke
- Division of Urology, Department of Surgery, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 813, Taiwan.
| | - Ming-Chang Hong
- Department and Graduate Institute of Aquaculture, National Kaohsiung Marine University, Kaohsiung 811, Taiwan.
| | - Ying-Chi Du
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan.
- National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan.
| | - Juan-Cheng Yang
- Research Center for Natural Products & Drug Development, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan.
| | - Ping-Jyun Sung
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan.
- National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan.
| | - Zhi-Hong Wen
- Division of Urology, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan.
| | - Mei-Chin Lu
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan.
- National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan.
| |
Collapse
|
23
|
Mishra R, Upadhyay A, Prajapati VK, Mishra A. Proteasome-mediated proteostasis: Novel medicinal and pharmacological strategies for diseases. Med Res Rev 2018; 38:1916-1973. [DOI: 10.1002/med.21502] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/13/2018] [Accepted: 04/04/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Ribhav Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| | - Vijay Kumar Prajapati
- Department of Biochemistry; School of Life Sciences; Central University of Rajasthan; Rajasthan India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| |
Collapse
|
24
|
Saikia M, Retnakumari AP, Anwar S, Anto NP, Mittal R, Shah S, Pillai KS, Balachandran VS, Peter V, Thomas R, Anto RJ. Heteronemin, a marine natural product, sensitizes acute myeloid leukemia cells towards cytarabine chemotherapy by regulating farnesylation of Ras. Oncotarget 2018; 9:18115-18127. [PMID: 29719594 PMCID: PMC5915061 DOI: 10.18632/oncotarget.24771] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/23/2018] [Indexed: 12/25/2022] Open
Abstract
Cytarabine is a conventionally used chemotherapeutic agent for treating acute myeloid leukemia (AML). However, chemoresistance, toxic side-effects and poor patient survival rates retard the efficacy of its performance. The current study deals with the chemosensitization of AML cells using heteronemin, a marine natural product towards cytarabine chemotherapy. Heteronemin could effectively sensitize HL-60 cells towards sub-toxic concentration of cytarabine resulting in synergistic toxicity as demonstrated by MTT assay and [3H] thymidine incorporation studies, while being safe towards healthy blood cells. Flow cytometry for Annexin-V/PI and immunoblotting for caspase cleavage proved that the combination induces enhancement in apoptosis. Heteronemin being a farnesyl transferase inhibitor (FTI) suppressed cytarabine-induced, farnesyl transferase-mediated activation of Ras, as assessed by Ras pull-down assay. Upon pre-treating cells with a commercial FTI, L-744,832, the synergism was completely lost in the combination, confirming the farnesyl transferase inhibitory activity of heteronemin as assessed by thymidine incorporation assay. Heteronemin effectively down-regulated cytarabine-induced activation of MAPK, AP-1, NF-κB and c-myc, the down-stream targets of Ras signaling, which again validated the role of Ras in regulating the synergism. Hence we believe that the efficacy of cytarabine chemotherapy can be improved to a significant extent by combining sub-toxic concentrations of cytarabine and heteronemin.
Collapse
Affiliation(s)
- Minakshi Saikia
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- Research Scholar, University of Kerala, India
| | - Archana P Retnakumari
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Shabna Anwar
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- Research Scholar, University of Kerala, India
| | - Nikhil P Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Rashmi Mittal
- Department of Biotechnology, Maharishi Markandeshwar University, Haryana, India
| | - Shabna Shah
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- Research Scholar, University of Kerala, India
| | - Kavya S Pillai
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- Research Scholar, University of Kerala, India
| | - Vinod S Balachandran
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Vidya Peter
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Reeba Thomas
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
25
|
Sponges: A Reservoir of Genes Implicated in Human Cancer. Mar Drugs 2018; 16:md16010020. [PMID: 29320389 PMCID: PMC5793068 DOI: 10.3390/md16010020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/21/2017] [Accepted: 01/04/2018] [Indexed: 12/22/2022] Open
Abstract
Recently, it was shown that the majority of genes linked to human diseases, such as cancer genes, evolved in two major evolutionary transitions—the emergence of unicellular organisms and the transition to multicellularity. Therefore, it has been widely accepted that the majority of disease-related genes has already been present in species distantly related to humans. An original way of studying human diseases relies on analyzing genes and proteins that cause a certain disease using model organisms that belong to the evolutionary level at which these genes have emerged. This kind of approach is supported by the simplicity of the genome/proteome, body plan, and physiology of such model organisms. It has been established for quite some time that sponges are an ideal model system for such studies, having a vast variety of genes known to be engaged in sophisticated processes and signalling pathways associated with higher animals. Sponges are considered to be the simplest multicellular animals and have changed little during evolution. Therefore, they provide an insight into the metazoan ancestor genome/proteome features. This review compiles current knowledge of cancer-related genes/proteins in marine sponges.
Collapse
|
26
|
Marine Sponge Natural Products with Anticancer Potential: An Updated Review. Mar Drugs 2017; 15:md15100310. [PMID: 29027954 PMCID: PMC5666418 DOI: 10.3390/md15100310] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/28/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022] Open
Abstract
Despite the huge investment into research and the significant effort and advances made in the search for new anticancer drugs in recent decades, cancer cure and treatment continue to be a formidable challenge. Many sources, including plants, animals, and minerals, have been explored in the oncological field because of the possibility of identifying novel molecular therapeutics. Marine sponges are a prolific source of secondary metabolites, a number of which showed intriguing tumor chemopreventive and chemotherapeutic properties. Recently, Food and Drug Administration-approved drugs derived from marine sponges have been shown to reduce metastatic breast cancer, malignant lymphoma, and Hodgkin's disease. The chemopreventive and potential anticancer activity of marine sponge-derived compounds could be explained by multiple cellular and molecular mechanisms, including DNA protection, cell-cycle modulation, apoptosis, and anti-inflammatory activities as well as their ability to chemosensitize cancer cells to traditional antiblastic chemotherapy. The present article aims to depict the multiple mechanisms involved in the chemopreventive and therapeutic effects of marine sponges and critically explore the limitations and challenges associated with the development of marine sponge-based anticancer strategy.
Collapse
|
27
|
Ye EA, Liu L, Jiang Y, Jan J, Gaddipati S, Suvas S, Steinle JJ. miR-15a/16 reduces retinal leukostasis through decreased pro-inflammatory signaling. J Neuroinflammation 2016; 13:305. [PMID: 27931222 PMCID: PMC5146897 DOI: 10.1186/s12974-016-0771-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/02/2016] [Indexed: 11/24/2022] Open
Abstract
Background Hyperglycemia is a significant risk factor for diabetic retinopathy and induces increased inflammatory responses and retinal leukostasis, as well as vascular damage. Although there is an increasing amount of evidence that miRNA may be involved in the regulation in the pathology of diabetic retinopathy, the mechanisms by which miRNA mediate cellular responses to control onset and progression of diabetic retinopathy are still unclear. The purpose of our study was to investigate the hypothesis that miR-15a/16 inhibit pro-inflammatory signaling to reduce retinal leukostasis. Methods We generated conditional knockout mice in which miR-15a/16 are eliminated in vascular endothelial cells. For the in vitro work, human retinal endothelial cells (REC) were cultured in normal (5 mM) glucose or transferred to high glucose medium (25 mM) for 3 days. Transfection was performed on REC in high glucose with miRNA mimic (hsa-miR-15a-5p, hsa-miR-16-5p). Statistical analyses were done using unpaired Student t test with two-tailed p value. p < 0.05 was considered significant. Data are presented as mean ± SEM. Results We demonstrated that high glucose conditions decreased expression of miR-15a/16 in cultured REC. Overexpression of miR-15a/16 with the mimic significantly decreased pro-inflammatory signaling of IL-1β, TNFα, and NF-κB in REC. In vivo data demonstrated that the loss of miR-15a/16 in vascular cells led to increased retinal leukostasis and CD45 levels, together with upregulated levels of IL-1β, TNFα, and NF-κB. Conclusions The data indicate that miR-15a/16 play significant roles in reducing retinal leukostasis, potentially through inhibition of inflammatory cellular signaling. Therefore, we suggest that miR-15a/16 offer a novel potential target for the inhibition of inflammatory mediators in diabetic retinopathy. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0771-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eun-Ah Ye
- Department of Anatomy and Cell Biology, Wayne State University, 9314 Scott Hall, Detroit, MI, 48202, USA
| | - Li Liu
- Department of Anatomy and Cell Biology, Wayne State University, 9314 Scott Hall, Detroit, MI, 48202, USA
| | - Youde Jiang
- Department of Anatomy and Cell Biology, Wayne State University, 9314 Scott Hall, Detroit, MI, 48202, USA
| | - Jenny Jan
- Department of Anatomy and Cell Biology, Wayne State University, 9314 Scott Hall, Detroit, MI, 48202, USA
| | - Subhash Gaddipati
- Department of Anatomy and Cell Biology, Wayne State University, 9314 Scott Hall, Detroit, MI, 48202, USA
| | - Susmit Suvas
- Department of Anatomy and Cell Biology, Wayne State University, 9314 Scott Hall, Detroit, MI, 48202, USA.,Ophthalmology, Wayne State University, 9314 Scott Hall, Detroit, MI, 48202, USA.,Immunology and Microbiology, Wayne State University, Detroit, MI, USA
| | - Jena J Steinle
- Department of Anatomy and Cell Biology, Wayne State University, 9314 Scott Hall, Detroit, MI, 48202, USA. .,Ophthalmology, Wayne State University, 9314 Scott Hall, Detroit, MI, 48202, USA.
| |
Collapse
|
28
|
Wu JC, Wang CT, Hung HC, Wu WJ, Wu DC, Chang MC, Sung PJ, Chou YW, Wen ZH, Tai MH. Heteronemin Is a Novel c-Met/STAT3 Inhibitor Against Advanced Prostate Cancer Cells. Prostate 2016; 76:1469-1483. [PMID: 27416770 DOI: 10.1002/pros.23230] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 06/15/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND Prostate cancer is one of the most prevalent cancers in men worldwide. Aberrant activation of c-Met/signal transducer and activator of transcription-3 (STAT3) signaling is involved in prostate carcinogenesis, underscoring the demand for developing c-Met/STAT3-targeting drugs. Thus, we first utilized virtual screening strategy to identify STAT3-inhibiting marine compound, heteronemin, and then validated the STAT3-inhibiting function of heteronemin in prostate cancer cells. METHODS Human prostate cancer LNCaP, DU145, and PC-3 cell lines were treated with heteronemin for 24 hr, then the cell viability was evaluated by MTT assay. Flow cytometry was performed to analyze the apoptosis in heteronemin-treated cells. Western blot and quantitative real-time PCR were executed to further confirm the c-Met/STAT3 signaling inhibition by heteronemin in DU145 and PC-3 cells. RESULTS In this study, we employed the virtual screening strategy to identify heteronemin, a spongean sesterterpene, as a potential STAT3 inhibitor from Taiwan marine drugs library. Application of heteronemin potently suppressed the viability and anchorage-independent growth of human prostate cancer cells. Besides, heteronemin induced apoptosis in prostate cancer cells by activation of both intrinsic (caspase-9) and extrinsic (caspase-8) apoptotic pathways. By luciferase assay and expression analysis, it was confirmed that heteronemin inhibited the phosphorylation of c-Met/src/STAT3 signaling axis, STAT3-driven luciferase activities and expression of STAT3-regulated genes including Bcl-xL, Bcl-2, and Cyclin D1. Finally, heteronemin effectively antagonized the hepatocyte growth factor (HGF)-stimulated c-Met/STAT3 activation as well as the proliferation and colonies formation in refractory prostate cancer cells. CONCLUSIONS These findings suggest that heteronemin may constitute a novel c-Met/STAT3-targeting agent for prostate cancer. Prostate 76:1469-1483, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jian-Ching Wu
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chiang-Ting Wang
- Department of Urological Surgery, Kaohsiung Armed Force General Hospital, Kaohsiung, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Han-Chun Hung
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wen-Jeng Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Deng-Chyang Wu
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Faculty of Medicine, Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Min-Chi Chang
- Division of Colorectal Surgery, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ping-Jyun Sung
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
- Institute of Marine Biotechnology, National Dong Hwa University, Pingtung, Taiwan
| | - Yu-Wei Chou
- Tissue Bank and BioBank, Kaohsiung Chang Gung Memorial Hospital, Niao-Song District, Kaohsiung, Taiwan
| | - Zhi-Hong Wen
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, National Sun Yat-sen University, Kaohsiung, Taiwan.
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Ming-Hong Tai
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, National Sun Yat-sen University, Kaohsiung, Taiwan.
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung, Taiwan.
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan.
| |
Collapse
|
29
|
Evidente A, Kornienko A, Lefranc F, Cimmino A, Dasari R, Evidente M, Mathieu V, Kiss R. Sesterterpenoids with Anticancer Activity. Curr Med Chem 2016; 22:3502-22. [PMID: 26295461 DOI: 10.2174/0929867322666150821101047] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 05/30/2015] [Accepted: 08/17/2015] [Indexed: 12/22/2022]
Abstract
Terpenes have received a great deal of attention in the scientific literature due to complex, synthetically challenging structures and diverse biological activities associated with this class of natural products. Based on the number of C5 isoprene units they are generated from, terpenes are classified as hemi- (C5), mono- (C10), sesqui- (C15), di- (C20), sester- (C25), tri (C30), and tetraterpenes (C40). Among these, sesterterpenes and their derivatives known as sesterterpenoids, are ubiquitous secondary metabolites in fungi, marine organisms, and plants. Their structural diversity encompasses carbotricyclic ophiobolanes, polycyclic anthracenones, polycyclic furan-2-ones, polycyclic hydroquinones, among many other carbon skeletons. Furthermore, many of them possess promising biological activities including cytotoxicity and the associated potential as anticancer agents. This review discusses the natural sources that produce sesterterpenoids, provides sesterterpenoid names and their chemical structures, biological properties with the focus on anticancer activities and literature references associated with these metabolites. A critical summary of the potential of various sesterterpenoids as anticancer agents concludes the review.
Collapse
Affiliation(s)
- Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Diederich M, Cerella C. Non-canonical programmed cell death mechanisms triggered by natural compounds. Semin Cancer Biol 2016; 40-41:4-34. [PMID: 27262793 DOI: 10.1016/j.semcancer.2016.06.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/11/2022]
Abstract
Natural compounds are the fundament of pharmacological treatments and more than 50% of all anticancer drugs are of natural origins or at least derived from scaffolds present in Nature. Over the last 25 years, molecular mechanisms triggered by natural anticancer compounds were investigated. Emerging research showed that molecules of natural origins are useful for both preventive and therapeutic purposes by targeting essential hallmarks and enabling characteristics described by Hanahan and Weinberg. Moreover, natural compounds were able to change the differentiation status of selected cell types. One of the earliest response of cells treated by pharmacologically active compounds is the change of its morphology leading to ultra-structural perturbations: changes in membrane composition, cytoskeleton integrity, alterations of the endoplasmic reticulum, mitochondria and of the nucleus lead to formation of morphological alterations that are a characteristic of both compound and cancer type preceding cell death. Apoptosis and autophagy were traditionally considered as the most prominent cell death or cell death-related mechanisms. By now multiple other cell death modalities were described and most likely involved in response to chemotherapeutic treatment. It can be hypothesized that especially necrosis-related phenotypes triggered by various treatments or evolving from apoptotic or autophagic mechanisms, provide a more efficient therapeutic outcome depending on cancer type and genetic phenotype of the patient. In fact, the recent discovery of multiple regulated forms of necrosis and the initial elucidation of the corresponding cell signaling pathways appear nowadays as important tools to clarify the immunogenic potential of non-canonical forms of cell death induction.
Collapse
Affiliation(s)
- Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea.
| | - Claudia Cerella
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| |
Collapse
|
31
|
Huang HH, Kuo SM, Wu YJ, Su JH. Improvement and enhancement of antibladder carcinoma cell effects of heteronemin by the nanosized hyaluronan aggregation. Int J Nanomedicine 2016; 11:1237-51. [PMID: 27099489 PMCID: PMC4820188 DOI: 10.2147/ijn.s99911] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The effects against tumors exerted by marine active compounds have been highlighted and investigated. Polymeric nanoparticles made from biodegradable and biocompatible molecules such as hyaluronan (HA) and chitosan (CHI) are able to aggregate the compounds to enhance their activities against tumor cells and reduce the toxicity on normal cells. Here, we extensively examined the antitumor activities and the mechanisms of HA/CHI nanoparticles-aggregated heteronemin (HET) extracted from the sponge Hippospongia sp. The half-maximal inhibitory concentration (IC50) of pure HET toward T24 bladder carcinoma cells is ~0.28 µg/mL. Pure HET from 0.2 to 0.8 µg/mL and HA nanoparticles-aggregated HET at 0.1 and 0.2 µg/mL significantly reduced T24 cell viability. Compared to pure HET, HA nanoparticles/HET aggregates showed much weaker viability-inhibitory effects on L929 normal fibroblasts. HET dose-dependently suppressed cancer cell migration as HA/CHI nanoparticles-aggregated HET displayed stronger migration-inhibitory effects than pure HET. Flow cytometric analysis showed that pure HET increased early/total apoptosis and JC-1 monomer fluorescence, while HA/CHI nanoparticles-aggregated HET induced higher apoptosis and JC-1 monomer rates than pure HET, suggesting that aggregation of HA nanoparticles offers HET stronger apoptosis-inducing capacity through mitochondrial depolarization. Western blot analysis showed that HA nanoparticles-aggregated HET further increased mitochondrial-associated, caspase-dependent and caspase-independent, as well as endoplasmic reticulum stress-related factors in comparison with pure HET. These data indicated that pure HET possesses cytotoxic, antimigratory, and apoptosis-inducing effects on bladder cancer cells in vitro, and its induction of apoptosis in bladder carcinoma cells is mainly caspase dependent. Moreover, HA nanoparticle aggregation reinforced the cytotoxic, antimigratory, and apoptosis-inducing activities against bladder carcinoma cells and attenuated the viability-inhibitory effects on normal fibroblasts. This aggregation reinforces antibladder carcinoma effects of HET via diverse routes, including mitochondrial-related/caspase-dependent, caspase-independent, and endoplasmic reticulum stress-related pathways. The current data also strongly suggested that HA/CHI nanoparticles-aggregated HET would be a potential treatment for urothelial cancer in vivo.
Collapse
Affiliation(s)
- Han Hsiang Huang
- Department of Veterinary Medicine, National Chiayi University, Chiayi City, Taiwan
| | - Shyh Ming Kuo
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City, Taiwan
| | - Yi-Jhen Wu
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City, Taiwan
| | - Jui-Hsin Su
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
| |
Collapse
|
32
|
Okoye FBC, Sawadogo WR, Sendker J, Aly AH, Quandt B, Wray V, Hensel A, Esimone CO, Debbab A, Diederich M, Proksch P. Flavonoid glycosides from Olax mannii: Structure elucidation and effect on the nuclear factor kappa B pathway. JOURNAL OF ETHNOPHARMACOLOGY 2015; 176:27-34. [PMID: 26475120 DOI: 10.1016/j.jep.2015.10.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/07/2015] [Accepted: 10/10/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Olax mannii Oliv. (Olacaceae) is among the many medicinal plants used in Nigeria for the ethnomedicinal management of both cancer and inflammation. Such plants represent potential sources of innovative therapeutic agents for the treatment of cancer and other malignant disorders. While the majority of medicinal plants exert their anticancer effects by direct cytotoxicity on tumor cells, it is important that other mechanisms through which these plants can exhibit anticancer effects are investigated. Preliminary studies indicated that Olax mannii leaves are rich sources of novel flavonoid glycosides. The detailed chemistry as well the mechanisms through which these flavonoid constituents may exert their cancer chemo-preventive and therapeutic effects are, however, not yet investigated. AIM OF THE STUDY The aim of this study is to carry out a detailed chemical investigation of Olax mannii leaves and the effects of the isolated constituents on the nuclear factor kappa B (NF-κB) pathway. MATERIALS AND METHODS A methanol leaf extract was subjected to various chromatographic separations to achieve isolation of flavonoid glycosides and the structures of the isolated compounds were elucidated by a combination of 1D and 2D NMR and high resolution mass spectrometry. Biological activities were assessed by measurement of cellular viability and proliferation using quantitative IncuCyte videomicroscopy, trypan blue staining and by quantification of the number of metabolically active K562 cells based on quantitation of ATP. The effect of the compounds on the inhibition of the NF-κB pathway as well as toxicity towards peripheral blood mononuclear cells to evaluate differential toxicity was also assayed. RESULTS Chemical investigation of the methanol leaf extract of the plant material led to the isolation of three new flavonoid triglycosides, kaempferol 3-O-[α-D-apiofuranosyl-(1 → 2)-α-L-arabinofuranoside]-7-O-α-L-rhamnopyranoside (1), kaempferol 3-O-[β-D-glucopyranosyl-(1 → 2)-α-L-arabinofuranoside]-7-O-α-L-rhamnopyranoside (2), kaempferol 3-O-[β-D-arabinopyranosyl-(1→4)-α-L-rhamnopyranoside]-7-O-α-L-rhamnopyranoside (3), in addition to fourteen known flavonoid glycosides (4-17). Of all the tested compounds, only compound 9 (kaempferol 3-O-α-L-rhamnopyranoside) exhibited promising and specific antiproliferative activity on human K562 chronic myelogenous leukemia cells and dose-dependently inhibited NF-κB transactivation. CONCLUSION The presence of this flavonoid glycoside and derivatives may account for the reported efficacy of Olax mannii leaf extract in the ethnomedicinal management of cancer and inflammation.
Collapse
Affiliation(s)
- Festus B C Okoye
- Institut für Pharmazeutische Biologie und Biotechnologie, HHU-Universität, Düsseldorf, Germany; Department of Pharmaceutical and Medicinal Chemistry, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria.
| | | | - Jandirk Sendker
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Münster, Germany
| | - Amal H Aly
- Institut für Pharmazeutische Biologie und Biotechnologie, HHU-Universität, Düsseldorf, Germany
| | - Bettina Quandt
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Münster, Germany
| | - Victor Wray
- Helmholtz Centre for Infection Research, Inhoffenstrasse 7, d-38124 Braunschweig, Germany
| | - Andreas Hensel
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Münster, Germany
| | - Charles O Esimone
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | - Abdessamad Debbab
- Institut für Pharmazeutische Biologie und Biotechnologie, HHU-Universität, Düsseldorf, Germany
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Peter Proksch
- Institut für Pharmazeutische Biologie und Biotechnologie, HHU-Universität, Düsseldorf, Germany.
| |
Collapse
|
33
|
Signal Transducers and Activators of Transcription (STAT) Regulatory Networks in Marine Organisms: From Physiological Observations towards Marine Drug Discovery. Mar Drugs 2015; 13:4967-84. [PMID: 26262624 PMCID: PMC4557010 DOI: 10.3390/md13084967] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 12/18/2022] Open
Abstract
Part of our ocean's richness comes from its extensive history of supporting life, resulting in a highly diverse ecological system. To date, over 250,000 species of marine organisms have been identified, but it is speculated that the actual number of marine species exceeds one million, including several hundreds of millions of species of marine microorganisms. Past studies suggest that approximately 70% of all deep-sea microorganisms, gorgonians, and sea sponges produce secondary metabolites with anti-cancer activities. Recently, novel FDA-approved drugs derived from marine sponges have been shown to reduce metastatic breast cancer, malignant lymphoma, and Hodgkin's disease. Despite the fact that many marine natural products have been shown to possess a good inhibition potential against most of the cancer-related cell signaling pathways, only a few marine natural products have been shown to target JAK/STAT signaling. In the present paper, we describe the JAK/STAT signaling pathways found in marine organisms, before elaborating on the recent advances in the field of STAT inhibition by marine natural products and the potential application in anti-cancer drug discovery.
Collapse
|
34
|
Li DQ, Wu J, Liu LY, Wu YY, Li LZ, Huang XX, Liu QB, Yang JY, Song SJ, Wu CF. Cytotoxic triterpenoid glycosides (saikosaponins) from the roots of Bupleurum chinense. Bioorg Med Chem Lett 2015; 25:3887-92. [PMID: 26259802 DOI: 10.1016/j.bmcl.2015.07.053] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 07/03/2015] [Accepted: 07/18/2015] [Indexed: 10/23/2022]
Abstract
As a part of our ongoing studies on cytotoxic triterpenoid saponins from herbal medicines, phytochemical investigation of the roots of Bupleurum chinense DC. afforded four new saikosaponins (1-4), along with 16 known ones (5-20). Their structures were established by direct interpretation of their spectral data, mainly HR-ESI-MS, 1D NMR and 2D NMR, and by comparison with literature data. Among them, compound 20 was isolated from the natural product for the first time. The cytotoxicities of all compounds against five selected human cancer cell lines (A549, HepG2, Hep3B, Bcap-37 and MCF-7) were assayed. In general, a number of the isolated compounds exhibited potent cytotoxic activities against the five selected human cancer cell lines. In particular, compounds 3, 8-9, 11-13, 16 and 20 showed more potent cytotoxic activities against the HepG2 and A549 cell lines than the positive control 5-fluorouracil. Based on the primary screening results, the preliminary structure-activity relationship (SAR) studies were also discussed. The SAR results suggest that the 13,28-epoxy bridge, the orientation of the hydroxyl group and the type of the sugar units are important requirements for cytotoxicity and selectivity.
Collapse
Affiliation(s)
- Dan-Qi Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Rd., Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Jie Wu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Rd., Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Li-Yin Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Rd., Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ying-Ying Wu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Rd., Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ling-Zhi Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Rd., Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiao-Xiao Huang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Rd., Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Qing-Bo Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Rd., Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Jing-Yu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Rd., Shenyang 110016, People's Republic of China
| | - Shao-Jiang Song
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Rd., Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Chun-Fu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Rd., Shenyang 110016, People's Republic of China.
| |
Collapse
|
35
|
Early downregulation of Mcl-1 regulates apoptosis triggered by cardiac glycoside UNBS1450. Cell Death Dis 2015; 6:e1782. [PMID: 26068790 PMCID: PMC4669823 DOI: 10.1038/cddis.2015.134] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 04/01/2015] [Accepted: 04/21/2015] [Indexed: 01/09/2023]
Abstract
Cardiac glycosides (CGs), prescribed to treat cardiovascular alterations, display potent anti-cancer activities. Despite their well-established target, the sodium/potassium (Na+/K+)-ATPase, downstream mechanisms remain poorly elucidated. UNBS1450 is a hemi-synthetic cardenolide derived from 2″-oxovorusharin extracted from the plant Calotropis procera, which is effective against various cancer cell types with an excellent differential toxicity. By comparing adherent and non-adherent cancer cell types, we validated Mcl-1 as a general and early target of UNBS1450. A panel of CGs including cardenolides ouabain, digitoxin and digoxin as well as bufadienolides cinobufagin and proscillaridin A allowed us to generalize our findings. Our results show that Mcl-1, but not Bcl-xL nor Bcl-2, is rapidly downregulated prior to induction of apoptosis. From a mechanistic point of view, we exclude an effect on transcription and demonstrate involvement of a pathway affecting protein stability and requiring the proteasome in the early CG-induced Mcl-1 downregulation, without the involvement of caspases or the BH3-only protein NOXA. Strategies aiming at preventing UNBS1450-induced Mcl-1 downregulation by overexpression of a mutated, non-ubiquitinable form of the protein or the use of the proteasome inhibitor MG132 inhibited the compound's ability to induce apoptosis. Altogether our results point at Mcl-1 as a ubiquitous factor, downregulated by CGs, whose modulation is essential to achieve cell death.
Collapse
|
36
|
Heteronemin, a Spongean Sesterterpene, Induces Cell Apoptosis and Autophagy in Human Renal Carcinoma Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:738241. [PMID: 26090440 PMCID: PMC4450260 DOI: 10.1155/2015/738241] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 08/26/2014] [Indexed: 12/18/2022]
Abstract
Heteronemin is a bioactive marine sesterterpene isolated from the sponge Hyrtios sp. Previous reports have shown that heteronemin possesses anticancer activity. Here, heteronemin displayed cytotoxic effects against three human cancer cell lines (A549, ACHN, and A498) and exhibited potent activity in A498 human renal carcinoma cells, with an IC50 value of 1.57 μM by MTT assay and a GI50 value of 0.77 μM by SRB assay. Heteronemin initiates apoptotic cell death by downregulating Bcl-2 and Bcl-xL and upregulating Bax, leading to the disruption of the mitochondrial membrane potential and the release of cytochrome c from the mitochondria. These effects were associated with the activation of caspase-3/caspase-8/caspase-9, followed by PARP cleavage. Furthermore, heteronemin inhibited the phosphorylation of AKT signaling pathway and ERK and activated p38 and JNK. The specific inhibition of the p38 pathway by SB203580 or p38 siRNA treatment reversed the heteronemin-induced cytotoxicity and apoptotic signaling. Heteronemin also induced autophagy in A498 cells, and treatment with chloroquine (autophagy inhibitor) or SP600125 (JNK inhibitor) inhibited autophagy and increased heteronemin-induced cytotoxicity and apoptotic signaling. Taken together, this study proposes a novel treatment paradigm in which the combination of heteronemin and autophagy inhibitors leads to enhanced RCC cell apoptosis.
Collapse
|
37
|
Zhang C, Liu Y. Targeting cancer with sesterterpenoids: the new potential antitumor drugs. J Nat Med 2015; 69:255-66. [PMID: 25894074 PMCID: PMC4506451 DOI: 10.1007/s11418-015-0911-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/03/2015] [Indexed: 01/04/2023]
Abstract
Cancer remains a major cause of death in the world to date. A variety of anticancer drugs have been used in clinical chemotherapy, acting on the particular oncogenic abnormalities that are responsible for malignant transformation and progression. Interestingly, some of these anticancer drugs are developed from natural sources such as plants, marine organisms, and microorganisms. Over the past decades, a family of naturally occuring molecules, namely sesterterpenoids, has been isolated from different organisms and they exhibit significant potential in the inhibition of tumor cells in vitro, while the molecular targets of these compounds and their functional mechanisms are still obscure. In this review, we summarize and discuss the functions of these sesterterpenoids in the inhibition of cancer cells. Moreover, we also highlight and discuss chemical structure–activity relationships of some compounds, demonstrating their pervasiveness and importance in cancer therapy.
Collapse
Affiliation(s)
- Caiguo Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, 80045, USA,
| | | |
Collapse
|
38
|
Ting HM, Delatte TL, Kolkman P, Misas-Villamil JC, van der Hoorn RAL, Bouwmeester HJ, van der Krol AR. SNARE-RNAi results in higher terpene emission from ectopically expressed caryophyllene synthase in Nicotiana benthamiana. MOLECULAR PLANT 2015; 8:454-66. [PMID: 25598143 DOI: 10.1016/j.molp.2015.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 01/07/2015] [Accepted: 01/09/2015] [Indexed: 06/04/2023]
Abstract
Plants produce numerous terpenes and much effort has been dedicated to the identification and characterization of the terpene biosynthetic genes. However, little is known about how terpenes are transported within the cell and from the cell into the apoplast. To investigate a putative role of vesicle fusion in this process, we used Agrobacterium tumefaciens-mediated transient coexpression in Nicotiana benthamiana of an MtVAMP721e-RNAi construct (Vi) with either a caryophyllene synthase or a linalool synthase, respectively. Headspace analysis of the leaves showed that caryophyllene or linalool emission increased about five-fold when N. benthamiana VAMP72 function was blocked. RNA sequencing and protein ubiquitination analysis of the agroinfiltrated N. benthamiana leaf extracts suggested that increased terpene emissions may be attributed to proteasome malfunction based on three observations: leaves with TPS+Vi showed (1) a higher level of a DsRed marker protein, (2) a higher level of ubiquitinated proteins, and (3) coordinated induced expression of multiple proteasome genes, presumably caused by the lack of proteasome-mediated feedback regulation. However, caryophyllene or linalool did not inhibit proteasome-related protease activity in the in vitro assays. While the results are not conclusive for a role of vesicle fusion in terpene transport, they do show a strong interaction between inhibition of vesicle fusion and ectopic expression of certain terpenes. The results have potential applications in metabolic engineering.
Collapse
Affiliation(s)
- Hieng-Ming Ting
- Laboratory of Plant Physiology, Wageningen University, PO Box 658, 6700 AR Wageningen, The Netherlands
| | - Thierry L Delatte
- Laboratory of Plant Physiology, Wageningen University, PO Box 658, 6700 AR Wageningen, The Netherlands
| | - Pim Kolkman
- Laboratory of Plant Physiology, Wageningen University, PO Box 658, 6700 AR Wageningen, The Netherlands
| | - Johana C Misas-Villamil
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Renier A L van der Hoorn
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany; Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Harro J Bouwmeester
- Laboratory of Plant Physiology, Wageningen University, PO Box 658, 6700 AR Wageningen, The Netherlands
| | - Alexander R van der Krol
- Laboratory of Plant Physiology, Wageningen University, PO Box 658, 6700 AR Wageningen, The Netherlands.
| |
Collapse
|
39
|
From nature to bedside: Pro-survival and cell death mechanisms as therapeutic targets in cancer treatment. Biotechnol Adv 2014; 32:1111-22. [DOI: 10.1016/j.biotechadv.2014.03.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/04/2014] [Accepted: 03/04/2014] [Indexed: 12/11/2022]
|
40
|
Orlikova B, Chaouni W, Schumacher M, Aadil M, Diederich M, Kirsch G. Synthesis and bioactivity of novel amino-pyrazolopyridines. Eur J Med Chem 2014; 85:450-7. [DOI: 10.1016/j.ejmech.2014.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 08/01/2014] [Accepted: 08/04/2014] [Indexed: 12/23/2022]
|
41
|
Eurycomanone and eurycomanol from Eurycoma longifolia Jack as regulators of signaling pathways involved in proliferation, cell death and inflammation. Molecules 2014; 19:14649-66. [PMID: 25230121 PMCID: PMC6270735 DOI: 10.3390/molecules190914649] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/01/2014] [Accepted: 09/03/2014] [Indexed: 12/22/2022] Open
Abstract
Eurycomanone and eurycomanol are two quassinoids from the roots of Eurycoma longifolia Jack. The aim of this study was to assess the bioactivity of these compounds in Jurkat and K562 human leukemia cell models compared to peripheral blood mononuclear cells from healthy donors. Both eurycomanone and eurycomanol inhibited Jurkat and K562 cell viability and proliferation without affecting healthy cells. Interestingly, eurycomanone inhibited NF-κB signaling through inhibition of IκBα phosphorylation and upstream mitogen activated protein kinase (MAPK) signaling, but not eurycomanol. In conclusion, both quassinoids present differential toxicity towards leukemia cells, and the presence of the α,β-unsaturated ketone in eurycomanone could be prerequisite for the NF-κB inhibition.
Collapse
|
42
|
Gaascht F, Teiten MH, Cerella C, Dicato M, Bagrel D, Diederich M. Plumbagin modulates leukemia cell redox status. Molecules 2014; 19:10011-32. [PMID: 25014531 PMCID: PMC6270689 DOI: 10.3390/molecules190710011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 06/20/2014] [Accepted: 06/25/2014] [Indexed: 11/16/2022] Open
Abstract
Plumbagin is a plant naphtoquinone exerting anti-cancer properties including apoptotic cell death induction and generation of reactive oxygen species (ROS). The aim of this study was to elucidate parameters explaining the differential leukemia cell sensitivity towards this compound. Among several leukemia cell lines, U937 monocytic leukemia cells appeared more sensitive to plumbagin treatment in terms of cytotoxicity and level of apoptotic cell death compared to more resistant Raji Burkitt lymphoma cells. Moreover, U937 cells exhibited a ten-fold higher ROS production compared to Raji. Neither differential incorporation, nor efflux of plumbagin was detected. Pre-treatment with thiol-containing antioxidants prevented ROS production and subsequent induction of cell death by apoptosis whereas non-thiol-containing antioxidants remained ineffective in both cellular models. We conclude that the anticancer potential of plumbagin is driven by pro-oxidant activities related to the cellular thiolstat.
Collapse
Affiliation(s)
- François Gaascht
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Hôpital Kirchberg, 9, Rue Edward Steichen, L-2540 Luxembourg, Grand-Duchy of Luxembourg.
| | - Marie-Hélène Teiten
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Hôpital Kirchberg, 9, Rue Edward Steichen, L-2540 Luxembourg, Grand-Duchy of Luxembourg.
| | - Claudia Cerella
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Hôpital Kirchberg, 9, Rue Edward Steichen, L-2540 Luxembourg, Grand-Duchy of Luxembourg.
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Hôpital Kirchberg, 9, Rue Edward Steichen, L-2540 Luxembourg, Grand-Duchy of Luxembourg.
| | - Denyse Bagrel
- Laboratoire Structure et Réactivité des Systèmes Moléculaires Complexes, UMR CNRS 7565, Université de Lorraine, Campus Bridoux, Rue du Général Delestraint, F-57070 Metz, France.
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 151-742, Korea.
| |
Collapse
|
43
|
Talhi O, Schnekenburger M, Panning J, Pinto DG, Fernandes JA, Almeida Paz FA, Jacob C, Diederich M, Silva AM. Bis(4-hydroxy-2H-chromen-2-one): Synthesis and effects on leukemic cell lines proliferation and NF-κB regulation. Bioorg Med Chem 2014; 22:3008-15. [DOI: 10.1016/j.bmc.2014.03.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/27/2014] [Accepted: 03/30/2014] [Indexed: 01/24/2023]
|
44
|
Kittiwisut S, Rohena CC, Yuenyongsawad S, Mooberry SL, Plubrukarn A. Antiproliferative Effects of 12-Oxoheteronemin vs Heteronemin. Nat Prod Commun 2014. [DOI: 10.1177/1934578x1400900318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The antiproliferative activities of 12-oxoheteronemin and heteronemin were evaluated in six cancer cell lines and IC50 values ranging from 0.66 to 1.35 μM were obtained. In four of the cell lines, 12-oxoheteronemin and heteronemin were equipotent; however, in two estrogenic receptor-positive cell lines, heteronemin showed a stronger potency. Both compounds had no overt effects on cell cycle distribution in HeLa cells, but did rapidly initiate apoptosis as evidenced by increased sub-G1 populations of cells and caspase-dependent PARP cleavage.
Collapse
Affiliation(s)
- Siriporn Kittiwisut
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Cristina C. Rohena
- Department of Pharmacology, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229-3900, USA
| | - Supreeya Yuenyongsawad
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Susan L. Mooberry
- Department of Pharmacology, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229-3900, USA
| | - Anuchit Plubrukarn
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| |
Collapse
|
45
|
Cassiano C, Esposito R, Tosco A, Zampella A, D'Auria MV, Riccio R, Casapullo A, Monti MC. Heteronemin, a marine sponge terpenoid, targets TDP-43, a key factor in several neurodegenerative disorders. Chem Commun (Camb) 2014; 50:406-8. [DOI: 10.1039/c3cc45454a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Festa C, Cassiano C, D'Auria MV, Debitus C, Monti MC, De Marino S. Scalarane sesterterpenes from Thorectidae sponges as inhibitors of TDP-43 nuclear factor. Org Biomol Chem 2014; 12:8646-55. [DOI: 10.1039/c4ob01510j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chemical analysis of two Thorectidae sponges led to the isolation of five new scalarane derivatives along with fifteen known compounds. Their binding capability to TDP-43 was assessed by bio-physical techniques and resulted in the identifications of potent inhibitors.
Collapse
Affiliation(s)
- Carmen Festa
- Department of Pharmacy
- University of Naples “Federico II”
- 80131 Naples, Italy
| | - Chiara Cassiano
- Department of Pharmacy
- University of Salerno
- 84084 Fisciano, Italy
| | | | - Cécile Debitus
- Polynesian Research Center on Island Biodiversity
- IRD
- UMR241
- 98713 Papeete, French Polynesia
| | | | - Simona De Marino
- Department of Pharmacy
- University of Naples “Federico II”
- 80131 Naples, Italy
| |
Collapse
|
47
|
Abstract
Over the centuries, plant extracts have been used to treat various diseases. Until now, natural products have played an important role in anticancer therapy as there are more than 500 compounds from terrestrial and marine plants or microorganisms, which have antioxidant, antiproliferative, or antiangiogenic properties and are therefore able to reduce tumor growth. The recent discovery of new natural products has been accelerated by novel technologies (high throughput screening of natural products in plants, animals, marine organisms, and microorganisms). Vincristine, irinotecan, etoposide, and paclitaxel are examples of compounds derived from plants that are used in cancer treatment. Similarly, actinomycin D, mitomycin C, bleomycin, doxorubicin, and L-asparaginase are drugs derived from microorganisms. In this review, we describe the molecular mechanisms of natural compounds with anti-inflammatory and anticancer activities.
Collapse
|
48
|
Marine invertebrate natural products for anti-inflammatory and chronic diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:572859. [PMID: 24489586 PMCID: PMC3893779 DOI: 10.1155/2013/572859] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 12/10/2013] [Indexed: 12/17/2022]
Abstract
The marine environment represents a relatively available source of functional ingredients that can be applied to various aspects of food processing, storage, and fortification. Moreover, numerous marine invertebrates based compounds have biological activities and also interfere with the pathogenesis of diseases. Isolated compounds from marine invertebrates have been shown to pharmacological activities and are helpful for the invention and discovery of bioactive compounds, primarily for deadly diseases like cancer, acquired immunodeficiency syndrome (AIDS), osteoporosis, and so forth. Extensive research within the last decade has revealed that most chronic illnesses such as cancer, neurological diseases, diabetes, and autoimmune diseases exhibit dysregulation of multiple cell signaling pathways that have been linked to inflammation. On the basis of their bioactive properties, this review focuses on the potential use of marine invertebrate derived compounds on anti-inflammatory and some chronic diseases such as cardiovascular disease, osteoporosis, diabetes, HIV, and cancer.
Collapse
|
49
|
Indumathy S, Dass CR. Finding chemo: the search for marine-based pharmaceutical drugs active against cancer. ACTA ACUST UNITED AC 2013; 65:1280-301. [PMID: 23927467 DOI: 10.1111/jphp.12097] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/29/2013] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Cancer affects the health of many people globally. The most common treatment that is used for cancer is chemotherapy, which has shown promising results but not without side effects. Some of these side effects jeopardise further treatment, and this eventually leads to advanced stages of malignancy and mortality. As a result, there is a need for better and safer anticancer compounds such as those found naturally. One of the most abundant natural environments to find such compounds is the sea, and this vast resource has been biomined since the 1950s. KEY FINDINGS There are currently three marine anticancer agents marketed (Yondelis, Cytosar-U and Halaven), with several others undergoing clinical trials. This review discusses marine-derived products in clinical use and in clinical trials, and discusses available literature on the growth suppression or pro-apoptotic properties of these compounds, and the molecular mechanisms underpinning these cell biological phenomena. SUMMARY The marine environment may hold promising anticancer compounds within its depths, warranting further research to be performed in this area, albeit with respect for the natural ecosystems that are being explored for drug discover and subsequently used for drug development.
Collapse
Affiliation(s)
- Sivanjah Indumathy
- College of Biomedicine and Health, Victoria University, St Albans, Vic, Australia
| | | |
Collapse
|
50
|
Teiten MH, Mack F, Debbab A, Aly AH, Dicato M, Proksch P, Diederich M. Anticancer effect of altersolanol A, a metabolite produced by the endophytic fungus Stemphylium globuliferum, mediated by its pro-apoptotic and anti-invasive potential via the inhibition of NF-κB activity. Bioorg Med Chem 2013; 21:3850-8. [DOI: 10.1016/j.bmc.2013.04.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/02/2013] [Accepted: 04/06/2013] [Indexed: 11/26/2022]
|