1
|
Ru Q, Li Y, Zhang X, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in muscle diseases and disorders: mechanisms and therapeutic prospects. Bone Res 2025; 13:27. [PMID: 40000618 PMCID: PMC11861620 DOI: 10.1038/s41413-024-00398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/23/2024] [Accepted: 12/16/2024] [Indexed: 02/27/2025] Open
Abstract
The muscular system plays a critical role in the human body by governing skeletal movement, cardiovascular function, and the activities of digestive organs. Additionally, muscle tissues serve an endocrine function by secreting myogenic cytokines, thereby regulating metabolism throughout the entire body. Maintaining muscle function requires iron homeostasis. Recent studies suggest that disruptions in iron metabolism and ferroptosis, a form of iron-dependent cell death, are essential contributors to the progression of a wide range of muscle diseases and disorders, including sarcopenia, cardiomyopathy, and amyotrophic lateral sclerosis. Thus, a comprehensive overview of the mechanisms regulating iron metabolism and ferroptosis in these conditions is crucial for identifying potential therapeutic targets and developing new strategies for disease treatment and/or prevention. This review aims to summarize recent advances in understanding the molecular mechanisms underlying ferroptosis in the context of muscle injury, as well as associated muscle diseases and disorders. Moreover, we discuss potential targets within the ferroptosis pathway and possible strategies for managing muscle disorders. Finally, we shed new light on current limitations and future prospects for therapeutic interventions targeting ferroptosis.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Zhang
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Li Y, Ji W, Wang C, Chang L, Zhang Q, Gao J, Wang T, Wu W. Poly l-Lactic Acid Nanofiber Membrane Effectively Inhibits Liver Cancer Cells Growth and Prevents Postoperative Residual Cancer Recurrence. ACS APPLIED MATERIALS & INTERFACES 2025; 17:689-700. [PMID: 39681510 PMCID: PMC11783531 DOI: 10.1021/acsami.4c18625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/18/2024]
Abstract
Electrospun nanocarrier systems, widely employed in the medical field, exhibit the capability to encapsulate multiple drugs and mitigate complications. Doxorubicin hydrochloride (DOX) represents a frequently utilized chemotherapeutic agent for liver cancer patients. Sodium bicarbonate (SB) serves to neutralize the acidic tumor microenvironment, while ibuprofen (IBU) attenuates inflammatory factor production. The combination of these three commonly used drugs facilitates antitumor efficacy and relapse prevention. Composite fibrous membranes were prepared by incorporating the antitumor drug DOX into MSN, which was then codispersed with IBU in a poly l-lactic acid (PLLA) electrospinning solution after acid sensitization using SB. The resulting membrane was characterized using transmission electron microscopy and scanning electron microscopy. The toxic effect of this fibrous membrane and its pro-apoptotic effect on tumor cells were evaluated, along with the expression of cell proliferation-related factors, immune/inflammatory factors, and apoptosis-related factors. Immunohistochemistry and HE staining confirmed its ability to inhibit recurrence of postoperative residual cancer without causing toxicity to vital organs. The PLLA-MSN@DOX-SB-IBU nanofibrous membrane not only mitigates the cardiotoxicity associated with DOX but also inhibits tumor cell proliferation and enhances the tumor microenvironment, demonstrating significant antitumor efficacy. Furthermore, it effectively prevents the recurrence of residual cancer postsurgery while exhibiting excellent biocompatibility. The PLLA-MSN@DOX-SB-IBU nanofibrous membrane demonstrates significant potential in impeding the progression of hepatocellular carcinoma and mitigating the recurrence of residual cancer following surgical intervention for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yanxu Li
- General
Surgery Department, Affiliated Hospital
of Yang Zhou University, Medical College of Yang Zhou University,
Yang Zhou University, Yang Zhou, Jiang Su 225009, China
| | - Weiben Ji
- General
Surgery Department, Affiliated Hospital
of Yang Zhou University, Medical College of Yang Zhou University,
Yang Zhou University, Yang Zhou, Jiang Su 225009, China
| | - Chaoying Wang
- General
Surgery Department, Affiliated Hospital
of Yang Zhou University, Medical College of Yang Zhou University,
Yang Zhou University, Yang Zhou, Jiang Su 225009, China
| | - Lai Chang
- Taixing
People’s Hospital in Jiangsu Province, Tai Zhou, Jiang Su 225400, China
| | - Quan Zhang
- College
of Veterinary Medicine, Yangzhou University, Yang Zhou, Jiang Su 225009, China
| | - Jiefeng Gao
- School
of Chemistry and Chemical Engineering, Yangzhou
University, Yang Zhou, Jiang Su 225009, China
| | - Tao Wang
- College
of Veterinary Medicine, Yangzhou University, Yang Zhou, Jiang Su 225009, China
| | - Wei Wu
- General
Surgery Department, Affiliated Hospital
of Yang Zhou University, Medical College of Yang Zhou University,
Yang Zhou University, Yang Zhou, Jiang Su 225009, China
| |
Collapse
|
3
|
Meng H, Yu Y, Xie E, Wu Q, Yin X, Zhao B, Min J, Wang F. Hepatic HDAC3 Regulates Systemic Iron Homeostasis and Ferroptosis via the Hippo Signaling Pathway. RESEARCH (WASHINGTON, D.C.) 2023; 6:0281. [PMID: 38034086 PMCID: PMC10687581 DOI: 10.34133/research.0281] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
Histone deacetylases (HDACs) are epigenetic regulators that play an important role in determining cell fate and maintaining cellular homeostasis. However, whether and how HDACs regulate iron metabolism and ferroptosis (an iron-dependent form of cell death) remain unclear. Here, the putative role of hepatic HDACs in regulating iron metabolism and ferroptosis was investigated using genetic mouse models. Mice lacking Hdac3 expression in the liver (Hdac3-LKO mice) have significantly reduced hepatic Hamp mRNA (encoding the peptide hormone hepcidin) and altered iron homeostasis. Transcription profiling of Hdac3-LKO mice suggests that the Hippo signaling pathway may be downstream of Hdac3. Moreover, using a Hippo pathway inhibitor and overexpressing the transcriptional regulator Yap (Yes-associated protein) significantly reduced Hamp mRNA levels. Using a promoter reporter assay, we then identified 2 Yap-binding repressor sites within the human HAMP promoter region. We also found that inhibiting Hdac3 led to increased translocation of Yap to the nucleus, suggesting activation of Yap. Notably, knock-in mice expressing a constitutively active form of Yap (Yap K342M) phenocopied the altered hepcidin levels observed in Hdac3-LKO mice. Mechanistically, we show that iron-overload-induced ferroptosis underlies the liver injury that develops in Hdac3-LKO mice, and knocking down Yap expression in Hdac3-LKO mice reduces both iron-overload- and ferroptosis-induced liver injury. These results provide compelling evidence supporting the notion that HDAC3 regulates iron homeostasis via the Hippo/Yap pathway and may serve as a target for reducing ferroptosis in iron-overload-related diseases.
Collapse
Affiliation(s)
- Hongen Meng
- The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health,
Zhejiang University School of Medicine, Hangzhou, China
| | - Yingying Yu
- The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health,
Zhejiang University School of Medicine, Hangzhou, China
| | - Enjun Xie
- The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health,
Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Wu
- The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health,
Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangju Yin
- Institute of Emergency Management,
Henan Polytechnic University, Jiaozuo, China
| | - Bin Zhao
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute,
Zhejiang University, Hangzhou 310058, China
| | - Junxia Min
- The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health,
Zhejiang University School of Medicine, Hangzhou, China
| | - Fudi Wang
- The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health,
Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Cosialls E, El Hage R, Dos Santos L, Gong C, Mehrpour M, Hamaï A. Ferroptosis: Cancer Stem Cells Rely on Iron until "to Die for" It. Cells 2021; 10:cells10112981. [PMID: 34831207 PMCID: PMC8616391 DOI: 10.3390/cells10112981] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs) are a distinct subpopulation of tumor cells with stem cell-like features. Able to initiate and sustain tumor growth and mostly resistant to anti-cancer therapies, they are thought responsible for tumor recurrence and metastasis. Recent accumulated evidence supports that iron metabolism with the recent discovery of ferroptosis constitutes a promising new lead in the field of anti-CSC therapeutic strategies. Indeed, iron uptake, efflux, storage and regulation pathways are all over-engaged in the tumor microenvironment suggesting that the reprogramming of iron metabolism is a crucial occurrence in tumor cell survival. In particular, recent studies have highlighted the importance of iron metabolism in the maintenance of CSCs. Furthermore, the high concentration of iron found in CSCs, as compared to non-CSCs, underlines their iron addiction. In line with this, if iron is an essential macronutrient that is nevertheless highly reactive, it represents their Achilles’ heel by inducing ferroptosis cell death and therefore providing opportunities to target CSCs. In this review, we first summarize our current understanding of iron metabolism and its regulation in CSCs. Then, we provide an overview of the current knowledge of ferroptosis and discuss the role of autophagy in the (regulation of) ferroptotic pathways. Finally, we discuss the potential therapeutic strategies that could be used for inducing ferroptosis in CSCs to treat cancer.
Collapse
Affiliation(s)
- Emma Cosialls
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, F-75993 Paris, France; (E.C.); (R.E.H.); (L.D.S.)
| | - Rima El Hage
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, F-75993 Paris, France; (E.C.); (R.E.H.); (L.D.S.)
| | - Leïla Dos Santos
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, F-75993 Paris, France; (E.C.); (R.E.H.); (L.D.S.)
| | - Chang Gong
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Guangzhou 510120, China;
| | - Maryam Mehrpour
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, F-75993 Paris, France; (E.C.); (R.E.H.); (L.D.S.)
- Correspondence: (M.M.); (A.H.)
| | - Ahmed Hamaï
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, F-75993 Paris, France; (E.C.); (R.E.H.); (L.D.S.)
- Correspondence: (M.M.); (A.H.)
| |
Collapse
|
5
|
DUAN L, YIN X, MENG H, FANG X, MIN J, WANG F. [Progress on epigenetic regulation of iron homeostasis]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020; 49:58-70. [PMID: 32621410 PMCID: PMC8800797 DOI: 10.3785/j.issn.1008-9292.2020.02.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Iron homeostasis plays an important role for the maintenance of human health. It is known that iron metabolism is tightly regulated by several key genes, including divalent metal transport-1(DMT1), transferrin receptor 1(TFR1), transferrin receptor 2(TFR2), ferroportin(FPN), hepcidin(HAMP), hemojuvelin(HJV) and Ferritin H. Recently, it is reported that DNA methylation, histone acetylation, and microRNA (miRNA) epigenetically regulated iron homeostasis. Among these epigenetic regulators, DNA hypermethylation of the promoter region of FPN, TFR2, HAMP, HJV and bone morphogenetic protein 6 (BMP6) genes result in inhibitory effect on the expression of these iron-related gene. In addition, histone deacetylase (HADC) suppresses HAMP gene expression. On the contrary, HADC inhibitor upregulates HAMP gene expression. Additional reports showed that miRNA can also modulate iron absorption, transport, storage and utilization via downregulation of DMT1, FPN, TFR1, TFR2, Ferritin H and other genes. It is noteworthy that some key epigenetic regulatory enzymes, such as DNA demethylase TET2 and histone lysine demethylase JmjC KDMs, require iron for the enzymatic activities. In this review, we summarize the recent progress of DNA methylation, histone acetylation and miRNA in regulating iron metabolism and also discuss the future research directions.
Collapse
|
6
|
Sfera A, Gradini R, Cummings M, Diaz E, Price AI, Osorio C. Rusty Microglia: Trainers of Innate Immunity in Alzheimer's Disease. Front Neurol 2018; 9:1062. [PMID: 30564191 PMCID: PMC6288235 DOI: 10.3389/fneur.2018.01062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/21/2018] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease, the most common form of dementia, is marked by progressive cognitive and functional impairment believed to reflect synaptic and neuronal loss. Recent preclinical data suggests that lipopolysaccharide (LPS)-activated microglia may contribute to the elimination of viable neurons and synapses by promoting a neurotoxic astrocytic phenotype, defined as A1. The innate immune cells, including microglia and astrocytes, can either facilitate or inhibit neuroinflammation in response to peripherally applied inflammatory stimuli, such as LPS. Depending on previous antigen encounters, these cells can assume activated (trained) or silenced (tolerized) phenotypes, augmenting or lowering inflammation. Iron, reactive oxygen species (ROS), and LPS, the cell wall component of gram-negative bacteria, are microglial activators, but only the latter can trigger immune tolerization. In Alzheimer's disease, tolerization may be impaired as elevated LPS levels, reported in this condition, fail to lower neuroinflammation. Iron is closely linked to immunity as it plays a key role in immune cells proliferation and maturation, but it is also indispensable to pathogens and malignancies which compete for its capture. Danger signals, including LPS, induce intracellular iron sequestration in innate immune cells to withhold it from pathogens. However, excess cytosolic iron increases the risk of inflammasomes' activation, microglial training and neuroinflammation. Moreover, it was suggested that free iron can awaken the dormant central nervous system (CNS) LPS-shedding microbes, engendering prolonged neuroinflammation that may override immune tolerization, triggering autoimmunity. In this review, we focus on iron-related innate immune pathology in Alzheimer's disease and discuss potential immunotherapeutic agents for microglial de-escalation along with possible delivery vehicles for these compounds.
Collapse
Affiliation(s)
- Adonis Sfera
- Psychiatry, Loma Linda University, Loma Linda, CA, United States.,Patton State Hospital, San Bernardino, CA, United States
| | - Roberto Gradini
- Department of Pathology, La Sapienza University of Rome, Rome, Italy
| | | | - Eddie Diaz
- Patton State Hospital, San Bernardino, CA, United States
| | - Amy I Price
- Evidence Based Medicine, University of Oxford, Oxford, United Kingdom
| | - Carolina Osorio
- Psychiatry, Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
7
|
Romidepsin induces G2/M phase arrest via Erk/cdc25C/cdc2/cyclinB pathway and apoptosis induction through JNK/c-Jun/caspase3 pathway in hepatocellular carcinoma cells. Biochem Pharmacol 2017; 127:90-100. [DOI: 10.1016/j.bcp.2016.12.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 01/28/2023]
|
8
|
Torti SV, Lemler E, Mueller BK, Popp A, Torti FM. Effects of Anti-repulsive Guidance Molecule C (RGMc/Hemojuvelin) Antibody on Hepcidin and Iron in Mouse Liver and Tumor Xenografts. CLINICAL & EXPERIMENTAL PHARMACOLOGY 2016; 6:223. [PMID: 28203489 PMCID: PMC5305030 DOI: 10.4172/2161-1459.1000223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Hepcidin is a peptide hormone produced by the liver that regulates systemic iron homeostasis. Hepcidin is also synthesized by tumors, where it contributes to tumor growth by increasing the tumoral retention of iron. Targeted reduction of hepcidin may therefore be useful in reducing tumor growth. H5F9-AM8 is an antibody in preclinical development for the anemia of chronic disease that reduces hepcidin synthesis by binding to RGMc, a co-receptor involved in the transcriptional induction of hepcidin by BMP6. We explored the ability of H5F9-AM8 to act as an anti-tumor agent. METHODS Effects of anti-hemojuvelin antibody on hepcidin synthesis were assessed by qRTPCR in tissue culture and in tumor xenografts and livers of mice treated with H5F9-AM8 or saline. Tumor growth was assessed using caliper measurements. Serum iron was measured colorimetrically and tissue iron was measured using western blotting and inductively coupled mass spectrometry. RESULTS In tissue culture, the anti-hemojuvelin antibody H5F9-AM8 significantly reduced BMP6-stimulated hepcidin synthesis in HepG2 and other cancer cells. In mice, H5F9-AM8 reduced hepcidin in the liver and increased serum iron, total liver iron, and liver ferritin. Although hepcidin in tumors was also significantly decreased, H5F9-AM8 did not reduce tumor iron content, ferritin, or tumor growth. CONCLUSION Anti-hemojuvelin antibody successfully reduces hepcidin in both tumors and livers but has different effects in these target organs: it reduces iron content and ferritin in the liver, but does not reduce iron content or ferritin in tumors, and does not inhibit tumor growth. These results suggest that despite their ability to induce hepcidin in tumors, the anti-tumor efficacy of systemic, non-targeted hepcidin antagonists may be limited by their ability to simultaneously elevate plasma iron. Tumor-specific hepcidin inhibitors may be required to overcome the limitations of drugs that target the synthesis of both systemic and tumor hepcidin.
Collapse
Affiliation(s)
- SV Torti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - E Lemler
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - BK Mueller
- Abbvie Deutschland GmbH and Co. KG, Knollstrasse 67061, Ludwigshafen, Germany
| | - A Popp
- Abbvie Deutschland GmbH and Co. KG, Knollstrasse 67061, Ludwigshafen, Germany
| | - FM Torti
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
9
|
Yalon M, Tuval-Kochen L, Castel D, Moshe I, Mazal I, Cohen O, Avivi C, Rosenblatt K, Aviel-Ronen S, Schiby G, Yahalom J, Amariglio N, Pfeffer R, Lawrence Y, Toren A, Rechavi G, Paglin S. Overcoming Resistance of Cancer Cells to PARP-1 Inhibitors with Three Different Drug Combinations. PLoS One 2016; 11:e0155711. [PMID: 27196668 PMCID: PMC4873128 DOI: 10.1371/journal.pone.0155711] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 05/03/2016] [Indexed: 01/08/2023] Open
Abstract
Inhibitors of poly[ADP-ribose] polymerase 1 (PARPis) show promise for treatment of cancers which lack capacity for homologous recombination repair (HRR). However, new therapeutic strategies are required in order to overcome innate and acquired resistance to these drugs and thus expand the array of cancers that could benefit from them. We show that human cancer cell lines which respond poorly to ABT-888 (a PARPi), become sensitive to it when co-treated with vorinostat (a histone deacetylase inhibitor (HDACi)). Vorinostat also sensitized PARPis insensitive cancer cell lines to 6-thioguanine (6-TG)–a drug that targets PARPis sensitive cells. The sensitizing effect of vorinostat was associated with increased phosphorylation of eukaryotic initiation factor (eIF) 2α which in and of itself increases the sensitivity of cancer cells to ABT-888. Importantly, these drug combinations did not affect survival of normal fibroblasts and breast cells, and significantly increased the inhibition of xenograft tumor growth relative to each drug alone, without affecting the mice weight or their liver and kidney function. Our results show that combination of vorinostat and ABT-888 could potentially prove useful for treatment of cancer with innate resistance to PARPis due to active HRR machinery, while the combination of vorinostat and 6-TG could potentially overcome innate or acquired resistance to PARPis due to secondary or reversal BRCA mutations, to decreased PARP-1 level or to increased expression of multiple drug resistant proteins. Importantly, drugs which increase phosphorylation of eIF2α may mimic the sensitizing effect of vorinostat on cellular response to PARPis or to 6-TG, without activating all of its downstream effectors.
Collapse
Affiliation(s)
- Michal Yalon
- Department of Pediatric Hematology-Oncology, Safra Children's Hospital, Sheba Medical Center, Ramat Gan 52621, Israel
- Cancer Research Center, Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Liron Tuval-Kochen
- Cancer Research Center, Sheba Medical Center, Ramat-Gan 52621, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - David Castel
- Neufeld Cardiac Research Institute, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Itai Moshe
- Department of Pediatric Hematology-Oncology, Safra Children's Hospital, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Inbal Mazal
- Cancer Research Center, Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Osher Cohen
- Department of Surgery, Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Camila Avivi
- Department of Pathology, Sheba Medical Center, Ramat-Gan 52621, Israel
| | | | - Sarit Aviel-Ronen
- Department of Pathology, Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Ginette Schiby
- Department of Pathology, Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Joachim Yahalom
- Department of Radiation Oncology, Memorial Sloan Kettering, New York 10021, United States of America
| | - Ninette Amariglio
- Cancer Research Center, Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Raphael Pfeffer
- Cancer Research Center, Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Yaacov Lawrence
- Cancer Research Center, Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Amos Toren
- Department of Pediatric Hematology-Oncology, Safra Children's Hospital, Sheba Medical Center, Ramat Gan 52621, Israel
- Cancer Research Center, Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Gideon Rechavi
- Cancer Research Center, Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Shoshana Paglin
- Cancer Research Center, Sheba Medical Center, Ramat-Gan 52621, Israel
- * E-mail:
| |
Collapse
|
10
|
Abstract
Ferritins, the main intracellular iron storage proteins, have been studied for over 60 years, mainly focusing on the mammalian ones. This allowed the elucidation of the structure of these proteins and the mechanisms regulating their iron incorporation and mineralization. However, ferritin is present in most, although not all, eukaryotic cells, comprising monocellular and multicellular invertebrates and vertebrates. The aim of this review is to provide an update on the general properties of ferritins that are common to various eukaryotic phyla (except plants), and to give an overview on the structure, function and regulation of ferritins. An update on the animal models that were used to characterize H, L and mitochondrial ferritins is also provided. The data show that ferritin structure is highly conserved among different phyla. It exerts an important cytoprotective function against oxidative damage and plays a role in innate immunity, where it also contributes to prevent parenchymal tissue from the cytotoxicity of pro-inflammatory agonists released by the activation of the immune response activation. Less clear are the properties of the secretory ferritins expressed by insects and molluscs, which may be important for understanding the role played by serum ferritin in mammals.
Collapse
|
11
|
Manz DH, Blanchette NL, Paul BT, Torti FM, Torti SV. Iron and cancer: recent insights. Ann N Y Acad Sci 2016; 1368:149-61. [PMID: 26890363 DOI: 10.1111/nyas.13008] [Citation(s) in RCA: 326] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/22/2015] [Accepted: 01/05/2016] [Indexed: 02/06/2023]
Abstract
Iron is an essential dietary element. However, the ability of iron to cycle between oxidized and reduced forms also renders it capable of contributing to free radical formation, which can have deleterious effects, including promutagenic effects that can potentiate tumor formation. Dysregulation of iron metabolism can increase cancer risk and promote tumor growth. Cancer cells exhibit an enhanced dependence on iron relative to their normal counterparts, a phenomenon we have termed iron addiction. Work conducted in the past few years has revealed new cellular processes and mechanisms that deepen our understanding of the link between iron and cancer. Control of iron efflux through the combined action of ferroportin, an iron efflux pump, and its regulator hepcidin appears to play an important role in tumorigenesis. Ferroptosis is a form of iron-dependent cell death involving the production of reactive oxygen species. Specific mechanisms involved in ferroptosis, including depletion of glutathione and inhibition of glutathione peroxidase 4, have been uncovered. Ferritinophagy is a newly identified mechanism for degradation of the iron storage protein ferritin. Perturbations of mechanisms that control transcripts encoding proteins that regulate iron have been observed in cancer cells, including differences in miRNA, methylation, and acetylation. These new insights may ultimately provide new therapeutic opportunities for treating cancer.
Collapse
Affiliation(s)
- David H Manz
- Department of Molecular Biology and Biophysics.,School of Dental Medicine
| | | | | | - Frank M Torti
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut
| | | |
Collapse
|
12
|
Lu C, Zhang K, Zhang Y, Tan M, Li Y, He X, Zhang Y. Preparation and characterization of vorinostat-coated beads for profiling of novel target proteins. J Chromatogr A 2014; 1372C:34-41. [PMID: 25465005 DOI: 10.1016/j.chroma.2014.10.098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 10/14/2014] [Accepted: 10/28/2014] [Indexed: 11/15/2022]
Abstract
Inhibitors of histone deacetylases (HDACs) have been considered to be new anticancer agents. As a key inhibitor of HDAC, vorinostat can cause growth arrest and death of a broad of transformed cells and interact with a variety of substrates. A comprehensive analysis of proteins interacting with HDAC inhibitors is of great importance in understanding molecular mechanisms of the drugs. Here, we reported the preparation and characterization of vorinostat-coated beads for profiling of novel target proteins of vorinostat (a key HDAC inhibitor). The enriched proteins were further analyzed by HPLC-MS/MS. Besides the known substrates, there were also several novel enriched protein candidates, one of which was a metalloenzyme α-enolase (ENO-1). According to our best knowledge, it is the first time that ENO-1 has been detected as a potential target of vorinostat through chemoproteomics approach. Further competition analysis indicated that ENO-1 may be co-enriched as a substrate complex. Our results demonstrated that the chemical probe combined with proteomics approach may be developed as a potential tool to identify target proteins of drugs.
Collapse
Affiliation(s)
- Congcong Lu
- State Key Laboratory of Medicinal Chemical Biology & Department of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Kai Zhang
- State Key Laboratory of Medicinal Chemical Biology & Department of Chemistry, Nankai University, Tianjin 300071, PR China; Department of Biochemistry and Molecular Biology & Tianjin Key Laboratory of Medical Epigenetics, Basic Medical School, Tianjin Medical University, Tianjin 300070, PR China.
| | - Yi Zhang
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Minjia Tan
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Yijun Li
- State Key Laboratory of Medicinal Chemical Biology & Department of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Xiwen He
- State Key Laboratory of Medicinal Chemical Biology & Department of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Yukui Zhang
- State Key Laboratory of Medicinal Chemical Biology & Department of Chemistry, Nankai University, Tianjin 300071, PR China; National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| |
Collapse
|
13
|
Tao Y, Wu Q, Guo X, Zhang Z, Shen Y, Wang F. MBD5 regulates iron metabolism via methylation-independent genomic targeting of Fth1 through KAT2A in mice. Br J Haematol 2014; 166:279-91. [PMID: 24750026 DOI: 10.1111/bjh.12863] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 02/25/2014] [Indexed: 12/19/2022]
Abstract
Ferritin plays important roles in iron metabolism and controls iron absorption in the intestine. The ferritin subunits ferritin heavy chain (Fth1) and ferritin light chain (Ftl1) are tightly regulated at both the transcriptional and post-transcriptional levels. However, mechanisms of maintaining stable, basal expression of Fth1 are poorly understood. Here, we show that global deletion of Mbd5 in mice induces an iron overload phenotype. Liver and serum iron levels in Mbd5(-/-) mice were 3·2-fold and 1·5-fold higher respectively, than wild-type littermates; moreover, serum ferritin was increased >5-fold in the Mbd5(-/-) mice. Mbd5 encodes a member of the methyl-CpG binding domain family; however, the precise function of this gene is poorly understood. Here, we found that intestinal Fth1 mRNA levels were decreased in Mbd5(-/-) mice. Loss of Fth1 expression in the intestine could lead to iron over-absorption. Furthermore, deleting Mbd5 specifically in the intestine resulted in a phenotype similar to that of conditional deletion of Fth1 mice. An Fth1 promoter-report luciferase assay indicated that overexpression of Mbd5 enhanced Fth1 transcription in a dose-dependent manner. Histone H4 acetylation of the Fth1 promoter was reduced in the intestine of Mbd5(-/-) mice and further analysis showed that histone acetyltransferase KAT2A was essential for MBD5-induced Fth1 transcription.
Collapse
Affiliation(s)
- Yunlong Tao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China; Department of Nutrition, School of Public Health, Institute of Nutrition and Food Safety, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| | | | | | | | | | | |
Collapse
|
14
|
Wang W, Deng Z, Hatcher H, Miller LD, Di X, Tesfay L, Sui G, D'Agostino RB, Torti FM, Torti SV. IRP2 regulates breast tumor growth. Cancer Res 2013; 74:497-507. [PMID: 24285726 DOI: 10.1158/0008-5472.can-13-1224] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Experimental and epidemiologic evidence suggests that dysregulation of proteins involved in iron metabolism plays a critical role in cancer. The mechanisms by which cancer cells alter homeostatic iron regulation are just beginning to be understood. Here, we demonstrate that iron regulatory protein 2 (IRP2) plays a key role in iron accumulation in breast cancer. Although both IRP1 and IRP2 are overexpressed in breast cancer, the overexpression of IRP2, but not IRP1, is associated with decreased ferritin H and increased transferrin receptor 1 (TfR1). Knockdown of IRP2 in triple-negative MDA-MB-231 human breast cancer cells increases ferritin H expression and decreases TfR1 expression, resulting in a decrease in the labile iron pool. Further, IRP2 knockdown reduces growth of MDA-MB-231 cells in the mouse mammary fat pad. Gene expression microarray profiles of patients with breast cancer demonstrate that increased IRP2 expression is associated with high-grade cancer. Increased IRP2 expression is observed in luminal A, luminal B, and basal breast cancer subtypes, but not in breast tumors of the ERBB2 molecular subtype. These results suggest that dysregulation of IRP2 is an early nodal point underlying altered iron metabolism in breast cancer and may contribute to poor outcome of some patients with breast cancer.
Collapse
Affiliation(s)
- Wei Wang
- Authors' Affiliations: Departments of Pathology, Cancer Biology, and Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina; Departments of Molecular, Microbial and Structural Biology and Internal Medicine, University of Connecticut Health Center, Farmington, Connecticut
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Weiss A, Brill B, Borghouts C, Delis N, Mack L, Groner B. Survivin inhibition by an interacting recombinant peptide, derived from the human ferritin heavy chain, impedes tumor cell growth. J Cancer Res Clin Oncol 2012; 138:1205-20. [PMID: 22426960 DOI: 10.1007/s00432-012-1195-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 03/02/2012] [Indexed: 01/02/2023]
Abstract
BACKGROUND Proteins involved in the aberrant regulation of signaling pathways and their downstream effectors are promising targets for cancer therapy. Survivin is an anti-apoptotic and cell cycle-promoting protein, which is consistently overexpressed in cancer cells. In normal cells, its expression is tightly controlled by signaling pathways and their associated transcriptional activators and repressors. In cancer cells, its expression is enhanced as a consequence of oncogenic signaling. We investigated the potential of a novel, peptide-based survivin inhibitor in breast cancer (SK-BR-3, MDA-MB-468) and glioblastoma (Tu9648) cells. These cells express high levels of survivin. MATERIALS AND METHODS We downregulated survivin expression in tumor cells with a lentiviral gene transfer vector encoding a specific shRNA and a recombinant fusion protein, rSip, comprising the FTH1-derived survivin interaction domain, the human thioredoxin and a protein transduction domain. RESULTS Downregulation of survivin expression decreased the growth and viability of tumor cells in culture and reduced growth of the cancer cells upon transplantation into immunodeficient mice. rSip selectively targets the anti-apoptotic function of survivin and causes tumor cell death. Non-transformed NIH/3T3 and MCF10A cells remain unaffected. CONCLUSIONS rSip provides a lead structure for the development of drugs targeting the tumor cell "addiction protein" survivin.
Collapse
Affiliation(s)
- Astrid Weiss
- Georg-Speyer-Haus, Institute for Biomedical Research, Paul Ehrlich Str. 42-44, 60596, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Dolfini D, Gatta R, Mantovani R. NF-Y and the transcriptional activation of CCAAT promoters. Crit Rev Biochem Mol Biol 2011; 47:29-49. [PMID: 22050321 DOI: 10.3109/10409238.2011.628970] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The CCAAT box promoter element and NF-Y, the transcription factor (TF) that binds to it, were among the first cis-elements and trans-acting factors identified; their interplay is required for transcriptional activation of a sizeable number of eukaryotic genes. NF-Y consists of three evolutionarily conserved subunits: a dimer of NF-YB and NF-YC which closely resembles a histone, and the "innovative" NF-YA. In this review, we will provide an update on the functional and biological features that make NF-Y a fundamental link between chromatin and transcription. The last 25 years have witnessed a spectacular increase in our knowledge of how genes are regulated: from the identification of cis-acting sequences in promoters and enhancers, and the biochemical characterization of the corresponding TFs, to the merging of chromatin studies with the investigation of enzymatic machines that regulate epigenetic states. Originally identified and studied in yeast and mammals, NF-Y - also termed CBF and CP1 - is composed of three subunits, NF-YA, NF-YB and NF-YC. The complex recognizes the CCAAT pentanucleotide and specific flanking nucleotides with high specificity (Dorn et al., 1997; Hatamochi et al., 1988; Hooft van Huijsduijnen et al, 1987; Kim & Sheffery, 1990). A compelling set of bioinformatics studies clarified that the NF-Y preferred binding site is one of the most frequent promoter elements (Suzuki et al., 2001, 2004; Elkon et al., 2003; Mariño-Ramírez et al., 2004; FitzGerald et al., 2004; Linhart et al., 2005; Zhu et al., 2005; Lee et al., 2007; Abnizova et al., 2007; Grskovic et al., 2007; Halperin et al., 2009; Häkkinen et al., 2011). The same consensus, as determined by mutagenesis and SELEX studies (Bi et al., 1997), was also retrieved in ChIP-on-chip analysis (Testa et al., 2005; Ceribelli et al., 2006; Ceribelli et al., 2008; Reed et al., 2008). Additional structural features of the CCAAT box - position, orientation, presence of multiple Transcriptional Start Sites - were previously reviewed (Dolfini et al., 2009) and will not be considered in detail here.
Collapse
Affiliation(s)
- Diletta Dolfini
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milan, Italy
| | | | | |
Collapse
|
17
|
Silva PFD, Garcia VA, Dornelles ADS, Silva VKD, Maurmann N, Portal BCD, Ferreira RDP, Piazza FC, Roesler R, Schröder N. Memory impairment induced by brain iron overload is accompanied by reduced H3K9 acetylation and ameliorated by sodium butyrate. Neuroscience 2011; 200:42-9. [PMID: 22067609 DOI: 10.1016/j.neuroscience.2011.10.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/20/2011] [Accepted: 10/21/2011] [Indexed: 10/15/2022]
Abstract
Iron accumulation in the brain has been associated to the pathogenesis of neurodegenerative disorders. We have previously demonstrated that iron overload in the neonatal period results in severe and persistent memory deficits in adult rats. Alterations in histone acetylation have been associated with memory deficits in models of neurological disorders. Here we examine histone acetylation in the brain and the effects of the histone deacetylase inhibitor (HDACi) sodium butyrate (NaB) on memory in the neonatal iron overload model in rats. Rats received vehicle or 30.0-mg/kg Fe⁺² orally at postnatal days 12-14. When animals reached adulthood, they were given training in either novel object recognition or inhibitory avoidance. Histone acetylation in the dorsal hippocampus and the effects of NaB were examined in separate sets of rats. Iron overload led to a reduction in H3 lysine 9 acetylation in the hippocampus, without affecting the acetylation of other H3 and H4 lysine residues. A single systemic injection of NaB (1.2 g/kg) immediately after training ameliorated iron-induced memory impairments. The results suggest that a reduction in H3K9 acetylation might play a role in iron-induced memory impairment and support the view that HDACis can rescue memory dysfunction in models of brain disorders.
Collapse
Affiliation(s)
- P F da Silva
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University, 90619-900 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Regulation of neuronal ferritin heavy chain, a new player in opiate-induced chemokine dysfunction. J Neuroimmune Pharmacol 2011; 6:466-76. [PMID: 21465240 DOI: 10.1007/s11481-011-9278-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 03/21/2011] [Indexed: 12/19/2022]
Abstract
The heavy chain subunit of ferritin (FHC), a ubiquitous protein best known for its iron-sequestering activity as part of the ferritin complex, has recently been described as a novel inhibitor of signaling through the chemokine receptor CXCR4. Levels of FHC as well as its effects on CXCR4 activation increase in cortical neurons exposed to mu-opioid receptor agonists such as morphine, an effect likely specific to neurons. Major actions of CXCR4 signaling in the mature brain include a promotion of neurogenesis, activation of pro-survival signals, and modulation of excitotoxic pathways; thus, FHC up-regulation may contribute to the neuronal dysfunction often associated with opiate drug abuse. This review summarizes our knowledge of neuronal CXCR4 function, its regulation by opiates and the role of FHC in this process, and known mechanisms controlling FHC production. We speculate on the mechanism involved in FHC regulation by opiates and offer FHC as a new target in opioid-induced neuropathology.
Collapse
|