1
|
Didilescu AC, Chinthamani S, Scannapieco FA, Sharma A. NLRP3 inflammasome activity and periodontal disease pathogenesis-A bidirectional relationship. Oral Dis 2024; 30:4069-4077. [PMID: 38817019 PMCID: PMC11480888 DOI: 10.1111/odi.15005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/09/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE Periodontitis is an inflammatory oral disease that occurs as a result of the damaging effects of the immune response against the subgingival microflora. Among the mechanisms involved, the nucleotide-binding oligomerization domain, leucine-rich repeat-containing proteins family member NLRP3 (NLR family pyrin domain-containing 3), proposed as the key regulator of macrophage-induced inflammation, is strongly associated with periodontal disease due to the bacterial activators. This paper aimed to present key general concepts of NLRP3 inflammasome activation and regulation in periodontal disease. METHOD A narrative review was conducted in order to depict the current knowledge on the relationship between NLRP3 inflammasome activity and periodontal disease. In vitro and in situ studies were retrieved and commented based on their relevance in the field. RESULTS The NLRP3 inflammasome activity stimulated by periodontal microbiota drive periodontal disease pathogenesis and progression. This occurs through the release of proinflammatory cytokines IL-1β, IL-18, and DAMPs (damage-associated molecular pattern molecules) following inflammasome activation. Moreover, the tissue expression of NLRP3 is dysregulated by oral microbiota, further exacerbating periodontal inflammation. CONCLUSION The review provides new insights into the relationship between the NLRP3 inflammasome activity and periodontal disease pathogenesis, highlighting the roles and regulatory mechanism of inflammatory molecules involved in the disease process.
Collapse
Affiliation(s)
- Andreea C. Didilescu
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, New York, USA
- Department of Embryology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Sreedevi Chinthamani
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Frank A. Scannapieco
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Ashu Sharma
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, New York, USA
| |
Collapse
|
2
|
Martínez-García M, Hernández-Lemus E. The Molecular Comorbidity Network of Periodontal Disease. Int J Mol Sci 2024; 25:10161. [PMID: 39337647 PMCID: PMC11432284 DOI: 10.3390/ijms251810161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Periodontal disease, a multifactorial inflammatory condition affecting the supporting structures of the teeth, has been increasingly recognized for its association with various systemic diseases. Understanding the molecular comorbidities of periodontal disease is crucial for elucidating shared pathogenic mechanisms and potential therapeutic targets. In this study, we conducted comprehensive literature and biological database mining by utilizing DisGeNET2R for extracting gene-disease associations, Romin for integrating and modeling molecular interaction networks, and Rentrez R libraries for accessing and retrieving relevant information from NCBI databases. This integrative bioinformatics approach enabled us to systematically identify diseases sharing associated genes, proteins, or molecular pathways with periodontitis. Our analysis revealed significant molecular overlaps between periodontal disease and several systemic conditions, including cardiovascular diseases, diabetes mellitus, rheumatoid arthritis, and inflammatory bowel diseases. Shared molecular mechanisms implicated in the pathogenesis of these diseases and periodontitis encompassed dysregulation of inflammatory mediators, immune response pathways, oxidative stress pathways, and alterations in the extracellular matrix. Furthermore, network analysis unveiled the key hub genes and proteins (such as TNF, IL6, PTGS2, IL10, NOS3, IL1B, VEGFA, BCL2, STAT3, LEP and TP53) that play pivotal roles in the crosstalk between periodontal disease and its comorbidities, offering potential targets for therapeutic intervention. Insights gained from this integrative approach shed light on the intricate interplay between periodontal health and systemic well-being, emphasizing the importance of interdisciplinary collaboration in developing personalized treatment strategies for patients with periodontal disease and associated comorbidities.
Collapse
Affiliation(s)
- Mireya Martínez-García
- Department of Immunology, National Institute of Cardiology ‘Ignacio Chávez’, Mexico City 14080, Mexico;
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City 14610, Mexico
- Center for Complexity Sciences, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
3
|
Napiórkowska-Baran K, Darwish S, Kaczor J, Treichel P, Szymczak B, Szota M, Koperska K, Bartuzi Z. Oral Diseases as a Manifestation of Inborn Errors of Immunity. J Clin Med 2024; 13:5079. [PMID: 39274292 PMCID: PMC11396297 DOI: 10.3390/jcm13175079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Oral findings such as inflammation, ulcerations, or lesions can indicate serious systemic diseases and should prompt suspicion of acquired chronic conditions or inborn errors of immunity (IEIs). Currently, there are approximately 500 disease entities classified as IEIs, with the list expanding annually. The awareness of the existence of such conditions is of paramount importance, as patients with these disorders frequently necessitate the utilization of enhanced diagnostic techniques. This is exemplified by patients with impaired antibody production, in whom conventional serological methods may prove to be undiagnostic. Patients with IEI may require distinct therapeutic approaches or antimicrobial prophylaxis throughout their lives. An accurate diagnosis and, more importantly, early identification of patients with immune deficiencies is crucial to ensure the quality and longevity of their lives. It is important to note that the failure to establish a proper diagnosis or to provide adequate treatment could also have legal implications for medical professionals. The article presents IEIs, which may manifest in the oral cavity, and their diagnosis alongside therapeutic procedures.
Collapse
Affiliation(s)
- Katarzyna Napiórkowska-Baran
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| | - Samira Darwish
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| | - Justyna Kaczor
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| | - Paweł Treichel
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| | - Bartłomiej Szymczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| | - Maciej Szota
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| | - Kinga Koperska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| |
Collapse
|
4
|
Dhaif YG, Garcia-Sanchez R, Albuquerque R, Lu EMC. The association between vitamin D binding protein levels and periodontal status: A systematic review. J Periodontal Res 2024; 59:421-430. [PMID: 38282328 DOI: 10.1111/jre.13232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND AND OBJECTIVES Vitamin D binding protein (DBP) is biosynthesised in the liver and is predominantly expressed in serum. Its primary role centres on facilitating the systemic transportation of vitamin D and its metabolites, notably 25-hydroxyvitamin D, to specific target tissues where vitamin D exerts its biological functions. Due to the paucity of studies, it is unclear whether there is an association between DBP and periodontal status and thus its potential use as a diagnostic biomarker. Therefore, the aim of the systematic review is to investigate the association between DBP in periodontal disease. METHODS Two independent reviewers (YD and RG) performed a systematic literature search of English publications using several databases including MEDLINE (OVID interface, 1946 onwards), EMBASE (OVID interface, 1974 onwards), and Global Health (OVID interface, 1973 onwards). This search strategy enabled the identification of relevant publications and the development of a comprehensive library of studies. Studies were included based on previously agreed eligibility criteria. Of the eight studies included as part of this systematic review, seven were case-control studies and one was a cross-sectional study. The quality assessment was based on the Newcastle-Ottawa Scale (NOS) for case-control studies and the modified NOS for the cross-sectional study. RESULTS The NOS quality assessment was 'favorable' for 6 included case control studies; and 'fair' for one study. The modified NOS quality assessment for the single cross-sectional study demonstrated a medium risk of bias. The results of the majority of the included studies indicated a statistically significant higher concentration of DBP levels in individuals with periodontitis in comparison to those who were periodontally healthy. This trend held true irrespective of the sampling method employed for the assessment of DBP concentration. CONCLUSION The results summarised in this systematic review indicate a positive association between DBP and periodontitis. Nonetheless, there is a need for longitudinal, prospective trials, to confirm the use of DBP as a potential biomarker for the diagnosis of periodontitis.
Collapse
Affiliation(s)
- Y G Dhaif
- Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - R Garcia-Sanchez
- Department of Periodontology, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Universidad de Murcia, Murcia, Spain
| | - R Albuquerque
- Department of Oral Medicine, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - E M C Lu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
5
|
Menezes CCD, Barbirato DDS, Fogacci MF, Marañón-Vásquez GA, Carneiro JRI, Maia LC, Barros MCMD. Systemic benefits of periodontal therapy in patients with obesity and periodontitis: a systematic review. Braz Oral Res 2024; 38:e031. [PMID: 38597549 PMCID: PMC11376685 DOI: 10.1590/1807-3107bor-2024.vol38.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/09/2023] [Indexed: 04/11/2024] Open
Abstract
This systematic review aimed to answer the focused question: "What are the benefits of subgingival periodontal therapy on blood hematological and biochemical index, biomarkers of inflammation and oxidative stress, quality of life, and periodontal pathogen counts in patients with obesity and periodontitis?". A systematic literature search was performed in six databases: PubMed, Embase, LILACS, Web of Science, Cochrane and SCOPUS and other sources, and a manual search was conducted as well. Inclusion criteria were randomized and non-randomized clinical trials, and before-and-after studies on patients with obesity subjected to periodontal therapy. The results were synthesized qualitatively. Risk of bias within studies was assessed using RoB 2 and ROBINS-I tools. The certainty of evidence was evaluated following the GRADE approach. Three randomized controlled trials and 15 before-and-after studies were included. Randomized controlled trials were considered to have a low risk of bias, as compared to before-and-after studies assessed as having low, serious, and critical risks of bias. Non-surgical periodontal therapy plus azithromycin, chlorhexidine, and cetylpyridinium chloride reduced blood pressure and decreased serum levels of HbA1c, hsCRP, IL-1β, and TNF-α. Salivary resistin level also decreased in patients with obesity and periodontitis after therapy and chlorhexidine mouth rinse. Before-and-after data suggest an improvement in total cholesterol, LDL, triglycerides, insulin resistance, C3, GCF levels of TNF-α, chemerin, vaspin, omentin-1, visfatin, 8-OHdG, and periodontal pathogen counts after therapy.
Collapse
Affiliation(s)
- Cláudia Callegaro de Menezes
- Universidade Federal do Rio de Janeiro - UFRJ, Dental School, Division of Periodontics, Rio de Janeiro, RJ, Brazil
| | - Davi da Silva Barbirato
- Universidade Federal do Rio de Janeiro - UFRJ, Dental School, Division of Periodontics, Rio de Janeiro, RJ, Brazil
| | - Mariana Fampa Fogacci
- Universidade Federal de Pernambuco - UFPE, Department of Clinical and Preventive Dentistry, Recife, PE, Brazil
| | | | - João Régis Ivar Carneiro
- Universidade Federal do Rio de Janeiro - UFRJ, Clementino Fraga Filho Hospital University, Department of Nutrology/Bariatric Surgery, Rio de Janeiro, RJ, Brazil
| | - Lucianne Copple Maia
- Universidade Federal do Rio de Janeiro - UFRJ, Department of Pediatric Dentistry and Orthodontics, Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
6
|
Huang JH, Chen Y, Kang YB, Yao ZJ, Song JH. The potential crosstalk genes and molecular mechanisms between glioblastoma and periodontitis. Sci Rep 2024; 14:5970. [PMID: 38472293 DOI: 10.1038/s41598-024-56577-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 03/08/2024] [Indexed: 03/14/2024] Open
Abstract
Despite clinical and epidemiological evidence suggestive of a link between glioblastoma (GBM) and periodontitis (PD), the shared mechanisms of gene regulation remain elusive. In this study, we identify differentially expressed genes (DEGs) that overlap between the GEO datasets GSE4290 [GBM] and GSE10334 [PD]. Functional enrichment analysis was conducted, and key modules were identified using protein-protein interaction (PPI) network and weighted gene co-expression network analysis (WGCNA). The expression levels of CXCR4, LY96, and C3 were found to be significantly elevated in both the test dataset and external validation dataset, making them key crosstalk genes. Additionally, immune cell landscape analysis revealed elevated expression levels of multiple immune cells in GBM and PD compared to controls, with the key crosstalk genes negatively associated with Macrophages M2. FLI1 was identified as a potential key transcription factor (TF) regulating the three key crosstalk genes, with increased expression in the full dataset. These findings contribute to our understanding of the immune and inflammatory aspects of the comorbidity mechanism between GBM and PD.
Collapse
Affiliation(s)
- Jian-Huang Huang
- Department of Neurosurgery, Affiliated Hospital of Putian University, Putian, Fujian, China.
| | - Yao Chen
- Department of Neurosurgery, Affiliated Hospital of Putian University, Putian, Fujian, China
| | - Yuan-Bao Kang
- Department of Neurosurgery, Affiliated Hospital of Putian University, Putian, Fujian, China
| | - Zheng-Jian Yao
- Department of Neurosurgery, Affiliated Hospital of Putian University, Putian, Fujian, China
| | - Jian-Hua Song
- Department of Neurosurgery, Affiliated Hospital of Putian University, Putian, Fujian, China
| |
Collapse
|
7
|
Wu E, Cheng M, Zhang X, Wu T, Sheng S, Sheng M, Wei L, Zhang L, Shao W. Exploration of potential shared gene signatures between periodontitis and multiple sclerosis. BMC Oral Health 2024; 24:75. [PMID: 38218802 PMCID: PMC10788039 DOI: 10.1186/s12903-023-03846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/31/2023] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Although periodontitis has previously been reported to be linked with multiple sclerosis (MS), but the molecular mechanisms and pathological interactions between the two remain unclear. This study aims to explore potential crosstalk genes and pathways between periodontitis and MS. METHODS Periodontitis and MS data were obtained from the Gene Expression Omnibus (GEO) database. Shared genes were identified by differential expression analysis and weighted gene co-expression network analysis (WGCNA). Then, enrichment analysis for the shared genes was carried out by multiple methods. The least absolute shrinkage and selection operator (LASSO) regression was used to obtain potential shared diagnostic genes. Furthermore, the expression profile of 28 immune cells in periodontitis and MS was examined using single-sample GSEA (ssGSEA). Finally, real-time quantitative fluorescent PCR (qRT-PCR) and immune histochemical staining were employed to validate Hub gene expressions in periodontitis and MS samples. RESULTS FAM46C, SLC7A7, LY96, CFI, DDIT4L, CD14, C5AR1, and IGJ genes were the shared genes between periodontitis, and MS. GO analysis revealed that the shared genes exhibited the greatest enrichment in response to molecules of bacterial origin. LASSO analysis indicated that CFI, DDIT4L, and FAM46C were the most effective shared diagnostic biomarkers for periodontitis and MS, which were further validated by qPCR and immunohistochemical staining. ssGSEA analysis revealed that T and B cells significantly influence the development of MS and periodontitis. CONCLUSIONS FAM46C, SLC7A7, LY96, CFI, DDIT4L, CD14, C5AR1, and IGJ were the most important crosstalk genes between periodontitis, and MS. Further studies found that CFI, DDIT4L, and FAM46C were potential biomarkers in periodontitis and MS.
Collapse
Affiliation(s)
- Erli Wu
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Ming Cheng
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Xinjing Zhang
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Tiangang Wu
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Shuyan Sheng
- First Clinical Medical College (First Affiliated Hospital), Anhui Medical University, Hefei, 230032, China
| | - Mengfei Sheng
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Ling Wei
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Lei Zhang
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
- Department of Periodontology, Anhui Stomatology Hospital affiliated to Anhui Medical University, Hefei, 230032, China.
| | - Wei Shao
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
8
|
Yamaguchi A, Tsuruya Y, Igarashi K, Jin Z, Yamazaki-Takai M, Takai H, Nakayama Y, Ogata Y. Changes in the components of salivary exosomes due to initial periodontal therapy. J Periodontal Implant Sci 2023; 53:347-361. [PMID: 36919005 PMCID: PMC10627739 DOI: 10.5051/jpis.2203700185] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 02/10/2023] Open
Abstract
PURPOSE Exosomes are membrane vesicles that are present in body fluids and contain proteins, lipids, and microRNA (miRNA). Periodontal tissue examinations assess the degree of periodontal tissue destruction according to the probing depth (PD), clinical attachment loss (CAL), bleeding on probing, and X-ray examinations. However, the accurate evaluation of the prognosis of periodontitis is limited. In this study, we collected saliva from patients before and after initial periodontal therapy (IPT) and compared changes in the clinical parameters of periodontitis with changes in the components of salivary exosomes. METHODS Saliva was collected from patients with stage III and IV periodontitis at the first visit and post-IPT. Exosomes were purified from the saliva, and total protein and RNA were extracted. Changes in expression levels of C6, CD81, TSG101, HSP70, and 6 kinds of miRNA were analyzed by western blots and real-time polymerase chain reaction. RESULTS Patients with increased C6 expression after IPT had significantly higher levels of periodontal inflamed surface area (PISA), miR-142, and miR-144 before and after IPT than patients with decreased C6 expression after IPT. Patients with decreased and unchanged CD81 expression after IPT showed significantly higher PD, CAL, and PISA before IPT than after IPT. Patients with decreased and unchanged TSG101 expression after IPT had significantly higher PD before IPT than after IPT. Patients with increased HSP70 expression after IPT had significantly higher PD and PISA before and after IPT than patients with unchanged HSP70 after IPT. The expression levels of miR-142, miR-144, miR-200b, and miR-223 changed with changes in the levels of C6, CD81, TSG101, and HSP70 in the salivary exosomes of periodontitis patients before and after IPT. CONCLUSIONS The expression levels of proteins and miRNAs in salivary exosomes significantly changed after IPT in periodontitis patients, suggesting that the components of exosomes could serve as biomarkers for periodontitis.
Collapse
Affiliation(s)
- Arisa Yamaguchi
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Yuto Tsuruya
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Kazuma Igarashi
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Zhenyu Jin
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Mizuho Yamazaki-Takai
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Hideki Takai
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Yohei Nakayama
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Yorimasa Ogata
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan.
| |
Collapse
|
9
|
Rowe WJ, Lebman DA, Ohman DE. Mechanism of resistance to phagocytosis and pulmonary persistence in mucoid Pseudomonas aeruginosa. Front Cell Infect Microbiol 2023; 13:1125901. [PMID: 37009499 PMCID: PMC10050686 DOI: 10.3389/fcimb.2023.1125901] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionPseudomonas aeruginosa is known for its ability to form biofilms, which are dependent on the production of exopolysaccharides. During chronic colonization of the airway and biofilm formation, P. aeruginosa converts to a mucoid phenotype, indicating production of the exopolysaccharide alginate. The mucoid phenotype promotes resistance to phagocytic killing, but the mechanism has not been established.Methods and ResultsTo better understand the mechanism of phagocytic evasion conferred by alginate production, Human (THP-1) and murine (MH-S) macrophage cell lines were used to determine the effects of alginate production on macrophage binding, signaling and phagocytosis. Phagocytosis assays using mucoid clinical isolate FRD1 and its non-mucoid algD mutant showed that alginate production inhibited opsonic and non-opsonic phagocytosis, but exogenous alginate was not protective. Alginate caused a decrease in binding to murine macrophages. Blocking antibodies to CD11b and CD14 showed that these receptors were important for phagocytosis and were blocked by alginate. Furthermore, alginate production decreased the activation of signaling pathways required for phagocytosis. Mucoid and non-mucoid bacteria induced similar levels of MIP-2 from murine macrophages.DiscussionThis study demonstrated for the first time that alginate on the bacterial surface inhibits receptor-ligand interactions important for phagocytosis. Our data suggest that there is a selection for alginate conversion that blocks the earliest steps in phagocytosis, leading to persistence during chronic pulmonary infections.
Collapse
Affiliation(s)
- Warren J. Rowe
- Department of Microbiology & Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
| | - Deborah A. Lebman
- Department of Microbiology & Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
| | - Dennis E. Ohman
- Department of Microbiology & Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
- Research Service, McGuire Veterans Affairs Medical Center, Richmond, VA, United States
- *Correspondence: Dennis E. Ohman,
| |
Collapse
|
10
|
Chen Y, Liu Y, Li H, Huna R, Tan X, Li N, Zhang Y, Jiao X, Liu M. C5aR antagonist inhibits LPS-induced inflammation in human gingival fibroblasts via NF-κB and MAPK signaling pathways. J Appl Oral Sci 2023; 31:e20220404. [PMID: 36753088 DOI: 10.1590/1678-7757-2022-0404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/21/2022] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE Abnormal complement activation is associated with periodontitis. W54011 is a novel non-peptide C5aR antagonist (C5aRA) that exhibits favorable anti-inflammatory effects in various inflammatory models. However, whether W54011 inhibits periodontitis has not yet been fully elucidated. To address this, we have investigated the probable anti-inflammatory mechanism of W54011 in LPS-treated inflammation in human gingival fibroblasts (HGFs). METHODOLOGY HGFs were isolated from healthy gingival tissue samples using the tissue block method and were identified with immunofluorescence staining. The CCK8 assay and reverse transcription-PCR (RT-PCR) were used to select the optimal induction conditions for Lipopolysaccharide (LPS) and C5aRA (according to supplementary data S1, S2 and S3). The levels of inflammatory cytokines, C5aR, and the activation of NF-κB/MAPK signaling pathways were determined by RT-quantitative PCR (RT-qPCR) and Western blotting. RESULTS Immunofluorescence results showed that vimentin and FSP-1 were positive in HGFs and Keratin was negative in HGFs. Immunofluorescence staining demonstrated that C5aRA inhibited LPS-stimulated nuclear translocation of p-p65. RT-qPCR and Western blotting showed that C5aRA reduced the expression of IL-1β, IL-6, TNF-α, C5aR, p-p65, p-IκBα, p-JNK, p-c-JUN, and TLR4 in LPS-induced HGFs. CONCLUSION These findings suggested that C5aRA attenuated the release of inflammatory cytokines in LPS-induced HGFs by blocking the activation of the NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Yan Chen
- The First Affiliated Hospital of Harbin Medical University, Department of Oral Maxillofacial Surgery, Harbin, Heilongjiang, China.,The Fourth Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Department of Stomatology, Harbin, Heilongjiang, China
| | - Yang Liu
- Heilongjiang Provincial Hospital, Department of Stomatology, Harbin, Heilongjiang, China
| | - Hao Li
- The Fourth Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Department of Stomatology, Harbin, Heilongjiang, China
| | - Risu Huna
- The Second Affiliated Hospital of Harbin Medical University, Oral Implant Center, Harbin, Heilongjiang, China
| | - Xiaohan Tan
- The Second Affiliated Hospital of Harbin Medical University, Department of Prosthodontics, Harbin, Heilongjiang, China
| | - Ning Li
- The Second Affiliated Hospital of Harbin Medical University, Department of Cardiology, Harbin, Heilongjiang, China
| | - Yiying Zhang
- The Second Affiliated Hospital of Harbin Medical University, Oral Implant Center, Harbin, Heilongjiang, China
| | - Xiaohui Jiao
- The First Affiliated Hospital of Harbin Medical University, Department of Oral Maxillofacial Surgery, Harbin, Heilongjiang, China
| | - Mingyue Liu
- The Second Affiliated Hospital of Harbin Medical University, Department of Prosthodontics, Harbin, Heilongjiang, China
| |
Collapse
|
11
|
Bhalla SP, Shaju AM, Figueredo CMDS, Miranda LA. Increased Levels of C5a in Gingival Crevicular Fluid and Saliva of Patients with Periodontal Disease. Pathogens 2022; 11:pathogens11090983. [PMID: 36145415 PMCID: PMC9503606 DOI: 10.3390/pathogens11090983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
C5a is a powerful complement effector molecule that is considered to be an important proinflammatory mediator in several systemic chronic inflammatory diseases. However, its levels in periodontal diseases are yet to be assessed. We aimed to analyse the secretion of C5a in gingival crevicular fluid (GCF) and saliva of patients with periodontal disease. Twenty-eight patients diagnosed with stage 3–4 periodontitis and 16 periodontally healthy subjects participated in this study. GCF was collected from sites with the deepest probing depth of each patient, and volume was measured using a Periotron 8000®. One mL of unstimulated saliva was also collected. Samples were analysed using a commercially available ELISA kit. The data were analysed using the Mann–Whitney U test, Pearson’s bivariate testing, and receiver operating characteristic curve. C5a was present in GCF from patients with periodontitis (1.06 ± 0.25 ng/mL) whilst it was undetected in controls. Saliva concentration was also significantly higher in periodontitis (1.82 ± 2.31 ng/mL) than controls (0.60 ± 0.72 ng/mL, p = 0.006). C5a levels were more pronounced in periodontitis in both oral fluids assessed by the present pilot study. These results suggest that the more pronounced levels of C5a in oral fluids from periodontitis patients indicate a potential role of this molecule in this disease pathogenesis, deserving to be better explored in subsequent studies.
Collapse
Affiliation(s)
| | - Ann Maria Shaju
- Discipline of Periodontics, UWA Dental School, Nedlands, WA 6009, Australia
| | - Carlos Marcelo da Silva Figueredo
- School of Medicine and Dentistry, Griffith University, Nathan, QLD 4111, Australia
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 141 04 Huddinge, Sweden
| | | |
Collapse
|
12
|
Muacevic A, Adler JR, Kaur G. The Plausible Relationship Between Periodontitis and Glaucoma. Cureus 2022; 14:e27440. [PMID: 36051741 PMCID: PMC9420456 DOI: 10.7759/cureus.27440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2022] [Indexed: 01/31/2023] Open
Abstract
Periodontitis has been associated with several medical conditions. For some of these medical conditions, periodontitis has been hypothesized to share important pathogenic mechanisms with other systemic conditions affecting the body. Recently, advances in technology have led to the identification of novel inflammatory mediators implicated in some chronic medical conditions associated with periodontitis. The potential identification of these systemic inflammatory mediators in periodontitis would offer additional support to the potential periodontal-systemic disease association. In recent years, the term oral foci of infection has attained an upturn in terms of systemic morbidities, while finite scrutinization indicates the implication of chronic oral inflammation in the pathogenesis of eye diseases. Initially, there is a singularity for the mechanistic understanding of the reported link between periodontal diseases and ocular comorbidities. There is a limited number of scientific evidence in the literature that suggests a relationship between glaucoma and periodontitis, and they share a common pathway/link based on inflammatory markers. Based on a molecular biological technique, it was believed by researchers and clinicians that eye diseases were a result of oral infections. Furthermore, this review will try to focus on the concept of oral dysbiosis in the progression of inflammatory eye diseases such as diabetic retinopathy, scleritis, uveitis, glaucoma, and age-related macular degeneration (AMD).
Collapse
|
13
|
Ebersole JL, Kirakodu S, Nguyen L, Gonzalez OA. Gingival Transcriptome of Innate Antimicrobial Factors and the Oral Microbiome With Aging and Periodontitis. FRONTIERS IN ORAL HEALTH 2022; 3:817249. [PMID: 35330821 PMCID: PMC8940521 DOI: 10.3389/froh.2022.817249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/04/2022] [Indexed: 12/30/2022] Open
Abstract
The epithelial barrier at mucosal sites comprises an important mechanical protective feature of innate immunity, and is intimately involved in communicating signals of infection/tissue damage to inflammatory and immune cells in these local environments. A wide array of antimicrobial factors (AMF) exist at mucosal sites and in secretions that contribute to this innate immunity. A non-human primate model of ligature-induced periodontitis was used to explore characteristics of the antimicrobial factor transcriptome (n = 114 genes) of gingival biopsies in health, initiation and progression of periodontal lesions, and in samples with clinical resolution. Age effects and relationship of AMF to the dominant members of the oral microbiome were also evaluated. AMF could be stratified into 4 groups with high (n = 22), intermediate (n = 29), low (n = 18) and very low (n = 45) expression in healthy adult tissues. A subset of AMF were altered in healthy young, adolescent and aged samples compared with adults (e.g., APP, CCL28, DEFB113, DEFB126, FLG2, PRH1) and were affected across multiple age groups. With disease, a greater number of the AMF genes were affected in the adult and aged samples with skewing toward decreased expression, for example WDC12, PGLYRP3, FLG2, DEFB128, and DEF4A/B, with multiple age groups. Few of the AMF genes showed a >2-fold increase with disease in any age group. Selected AMF exhibited significant positive correlations across the array of AMF that varied in health and disease. In contrast, a rather limited number of the AMF significantly correlated with members of the microbiome; most prominent in healthy samples. These correlated microbes were different in younger and older samples and differed in health, disease and resolution samples. The findings supported effects of age on the expression of AMF genes in healthy gingival tissues showing a relationship to members of the oral microbiome. Furthermore, a dynamic expression of AMF genes was related to the disease process and showed similarities across the age groups, except for low/very low expressed genes that were unaffected in young samples. Targeted assessment of AMF members from this large array may provide insight into differences in disease risk and biomolecules that provide some discernment of early transition to disease.
Collapse
Affiliation(s)
- Jeffrey L. Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV, United States
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - Sreenatha Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - Linh Nguyen
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Octavio A. Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
- Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
14
|
Yadalam PK, Kalaivani V, Fageeh HI, Ibraheem W, Al-Ahmari MM, Khan SS, Ahmed ZH, Abdulkarim HH, Baeshen HA, Balaji TM, Bhandi S, Raj AT, Patil S. Future Drug Targets in Periodontal Personalised Medicine-A Narrative Review. J Pers Med 2022; 12:371. [PMID: 35330371 PMCID: PMC8955099 DOI: 10.3390/jpm12030371] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 02/08/2023] Open
Abstract
Periodontal disease is an infection-driven inflammatory disease characterized by the destruction of tooth-supporting tissues. The establishment of chronic inflammation will result in progressive destruction of bone and soft tissue changes. Severe periodontitis can lead to tooth loss. The disease has complex pathogenesis with an interplay between genetic, environmental, and host factors and pathogens. Effective management consists of plaque control and non-surgical interventions, along with adjuvant strategies to control inflammation and disrupt the pathogenic subgingival biofilms. Recent studies have examined novel approaches for managing periodontal diseases such as modulating microbial signaling mechanisms, tissue engineering, and molecular targeting of host inflammatory substances. Mounting evidence suggests the need to integrate omics-based approaches with traditional therapy to address the disease. This article discusses the various evolving and future drug targets, including proteomics, gene therapeutics, vaccines, and nanotechnology in personalized periodontal medicine for the effective management of periodontal diseases.
Collapse
Affiliation(s)
- Pradeep Kumar Yadalam
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602117, India;
| | - V. Kalaivani
- Department of Periodontics, SRM Kattankulathur Dental College & Hospital, SRM Nagar, Chennai 603203, India;
| | - Hammam Ibrahim Fageeh
- Department of Preventive Dental Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (H.I.F.); (W.I.)
| | - Wael Ibraheem
- Department of Preventive Dental Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (H.I.F.); (W.I.)
| | - Manea Musa. Al-Ahmari
- Department of Periodontics and Community Medical Science, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia;
| | - Samar Saeed Khan
- Department of Maxillofacial Surgery & Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia;
| | - Zeeshan Heera Ahmed
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Hesham H. Abdulkarim
- Advanced Periodontal and Dental Implant Care, Missouri School of Dentistry and Oral Health, A. T. Still University, St. Louis, MO 63104, USA;
| | - Hosam Ali Baeshen
- Department of Orthodontics, College of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | | | - Shilpa Bhandi
- Department of Restorative Dental Sciences, Division of Operative Dentistry, College of dentistry, Jazan University, Jazan 45142, Saudi Arabia;
| | - A. Thirumal Raj
- Department of Oral Pathology and Microbiology, Sri Venkateswara Dental College and Hospital, Chennai 600130, India;
| | - Shankargouda Patil
- Department of Maxillofacial Surgery & Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia;
| |
Collapse
|
15
|
Hao X, Li Z, Li W, Katz J, Michalek SM, Barnum SR, Pozzo-Miller L, Saito T, Saido TC, Wang Q, Roberson ED, Zhang P. Periodontal Infection Aggravates C1q-Mediated Microglial Activation and Synapse Pruning in Alzheimer's Mice. Front Immunol 2022; 13:816640. [PMID: 35178049 PMCID: PMC8845011 DOI: 10.3389/fimmu.2022.816640] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/11/2022] [Indexed: 12/24/2022] Open
Abstract
Periodontitis is a dysbiotic infectious disease that leads to the destruction of tooth supporting tissues. There is increasing evidence that periodontitis may affect the development and severity of Alzheimer's disease (AD). However, the mechanism(s) by which periodontal infection impacts the neurodegenerative process in AD remains unclear. In the present study, using an amyloid precursor protein (APP) knock-in (App KI) AD mouse model, we showed that oral infection with Porphyromonas gingivalis (Pg), a keystone pathogen of periodontitis, worsened behavioral and cognitive impairment and accelerated amyloid beta (Aβ) accumulation in AD mice, thus unquestionably and significantly aggravating AD. We also provide new evidence that the neuroinflammatory status established by AD, is greatly complicated by periodontal infection and the consequential entry of Pg into the brain via Aβ-primed microglial activation, and that Pg-induced brain overactivation of complement C1q is critical for periodontitis-associated acceleration of AD progression by amplifying microglial activation, neuroinflammation, and tagging synapses for microglial engulfment. Our study renders support for the importance of periodontal infection in the innate immune regulation of AD and the possibility of targeting microbial etiology and periodontal treatment to ameliorate the clinical manifestation of AD and lower AD prevalence.
Collapse
Affiliation(s)
- Xiaoxiao Hao
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zhaofei Li
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Wei Li
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jannet Katz
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Suzanne M. Michalek
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Lucas Pozzo-Miller
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Qin Wang
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Erik D. Roberson
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer’s Disease Center, Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ping Zhang
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
16
|
Sato K, Naya M, Hatano Y, Kasahata N, Kondo Y, Sato M, Takebe K, Naito M, Sato C. Biofilm Spreading by the Adhesin-Dependent Gliding Motility of Flavobacterium johnsoniae: 2. Role of Filamentous Extracellular Network and Cell-to-Cell Connections at the Biofilm Surface. Int J Mol Sci 2021; 22:ijms22136911. [PMID: 34199128 PMCID: PMC8269157 DOI: 10.3390/ijms22136911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022] Open
Abstract
Flavobacterium johnsoniae forms a thin spreading colony on nutrient-poor agar using gliding motility. As reported in the first paper, WT cells in the colony were sparsely embedded in self-produced extracellular polymeric matrix (EPM), while sprB cells were densely packed in immature biofilm with less matrix. The colony surface is critical for antibiotic resistance and cell survival. We have now developed the Grid Stamp-Peel method whereby the colony surface is attached to a TEM grid for negative-staining microscopy. The images showed that the top of the spreading convex WT colonies was covered by EPM with few interspersed cells. Cells exposed near the colony edge made head-to-tail and/or side-to-side contact and sometimes connected via thin filaments. Nonspreading sprB and gldG and gldK colonies had a more uniform upper surface covered by different EPMs including vesicles and filaments. The EPM of sprB, gldG, and WT colonies contained filaments ~2 nm and ~5 nm in diameter; gldK colonies did not include the latter. Every cell near the edge of WT colonies had one or two dark spots, while cells inside WT colonies and cells in SprB-, GldG-, or GldK-deficient colonies did not. Together, our results suggest that the colony surface structure depends on the capability to expand biofilm.
Collapse
Affiliation(s)
- Keiko Sato
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan;
- Correspondence: (K.S.); (C.S.); Tel.: +81-95-819-7649 (K.S.); +81-29-861-5562 (C.S.)
| | - Masami Naya
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan; (M.N.); (Y.H.); (N.K.); (M.S.)
| | - Yuri Hatano
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan; (M.N.); (Y.H.); (N.K.); (M.S.)
| | - Naoki Kasahata
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan; (M.N.); (Y.H.); (N.K.); (M.S.)
| | - Yoshio Kondo
- Department of Pediatric Dentistry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan;
| | - Mari Sato
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan; (M.N.); (Y.H.); (N.K.); (M.S.)
| | - Katsuki Takebe
- Oral and Maxillofacial Surgery II, Graduate School of Dentistry, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Mariko Naito
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan;
| | - Chikara Sato
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan; (M.N.); (Y.H.); (N.K.); (M.S.)
- Correspondence: (K.S.); (C.S.); Tel.: +81-95-819-7649 (K.S.); +81-29-861-5562 (C.S.)
| |
Collapse
|
17
|
Luntzer K, Lackner I, Weber B, Mödinger Y, Ignatius A, Gebhard F, Mihaljevic SY, Haffner-Luntzer M, Kalbitz M. Increased Presence of Complement Factors and Mast Cells in Alveolar Bone and Tooth Resorption. Int J Mol Sci 2021; 22:ijms22052759. [PMID: 33803323 PMCID: PMC7967164 DOI: 10.3390/ijms22052759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/24/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Periodontitis is the inflammatory destruction of the tooth-surrounding and -supporting tissue, resulting at worst in tooth loss. Another locally aggressive disease of the oral cavity is tooth resorption (TR). This is associated with the destruction of the dental mineralized tissue. However, the underlying pathomechanisms remain unknown. The complement system, as well as mast cells (MCs), are known to be involved in osteoclastogenesis and bone loss. The complement factors C3 and C5 were previously identified as key players in periodontal disease. Therefore, we hypothesize that complement factors and MCs might play a role in alveolar bone and tooth resorption. To investigate this, we used the cat as a model because of the naturally occurring high prevalence of both these disorders in this species. Teeth, gingiva samples and serum were collected from domestic cats, which had an appointment for dental treatment under anesthesia, as well as from healthy cats. Histological analyses, immunohistochemical staining and the CH-50 and AH-50 assays revealed increased numbers of osteoclasts and MCs, as well as complement activity in cats with TR. Calcifications score in the gingiva was highest in animals that suffer from TR. This indicates that MCs and the complement system are involved in the destruction of the mineralized tissue in this condition.
Collapse
Affiliation(s)
- Kathrin Luntzer
- Center for Trauma Research Ulm (ZTF), University of Ulm, 89081 Ulm, Germany; (K.L.); (I.L.); (B.W.); (Y.M.); (A.I.); (F.G.); (M.H.-L.)
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, University Medical Center, 89081 Ulm, Germany
- Small Animal Clinic Ravensburg Evidensia GmbH, Eywiesenstraße 4, 88212 Ravensburg, Germany
| | - Ina Lackner
- Center for Trauma Research Ulm (ZTF), University of Ulm, 89081 Ulm, Germany; (K.L.); (I.L.); (B.W.); (Y.M.); (A.I.); (F.G.); (M.H.-L.)
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, University Medical Center, 89081 Ulm, Germany
| | - Birte Weber
- Center for Trauma Research Ulm (ZTF), University of Ulm, 89081 Ulm, Germany; (K.L.); (I.L.); (B.W.); (Y.M.); (A.I.); (F.G.); (M.H.-L.)
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, University Medical Center, 89081 Ulm, Germany
| | - Yvonne Mödinger
- Center for Trauma Research Ulm (ZTF), University of Ulm, 89081 Ulm, Germany; (K.L.); (I.L.); (B.W.); (Y.M.); (A.I.); (F.G.); (M.H.-L.)
- Institute of Orthopedic Research and Biomechanics, University of Ulm, 89081 Ulm, Germany
| | - Anita Ignatius
- Center for Trauma Research Ulm (ZTF), University of Ulm, 89081 Ulm, Germany; (K.L.); (I.L.); (B.W.); (Y.M.); (A.I.); (F.G.); (M.H.-L.)
- Institute of Orthopedic Research and Biomechanics, University of Ulm, 89081 Ulm, Germany
| | - Florian Gebhard
- Center for Trauma Research Ulm (ZTF), University of Ulm, 89081 Ulm, Germany; (K.L.); (I.L.); (B.W.); (Y.M.); (A.I.); (F.G.); (M.H.-L.)
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, University Medical Center, 89081 Ulm, Germany
| | | | - Melanie Haffner-Luntzer
- Center for Trauma Research Ulm (ZTF), University of Ulm, 89081 Ulm, Germany; (K.L.); (I.L.); (B.W.); (Y.M.); (A.I.); (F.G.); (M.H.-L.)
- Institute of Orthopedic Research and Biomechanics, University of Ulm, 89081 Ulm, Germany
| | - Miriam Kalbitz
- Center for Trauma Research Ulm (ZTF), University of Ulm, 89081 Ulm, Germany; (K.L.); (I.L.); (B.W.); (Y.M.); (A.I.); (F.G.); (M.H.-L.)
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, University Medical Center, 89081 Ulm, Germany
- Correspondence:
| |
Collapse
|
18
|
Hočevar K, Vizovišek M, Wong A, Kozieł J, Fonović M, Potempa B, Lamont RJ, Potempa J, Turk B. Proteolysis of Gingival Keratinocyte Cell Surface Proteins by Gingipains Secreted From Porphyromonas gingivalis - Proteomic Insights Into Mechanisms Behind Tissue Damage in the Diseased Gingiva. Front Microbiol 2020; 11:722. [PMID: 32411104 PMCID: PMC7198712 DOI: 10.3389/fmicb.2020.00722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/27/2020] [Indexed: 12/16/2022] Open
Abstract
Porphyromonas gingivalis, the main etiologic agent of periodontitis, secretes cysteine proteases named gingipains. HRgpA and RgpB gingipains have Arg-specificity, while Kgp gingipain is Lys-specific. Together they can cleave an array of proteins and importantly contribute to the development of periodontitis. In this study we focused on gingipain-exerted proteolysis at the cell surface of human gingival epithelial cells [telomerase immortalized gingival keratinocytes (TIGK)] in order to better understand the molecular mechanisms behind tissue destruction in periodontitis. Using mass spectrometry, we investigated the whole sheddome/degradome of TIGK cell surface proteins by P. gingivalis strains differing in gingipain expression and by purified gingipains, and performed the first global proteomic analysis of gignpain proteolysis at the membrane. Incubation of TIGK cells with P. gingivalis resulted in massive degradation of proteins already at low multiplicity of infection, whereas incubating cells with purified gingipains resulted in more discrete patterns, indicative of a combination of complete degradation and shedding of membrane proteins. Most of the identified gingipain substrates were molecules involved in adhesion, suggesting that gingipains may cause tissue damage through cleavage of cell contacts, resulting in cell detachment and rounding, and consequently leading to anoikis. However, HRgpA and RgpB gingipains differ in their mechanism of action. While RgpB rapidly degraded the proteins, HRgpA exhibited a much slower proteolysis indicative of ectodomain shedding, as demonstrated for the transferrin receptor protein 1 (TFRC). These results reveal a molecular underpinning to P. gingivalis-induced tissue destruction and enhance our knowledge of the role of P. gingivalis proteases in the pathobiology of periodontitis. Proteomics data are available via ProteomeXchange with identifier PXD015679.
Collapse
Affiliation(s)
- Katarina Hočevar
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
- International Postgraduate School Jožef Stefan, Ljubljana, Slovenia
| | - Matej Vizovišek
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Alicia Wong
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Joanna Kozieł
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Marko Fonović
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Barbara Potempa
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Boris Turk
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
19
|
Kim HY, Lim Y, An S, Choi B. Characterization and immunostimulatory activity of extracellular vesicles from
Filifactor alocis. Mol Oral Microbiol 2019; 35:1-9. [DOI: 10.1111/omi.12272] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/14/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Hyun Young Kim
- Department of Oral Microbiology and Immunology School of Dentistry Seoul National University Seoul Republic of Korea
| | - Younggap Lim
- Department of Oral Microbiology and Immunology School of Dentistry Seoul National University Seoul Republic of Korea
| | - Sun‐Jin An
- Department of Oral Microbiology and Immunology School of Dentistry Seoul National University Seoul Republic of Korea
| | - Bong‐Kyu Choi
- Department of Oral Microbiology and Immunology School of Dentistry Seoul National University Seoul Republic of Korea
| |
Collapse
|
20
|
Alvarez C, Monasterio G, Cavalla F, Córdova LA, Hernández M, Heymann D, Garlet GP, Sorsa T, Pärnänen P, Lee HM, Golub LM, Vernal R, Kantarci A. Osteoimmunology of Oral and Maxillofacial Diseases: Translational Applications Based on Biological Mechanisms. Front Immunol 2019; 10:1664. [PMID: 31379856 PMCID: PMC6657671 DOI: 10.3389/fimmu.2019.01664] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 07/03/2019] [Indexed: 12/23/2022] Open
Abstract
The maxillofacial skeleton is highly dynamic and requires a constant equilibrium between the bone resorption and bone formation. The field of osteoimmunology explores the interactions between bone metabolism and the immune response, providing a context to study the complex cellular and molecular networks involved in oro-maxillofacial osteolytic diseases. In this review, we present a framework for understanding the potential mechanisms underlying the immuno-pathobiology in etiologically-diverse diseases that affect the oral and maxillofacial region and share bone destruction as their common clinical outcome. These otherwise different pathologies share similar inflammatory pathways mediated by central cellular players, such as macrophages, T and B cells, that promote the differentiation and activation of osteoclasts, ineffective or insufficient bone apposition by osteoblasts, and the continuous production of osteoclastogenic signals by immune and local stromal cells. We also present the potential translational applications of this knowledge based on the biological mechanisms involved in the inflammation-induced bone destruction. Such applications can be the development of immune-based therapies that promote bone healing/regeneration, the identification of host-derived inflammatory/collagenolytic biomarkers as diagnostics tools, the assessment of links between oral and systemic diseases; and the characterization of genetic polymorphisms in immune or bone-related genes that will help diagnosis of susceptible individuals.
Collapse
Affiliation(s)
- Carla Alvarez
- Forsyth Institute, Cambridge, MA, United States
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Gustavo Monasterio
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Franco Cavalla
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Luis A. Córdova
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, San Jose's Hospital and Clínica Las Condes, Universidad de Chile, Santiago, Chile
| | - Marcela Hernández
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Dominique Heymann
- INSERM, UMR 1232, LabCT, CRCINA, Institut de Cancérologie de l'Ouest, Université de Nantes, Université d'Angers, Saint-Herblain, France
| | - Gustavo P. Garlet
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
- Department of Oral Diseases, Karolinska Institutet, Stockholm, Sweden
| | - Pirjo Pärnänen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Hsi-Ming Lee
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Lorne M. Golub
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Dentistry Unit, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | | |
Collapse
|
21
|
Rajendran M, Looney S, Singh N, Elashiry M, Meghil MM, El-Awady AR, Tawfik O, Susin C, Arce RM, Cutler CW. Systemic Antibiotic Therapy Reduces Circulating Inflammatory Dendritic Cells and Treg-Th17 Plasticity in Periodontitis. THE JOURNAL OF IMMUNOLOGY 2019; 202:2690-2699. [PMID: 30944162 DOI: 10.4049/jimmunol.1900046] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/05/2019] [Indexed: 01/08/2023]
Abstract
Periodontitis (PD) is a common dysbiotic inflammatory disease that leads to local bone deterioration and tooth loss. PD patients experience low-grade bacteremias with oral microbes implicated in the risk of heart disease, cancer, and kidney failure. Although Th17 effectors are vital to fighting infection, functional imbalance of Th17 effectors and regulatory T cells (Tregs) promote inflammatory diseases. In this study, we investigated, in a small pilot randomized clinical trial, whether expansion of inflammatory blood myeloid dendritic cells (DCs) and conversion of Tregs to Th17 cells could be modulated with antibiotics (AB) as part of initial therapy in PD patients. PD patients were randomly assigned to either 7 d of peroral metronidazole/amoxicillin AB treatment or no AB, along with standard care debridement and chlorhexidine mouthwash. 16s ribosomal RNA analysis of keystone pathogen Porphyromonas gingivalis and its consortium members Fusobacterium nucleatum and Streptococcus gordonii confirmed the presence of all three species in the reservoirs (subgingival pockets and blood DCs) of PD patients before treatment. Of the three species, P. gingivalis was reduced in both reservoirs 4-6 wk after therapy. Further, the frequency of CD1C+CCR6+ myeloid DCs and IL-1R1 expression on IL-17A+FOXP3+CD4+ T cells in PD patients were reduced to healthy control levels. The latter led to decreased IL-1β-stimulated Treg plasticity in PD patients and improvement in clinical measures of PD. Overall, we identified an important, albeit short-term, beneficial role of AB therapy in reducing inflammatory DCs and Treg-Th17 plasticity in humans with PD.
Collapse
Affiliation(s)
- Mythilypriya Rajendran
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, GA 30912
| | - Stephen Looney
- Department of Biostatistics and Epidemiology, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Nagendra Singh
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912.,Cancer Research Center, Augusta University, Augusta, GA 30912
| | - Mahmoud Elashiry
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, GA 30912
| | - Mohamed M Meghil
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, GA 30912
| | - Ahmed R El-Awady
- Department of Research, Immunology Program, Children's Cancer Hospital, Cairo 57357, Egypt
| | - Omnia Tawfik
- Department of Oral Medicine and Periodontology, Cairo University, Cairo 12613, Egypt; and
| | - Cristiano Susin
- Department of Periodontology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Roger M Arce
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, GA 30912
| | - Christopher W Cutler
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, GA 30912;
| |
Collapse
|
22
|
Moghadam SA, Bazi A, Miri-Moghaddam M, Miri-Moghaddam E. Mannose binding lectin-2 gene functional polymorphisms in chronic periodontitis patients; a report from Iran. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.05.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
23
|
Kurgan S, Kantarci A. Molecular basis for immunohistochemical and inflammatory changes during progression of gingivitis to periodontitis. Periodontol 2000 2017; 76:51-67. [DOI: 10.1111/prd.12146] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2016] [Indexed: 12/22/2022]
|
24
|
Peacock ME, Arce RM, Cutler CW. Periodontal and other oral manifestations of immunodeficiency diseases. Oral Dis 2017; 23:866-888. [PMID: 27630012 PMCID: PMC5352551 DOI: 10.1111/odi.12584] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/31/2016] [Accepted: 09/08/2016] [Indexed: 12/14/2022]
Abstract
The list of immunodeficiency diseases grows each year as novel disorders are discovered, classified, and sometimes reclassified due to our ever-increasing knowledge of immune system function. Although the number of patients with secondary immunodeficiencies (SIDs) greatly exceeds those with primary immunodeficiencies (PIDs), the prevalence of both appears to be on the rise probably because of scientific breakthroughs that facilitate earlier and more accurate diagnosis. Primary immunodeficiencies in adults are not as rare as once thought. Globally, the main causes of secondary immunodeficiency are HIV infection and nutritional insufficiencies. Persons with acquired immune disorders such as AIDS caused by the human immunodeficiency virus (HIV) are now living long and fulfilling lives as a result of highly active antiretroviral therapy (HAART). Irrespective of whether the patient's immune-deficient state is a consequence of a genetic defect or is secondary in nature, dental and medical practitioners must be aware of the constant potential for infections and/or expressions of autoimmunity in these individuals. The purpose of this review was to study the most common conditions resulting from primary and secondary immunodeficiency states, how they are classified, and the detrimental manifestations of these disorders on the periodontal and oral tissues.
Collapse
Affiliation(s)
- Mark E Peacock
- Associate Professor, Departments of Periodontics, Oral Biology
| | - Roger M. Arce
- Assistant Professor, Departments of Periodontics, Oral Biology
| | - Christopher W Cutler
- Professor, Departments of Periodontics, Oral Biology; Chair, Department of Periodontics, Associate Dean for Research, The Dental College of Georgia at Augusta University
| |
Collapse
|
25
|
Hajishengallis G, Lambris JD. More than complementing Tolls: complement-Toll-like receptor synergy and crosstalk in innate immunity and inflammation. Immunol Rev 2017; 274:233-244. [PMID: 27782328 DOI: 10.1111/imr.12467] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Complement and Toll-like receptors (TLRs) play key roles in the host immune response and are swiftly activated by infection or other types of immunological stress. This review focuses on the capacity of complement and TLRs to engage in signaling crosstalk, ostensibly to coordinate immune and inflammatory responses through synergistic or antagonistic (regulatory) interactions. However, overactivation or dysregulation of either system may lead-often synergistically-to exaggerated inflammation and host tissue injury. Intriguingly, moreover, certain pathogens can manipulate complement-TLR crosstalk pathways in ways that undermine host immunity and favor their persistence. In the setting of polymicrobial inflammatory disease, subversion of complement-TLR crosstalk by keystone pathogens can promote dysbiosis. Knowledge of the molecular mechanisms underlying complement-TLR crosstalk pathways can, therefore, be used productively for tailored therapeutic approaches, such as, to enhance host immunity, mitigate destructive inflammation, or counteract microbial subversion of the host response.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA.
| | - John D Lambris
- Perelman School of Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
26
|
Ebersole JL, Dawson D, Emecen-Huja P, Nagarajan R, Howard K, Grady ME, Thompson K, Peyyala R, Al-Attar A, Lethbridge K, Kirakodu S, Gonzalez OA. The periodontal war: microbes and immunity. Periodontol 2000 2017; 75:52-115. [DOI: 10.1111/prd.12222] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Moriguchi K, Hasegawa Y, Higuchi N, Murakami Y, Yoshimura F, Nakata K, Honda M. Energy dispersive spectroscopy-scanning transmission electron microscope observations of free radical production in human polymorphonuclear leukocytes phagocytosing non-opsonized Tannerella forsythia. Microsc Res Tech 2017; 80:555-562. [PMID: 28439996 DOI: 10.1002/jemt.22819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/07/2016] [Accepted: 11/28/2016] [Indexed: 11/08/2022]
Abstract
We investigated the association between human polymorphonuclear leukocytes (PMNs) and non-opsonized Tannerella forsythia ATCC 43037 displaying a serum-resistant surface layer (S-layer). When PMNs were mixed with T. forsythia in suspension, the cells phagocytosed T. forsythia cells. Nitro blue tetrazolium (NBT) reduction, indicative of O2- production, was observed by light microscopy; cerium (Ce) perhydroxide deposition, indicative of H2 O2 production, was observed by electron microscopy. We examined the relationship between high-molecular-weight proteins of the S-layer and Ce reaction (for T. forsythia phagocytosis) using electron microscopic immunolabeling. Immunogold particles were localized within the PMNs and on cell surfaces, labelling at the same Ce-reacted sites where the S-layer was present. We then used energy dispersive spectroscopy (EDS)-scanning transmission electron microscope (STEM) to perform Ce and nitrogen (N) (for S-layer immunocytochemistry) elemental analysis on the phagocytosed cells. That is, the elemental mapping and analysis of N by EDS appeared to reflect the presence of the same moieties detected by the 3,3'-diaminobenzidine-tetrahydrochloride (DAB) reaction with horseradish peroxidase (HRP)-conjugated secondary antibodies, instead of immunogold labeling. We focused on the use of EDS-STEM to visualize the presence of N resulting from the DAB reaction. In a parallel set of experiments, we used EDS-STEM to perform Ce and gold (Au; from immunogold labeling of the S-layer) elemental analysis on the same phagocytosing cells.
Collapse
Affiliation(s)
- Keiichi Moriguchi
- Department of Oral Anatomy, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi, 464-8650, Japan
| | - Yoshiaki Hasegawa
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi, 464-8650, Japan
| | - Naoya Higuchi
- Department of Endodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi, 464-8650, Japan
| | - Yukitaka Murakami
- Department of Oral Microbiology, Division of Oral Infections and Health Science, Asahi University School of Dentistry, 1851 Hozumi Mizuho, Gifu, 501-0296, Japan
| | - Fuminobu Yoshimura
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi, 464-8650, Japan
| | - Kazuhiko Nakata
- Department of Endodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi, 464-8650, Japan
| | - Masaki Honda
- Department of Oral Anatomy, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi, 464-8650, Japan
| |
Collapse
|
28
|
Koneru L, Ksiazek M, Waligorska I, Straczek A, Lukasik M, Madej M, Thøgersen IB, Enghild JJ, Potempa J. Mirolysin, a LysargiNase from Tannerella forsythia, proteolytically inactivates the human cathelicidin, LL-37. Biol Chem 2017; 398:395-409. [PMID: 27997347 DOI: 10.1515/hsz-2016-0267] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 10/13/2016] [Indexed: 12/14/2022]
Abstract
Tannerella forsythia is a periodontal pathogen expressing six secretory proteolytic enzymes with a unique multidomain structure referred to as KLIKK proteases. Two of these proteases, karilysin and mirolysin, were previously shown to protect the bacterium against complement-mediated bactericidal activity. The latter metalloprotease, however, was not characterized at the protein level. Therefore, we purified recombinant mirolysin and subjected it to detailed biochemical characterization. Mirolysin was obtained as a 66 kDa zymogen, which autoproteolytically processed itself into a 31 kDa active form via truncations at both the N- and C-termini. Further autodegradation was prevented by calcium. Substrate specificity was determined by the S1' subsite of the substrate-binding pocket, which shows strong preference for Arg and Lys at the carbonyl side of a scissile peptide bond (P1' residue). The protease cleaved an array of host proteins, including human fibronectin, fibrinogen, complement proteins C3, C4, and C5, and the antimicrobial peptide, LL-37. Degradation of LL-37 abolished not only the bactericidal activity of the peptide, but also its ability to bind lipopolysaccharide (LPS), thus quenching the endotoxin proinflammatory activity. Taken together, these results indicate that, through cleavage of LL-37 and complement proteins, mirolysin might be involved in evasion of the host immune response.
Collapse
|
29
|
Zenobia C, Hajishengallis G. Basic biology and role of interleukin-17 in immunity and inflammation. Periodontol 2000 2017; 69:142-59. [PMID: 26252407 DOI: 10.1111/prd.12083] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2014] [Indexed: 02/06/2023]
Abstract
Interleukin-17 (also known as interleukin-17A) is a key cytokine that links T-cell activation to neutrophil mobilization and activation. As such, interleukin-17 can mediate protective innate immunity to pathogens or contribute to the pathogenesis of inflammatory diseases, such as psoriasis and rheumatoid arthritis. This review summarizes the basic biology of interleukin-17 and discusses its emerging role in periodontal disease. The current burden of evidence from human and animal model studies suggests that the net effect of interleukin-17 signaling promotes disease development. In addition to promoting neutrophilic inflammation, interleukin-17 has potent pro-osteoclastogenic effects that are likely to contribute to the pathogenesis of periodontitis, rheumatoid arthritis and other diseases involving bone immunopathology. Systemic treatments with anti-interleukin-17 biologics have shown promising results in clinical trials for psoriasis and rheumatoid arthritis; however, their impact on the highly prevalent periodontal disease has not been investigated or reported. Future clinical trials, preferably using locally administered interleukin-17 blockers, are required to implicate conclusivelyinterleukin-17 in periodontitis and, more importantly, to establish an effective adjunctive treatment for this oral inflammatory disease.
Collapse
|
30
|
Meyle J, Chapple I. Molecular aspects of the pathogenesis of periodontitis. Periodontol 2000 2017; 69:7-17. [PMID: 26252398 DOI: 10.1111/prd.12104] [Citation(s) in RCA: 378] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2015] [Indexed: 12/14/2022]
Abstract
The past decade of basic research in periodontology has driven radical changes in our understanding and perceptions of the pathogenic processes that drive periodontal tissue destruction. The core elements of the classical model of disease pathogenesis, developed by Page & Kornman in 1997, remain pertinent today; however, our understanding of the dynamic interactions between the various microbial and host factors has changed significantly. The molecular era has unraveled aspects of genetics, epigenetics, lifestyle and environmental factors that, in combination, influence biofilm composition and the host's inflammatory immune response, creating a heterogenic biological phenotype that we label as 'periodontitis'. In this volume of Periodontology 2000, experts in their respective fields discuss these emerging concepts, such as a health-promoting biofilm being essential for periodontal stability, involving a true symbiosis between resident microbial species and each other and also with the host response to that biofilm. Rather like the gut microbiome, changes in the local environment, which may include inflammatory response mediators or viruses, conspire to drive dysbiosis and create a biofilm that supports pathogenic species capable of propagating disease. The host response is now recognized as the major contributor to periodontal tissue damage in what becomes a dysfunctional, poorly targeted and nonresolving inflammation that only serves to nourish and sustain the dysbiosis. The role of epithelial cells in signaling to the immune system is becoming clearer, as is the role of dendritic cells as transporters of periodontal pathogens to distant sites within the body, namely metastatic infection. The involvement of nontraditional immune cells, such as natural killer cells, is being recognized, and the simple balance between T-helper 1- and T-helper 2-type T-cell populations has become less clear with the emergence of T-regulatory cells, T-helper 17 cells and follicular helper cells. The dominance of the neutrophil has emerged, not only as a potential destructor when poorly regulated but as an equally unpredictable effector cell for specific B-cell immunity. The latter has emerged, in part, from the realization that neutrophils live for 5.4 days in the circulation, rather than for 24 h, and are also schizophrenic in nature, being powerful synthesizers of proinflammatory cytokines but also responding to prostaglandin signals to trigger a switch to a pro-resolving phenotype that appears capable of regenerating the structure and function of healthy tissue. Key to these outcomes are the molecular signaling pathways that dominate at any one time, but even these are influenced by microRNAs capable of 'silencing' certain inflammatory genes. This volume of Periodontology 2000 tries to draw these complex new learnings into a contemporary model of disease pathogenesis, in which inflammation and dysbiosis impact upon whether the outcome is driven toward acute resolution and stability, chronic resolution and repair, or failed resolution and ongoing periodontal tissue destruction.
Collapse
|
31
|
Singhrao SK, Harding A, Chukkapalli S, Olsen I, Kesavalu L, Crean S. Apolipoprotein E Related Co-Morbidities and Alzheimer's Disease. J Alzheimers Dis 2016; 51:935-48. [PMID: 26923007 DOI: 10.3233/jad150690] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The primary goal of advancement in clinical services is to provide a health care system that enhances an individual's quality of life. Incidence of diabetes mellitus, cardiovascular disease, and associated dementia coupled with the advancing age of the population, have led to an increase in the worldwide challenge to the healthcare system. In order to overcome these challenges, prior knowledge of common, reliable risk factors and their effectors is essential. Oral health constitutes one such relatively unexplored but indispensable risk factor for aforementioned co-morbidities, in the form of poor oral hygiene and tooth loss during aging. Behavioral traits such as low education, smoking, poor diet, neglect of oral health, lack of exercise, and hypertension are few of the risk factors that are shared commonly among these conditions. In addition, common genetic susceptibility traits such as the apolipoprotein E gene, together with an individual's lifestyle can also influence the development of co-morbidities such as periodontitis, atherosclerosis/stroke, diabetes, and Alzheimer's disease. This review specifically addresses the susceptibility of apolipoprotein E gene allele 4 as the plausible commonality for the etiology of co-morbidities that eventually result from periodontal diseases and ultimately progress to dementia.
Collapse
Affiliation(s)
- Sim K Singhrao
- Oral & Dental Sciences Research Group, College of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Alice Harding
- Oral & Dental Sciences Research Group, College of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Sasanka Chukkapalli
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Lakshmyya Kesavalu
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA.,Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - StJohn Crean
- Oral & Dental Sciences Research Group, College of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| |
Collapse
|
32
|
Potential relationship between periodontal diseases and eye diseases. Med Hypotheses 2016; 99:63-66. [PMID: 28110701 DOI: 10.1016/j.mehy.2016.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 12/17/2016] [Indexed: 01/27/2023]
Abstract
Periodontal diseases are inflammatory lesions initiated by oral bacteria and lead to the destruction of the supporting structures of the teeth (gingiva, periodontal ligament and alveolar bone) in susceptible patient. Via several biological mechanisms, periodontal diseases have been associated with multiple systemic diseases, such as rheumatoid arthritis, diabetes, cardiovascular diseases, Alzheimer's disease and adverse pregnancy outcomes. Similarly certain eye diseases have been associated with systemic diseases of the inflammatory pathway. We hypothesized that periodontal diseases are associated with eye diseases. Thus using literature data we find that several studies have reported that eye disorders are associated with the presence of periodontal diseases. But the mechanisms of this relationship are not clear. However the innate immune response involvement, the sharing of similar risk factors in pathogenesis and the changes of eye choroid thickness may be suggested as several hypotheses to explain this potential association.
Collapse
|
33
|
Klug B, Santigli E, Westendorf C, Tangl S, Wimmer G, Grube M. From Mouth to Model: Combining in vivo and in vitro Oral Biofilm Growth. Front Microbiol 2016; 7:1448. [PMID: 27708626 PMCID: PMC5030783 DOI: 10.3389/fmicb.2016.01448] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/30/2016] [Indexed: 11/13/2022] Open
Abstract
Background: Oral biofilm studies based on simplified experimental setups are difficult to interpret. Models are limited mostly by the number of bacterial species observed and the insufficiency of artificial media. Few studies have attempted to overcome these limitations and to cultivate native oral biofilm. Aims: This study aimed to grow oral biofilm in vivo before transfer to a biofilm reactor for ex situ incubation. The in vitro survival of this oral biofilm and the changes in bacterial composition over time were observed. Methods: Six human enamel-dentin slabs embedded buccally in dental splints were used as biofilm carriers. Fitted individually to the upper jaw of 25 non-smoking male volunteers, the splints were worn continuously for 48 h. During this time, tooth-brushing and alcohol-consumption were not permitted. The biofilm was then transferred on slabs into a biofilm reactor and incubated there for 48 h while being nourished in BHI medium. Live/dead staining and confocal laser scanning microscopy were used to observe bacterial survival over four points in time: directly after removal (T0) and after 1 (T1), 24 (T2), and 48 h (T3) of incubation. Bacterial diversity at T0 and T3 was compared with 454-pyrosequencing. Fluorescence in situ hybridization (FISH) was performed to show specific taxa. Survival curves were calculated with a specially designed MATLAB script. Acacia and QIIME 1.9.1 were used to process pyrosequencing data. SPSS 21.0 and R 3.3.1 were used for statistical analysis. Results: After initial fluctuations at T1, survival curves mostly showed approximation of the bacterial numbers to the initial level at T3. Pyrosequencing analysis resulted in 117 OTUs common to all samples. The genera Streptococcus and Veillonella (both Firmicutes) dominated at T0 and T3. They make up two thirds of the biofilm. Genera with lower relative abundance had grown significantly at T3. FISH analysis confirmed the pyrosequencing results, i.e., the predominant staining of Firmicutes. Conclusion: We demonstrate the in vitro survival of native primary oral biofilm in its natural complexity over 48 h. Our results offer a baseline for cultivation studies of native oral biofilms in (phyto-) pharmacological and dental materials research. Further investigations and validation of culturing conditions could also facilitate the study of biofilm-induced diseases.
Collapse
Affiliation(s)
- Barbara Klug
- Institute of Plant Sciences, University of GrazGraz, Austria; Department of Dental Medicine and Oral Health, Division of Oral Surgery and Orthodontics, Medical University of GrazGraz, Austria
| | - Elisabeth Santigli
- Department of Dental Medicine and Oral Health, Division of Oral Surgery and Orthodontics, Medical University of Graz Graz, Austria
| | | | - Stefan Tangl
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Department of Oral Surgery, Medical University of ViennaVienna, Austria; Austrian Cluster for Tissue RegenerationVienna, Austria
| | - Gernot Wimmer
- Department of Dental Medicine and Oral Health, Division of Preventive and Operative Dentistry, Periodontology, Prosthodontics and Restorative Dentistry, Medical University of Graz Graz, Austria
| | - Martin Grube
- Institute of Plant Sciences, University of Graz Graz, Austria
| |
Collapse
|
34
|
Complement Factor B Production in Renal Tubular Cells and Its Role in Sodium Transporter Expression During Polymicrobial Sepsis. Crit Care Med 2016; 44:e289-99. [PMID: 26757165 DOI: 10.1097/ccm.0000000000001566] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Toll-like receptors and complement are two components of the innate immunity. Complement factor B is essential for the alternative pathway of complement activation. We have recently reported that complement factor B is significantly up-regulated in the kidney and may contribute to acute tubular injury in an animal model of sepsis. This study investigates the mechanisms responsible for the complement factor B up-regulation and its role in sodium transporter expression in tubular cells during sepsis. DESIGN Animal study. SETTING Laboratory investigation. SUBJECTS C57BL/6 J wild-type, complement factor B(-/-), and Nfkb1(tm1Bal) p50(-/-) mice. INTERVENTIONS Human proximal tubular cells and mouse tubular epithelial cells were stimulated with Toll-like receptor agonists. Bay 11-7082 was used to block nuclear factor-κB pathway. Alternative pathway activation was detected by C3 zymosan deposition. Polymicrobial sepsis was created by cecal ligation and puncture. Sodium transporter gene expression was determined by quantitative reverse transcriptase-polymerase chain reaction. MEASUREMENTS AND MAIN RESULTS The agonists for Toll-like receptor 4 (lipopolysaccharide) or Toll-like receptor 3 (polyinosinic-polycytidylic acid) induced a marked increase in complement factor B expression in human proximal tubular cells and mouse tubular epithelial cells both at gene and protein levels. The Toll-like receptor 1/2 agonist, Pam3cys, induced complement factor B production only in human proximal tubular cells, not in mouse tubular epithelial cells. The Toll-like receptor 9 ligand, CpG oligodeoxynucleotides failed to induce complement factor B production either in human proximal tubular cells or in mouse tubular epithelial cells. Lipopolysaccharide/polyinosinic-polycytidylic acid-induced complement factor B up-regulation was blocked by Bay 11-7082, a potent inhibitor of nuclear factor-κB signaling, and in mouse tubular epithelial cells deficient in p50 subunit of nuclear factor-κB. Media from the lipopolysaccharide-treated mouse tubular epithelial cell cultures contained de novo synthesized complement factor B and led to functional alternative pathway activation. In a cecal ligation and puncture model, wild-type septic mice had down-regulated expression of sodium transporters in the kidney compared with the sham. In comparison, complement factor B mice or mice treated with anti-complement factor B displayed preserved levels of Na⁺/K⁺ ATPase-α1 following sepsis. CONCLUSIONS 1) Toll-like receptor 3/4 activation is sufficient to induce complement factor B production via nuclear factor-κB pathway and to enhance alternative pathway activation in the kidney tubular epithelial cells. 2) Complement factor B may contribute to the down-regulation of certain sodium transporter expression during sepsis.
Collapse
|
35
|
The Treponema denticola FhbB Protein Is a Dominant Early Antigen That Elicits FhbB Variant-Specific Antibodies That Block Factor H Binding and Cleavage by Dentilisin. Infect Immun 2016; 84:2051-2058. [PMID: 27113359 DOI: 10.1128/iai.01542-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/19/2016] [Indexed: 12/19/2022] Open
Abstract
The Treponema denticola FhbB protein contributes to immune evasion by binding factor H (FH). Cleavage of FH by the T. denticola protease, dentilisin, may contribute to the local immune dysregulation that is characteristic of periodontal disease (PD). Although three FhbB phyletic types have been defined (FhbB1, FhbB2, and FhbB3), the in vivo expression patterns and antigenic heterogeneity of FhbB have not been assessed. Here, we demonstrate that FhbB is a dominant early antigen that elicits FhbB type-specific antibody (Ab) responses. Using the murine skin abscess model, we demonstrate that the presence or absence of FhbB or dentilisin significantly influences Ab responses to infection and skin abscess formation. Competitive binding analyses revealed that α-FhbB Ab can compete with FH for binding to T. denticola and block dentilisin-mediated FH cleavage. Lastly, we demonstrate that dentilisin cleavage sites reside within critical functional domains of FH, including the complement regulatory domain formed by CCPs 1 to 4. Analysis of the FH cleavage products revealed that they lack cofactor activity. The data presented here provide insight into the in vivo significance of dentilisin, FhbB and its antigenic diversity, and the potential impact of FH cleavage on the regulation of complement activation.
Collapse
|
36
|
Hajishengallis G, Krauss JL, Jotwani R, Lambris JD. Differential capacity for complement receptor-mediated immune evasion by Porphyromonas gingivalis depending on the type of innate leukocyte. Mol Oral Microbiol 2016; 32:154-165. [PMID: 27081768 DOI: 10.1111/omi.12161] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2016] [Indexed: 01/02/2023]
Abstract
The complement system plays a central role in immunity and inflammation, although certain pathogens can exploit complement to undermine protective immunity. In this context, the periodontal keystone pathogen Porphyromonas gingivalis was previously shown by our group to evade killing by neutrophils or macrophages through exploitation of complement C5a receptor 1 (C5aR1) and complement receptor 3 (CR3). Here, we examined whether P. gingivalis uses complement receptors to also subvert killing by dendritic cells. In line with earlier independent studies, intracellular viable P. gingivalis bacteria could be recovered from mouse bone-marrow-derived dendritic cells (BMDC) or human monocyte-derived dendritic cells (MDDC) exposed to the pathogen. However, in the presence of C5a, the intracellular survival of P. gingivalis was significantly decreased in a C5aR1-dependent way. Further work using wild-type and receptor-knockout BMDC showed that, in the presence of C3a, the C3a receptor (C3aR) similarly enhanced the intracellular killing of P. gingivalis. In contrast, C5aR2, an alternative receptor for C5a (G protein-coupled receptor 77), was associated with increased intracellular P. gingivalis viable counts, consistent with the notion that C5aR2 functions as a negative regulator of C5aR1 activity. Moreover, P. gingivalis failed to use CR3 as a phagocytic receptor in BMDC, in contrast to our earlier findings in macrophages where CR3-mediated uptake promotes P. gingivalis survival. Collectively, these data show that complement receptors mediate cell-type-specific effects on how innate leukocytes handle P. gingivalis, which appears to exploit complement to preferentially evade those cells (neutrophils and macrophages) that are most often encountered in its predominant niche, the periodontal pocket.
Collapse
Affiliation(s)
- G Hajishengallis
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J L Krauss
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - R Jotwani
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - J D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
37
|
Xuan D, Han Q, Tu Q, Zhang L, Yu L, Murry D, Tu T, Lian J, Stein GS, Zhang J, Chen J. Epigenetic Modulation in Periodontitis: Interaction of Adiponectin and JMJD3-IRF4 Axis in Macrophages. J Cell Physiol 2016; 231:1090-6. [PMID: 26399931 PMCID: PMC5298882 DOI: 10.1002/jcp.25201] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 01/26/2023]
Abstract
Emerging evidence suggests an important role for epigenetic mechanisms in modulating signals during macrophage polarization and inflammation. JMJD3, a JmjC family histone demethylase necessary for M2 polarization is also required for effective induction of multiple M1 genes by lipopolysaccharide (LPS). However, the effects of JMJD3 to inflammation in the context of obesity remains unknown. To address this deficiency, we firstly examined the expression of JMJD3 in macrophage isolated from bone marrow and adipose tissue of diet induced obesity (DIO) mice. The results indicated that JMJD3 was down-regulated in obesity. Adiponectin (APN), a factor secreted by adipose tissue which is down-regulated in obesity, functions to switch macrophage polarization from M1 to M2, thereby attenuating chronic inflammation. Intriguingly, our results indicated that APN contributed to JMJD3 up-regulation, reduced macrophage infiltration in obese adipose tissue, and abolished the up-regulation of JMJD3 in peritoneal macrophages isolated from DIO mice when challenged with Porphyromonas gingivalis LPS (pg.lps). To elucidate the interaction of APN and JMJD3 involved in macrophage transformation in the context of inflammation, we designed the loss and gain-function experiments of APN in vivo with APN(-/-) mice with experimental periodontitis and in vitro with macrophage isolated from APN(-/-) mice. For the first time, we found that APN can help to reduce periodontitis-related bone loss, modulate JMJD3 and IRF4 expression, and macrophage infiltration. Therefore, it can be inferred that APN may contribute to anti-inflammation macrophage polarization by regulating JMJD3 expression, which provides a basis for macrophage-centered epigenetic therapeutic strategies.
Collapse
Affiliation(s)
- Dongying Xuan
- Department of Periodontology, Guangdong Provincial Stomatological Hospital, Southern Medical University, Guangzhou, China
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, 02111, USA
| | - Qianqian Han
- Department of Periodontology, Guangdong Provincial Stomatological Hospital, Southern Medical University, Guangzhou, China
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, 02111, USA
| | - Qisheng Tu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, 02111, USA
| | - Lan Zhang
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, 02111, USA
| | - Liming Yu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, 02111, USA
| | - Dana Murry
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, 02111, USA
| | - Tianchi Tu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, 02111, USA
| | - Jane Lian
- Department of Biochemistry, University of Vermont College of Medicine, C401 Given Building, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Gary S. Stein
- Department of Biochemistry, University of Vermont College of Medicine, C401 Given Building, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Jincai Zhang
- Department of Periodontology, Guangdong Provincial Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Jake Chen
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, 02111, USA
| |
Collapse
|
38
|
Maekawa T, Briones RA, Resuello RRG, Tuplano JV, Hajishengallis E, Kajikawa T, Koutsogiannaki S, Garcia CAG, Ricklin D, Lambris JD, Hajishengallis G. Inhibition of pre-existing natural periodontitis in non-human primates by a locally administered peptide inhibitor of complement C3. J Clin Periodontol 2016; 43:238-49. [PMID: 26728318 DOI: 10.1111/jcpe.12507] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2015] [Indexed: 11/26/2022]
Abstract
AIM Human periodontitis is associated with overactivation of complement, which is triggered by different mechanisms converging on C3, the central hub of the system. We assessed whether the C3 inhibitor Cp40 inhibits naturally occurring periodontitis in non-human primates (NHPs). MATERIALS AND METHODS Non-human primates with chronic periodontitis were intra-gingivally injected with Cp40 either once (5 animals) or three times (10 animals) weekly for 6 weeks followed by a 6-week follow-up period. Clinical periodontal examinations and collection of gingival crevicular fluid and biopsies of gingiva and bone were performed at baseline and during the study. A one-way repeated-measures anova was used for data analysis. RESULTS Whether administered once or three times weekly, Cp40 caused a significant reduction in clinical indices that measure periodontal inflammation (gingival index and bleeding on probing), tissue destruction (probing pocket depth and clinical attachment level) or tooth mobility. These clinical changes were associated with significantly reduced levels of pro-inflammatory mediators and decreased numbers of osteoclasts in bone biopsies. The protective effects of Cp40 persisted, albeit at reduced efficacy, for at least 6 weeks following drug discontinuation. CONCLUSION Cp40 inhibits pre-existing chronic periodontal inflammation and osteoclastogenesis in NHPs, suggesting a novel adjunctive anti-inflammatory therapy for treating human periodontitis.
Collapse
Affiliation(s)
- Tomoki Maekawa
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Ruel A Briones
- College of Dentistry, Manila Central University, Caloocan City, Philippines
| | - Ranillo R G Resuello
- Simian Conservation Breeding and Research Center (SICONBREC), Makati City, Philippines
| | - Joel V Tuplano
- Simian Conservation Breeding and Research Center (SICONBREC), Makati City, Philippines
| | - Evlambia Hajishengallis
- Division of Pediatric Dentistry, Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tetsuhiro Kajikawa
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sophia Koutsogiannaki
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - George Hajishengallis
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
39
|
Blasi I, Korostoff J, Dhingra A, Reyes-Reveles J, Shenker BJ, Shahabuddin N, Alexander D, Lally ET, Bragin A, Boesze-Battaglia K. Variants of Porphyromonas gingivalis lipopolysaccharide alter lipidation of autophagic protein, microtubule-associated protein 1 light chain 3, LC3. Mol Oral Microbiol 2015; 31:486-500. [PMID: 26452236 DOI: 10.1111/omi.12141] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2015] [Indexed: 01/13/2023]
Abstract
Porphyromonas gingivalis often subverts host cell autophagic processes for its own survival. Our previous studies document the association of the cargo sorting protein, melanoregulin (MREG), with its binding partner, the autophagic protein, microtubule-associated protein 1 light chain 3 (LC3) in macrophages incubated with P. gingivalis (strain 33277). Differences in the lipid A moiety of lipopolysaccharide (LPS) affect the virulence of P. gingivalis; penta-acylated LPS1690 is a weak Toll-like receptor 4 agonist compared with Escherichia coli LPS, whereas tetra-acylated LPS1435/1449 acts as an LPS1690 antagonist. To determine how P. gingivalis LPS1690 affects autophagy we assessed LC3-dependent and MREG-dependent processes in green fluorescent protein (GFP)-LC3-expressing Saos-2 cells. LPS1690 stimulated the formation of very large LC3-positive vacuoles and MREG puncta. This LPS1690 -mediated LC3 lipidation decreased in the presence of LPS1435/1449 . When Saos-2 cells were incubated with P. gingivalis the bacteria internalized but did not traffic to GFP-LC3-positive structures. Nevertheless, increases in LC3 lipidation and MREG puncta were observed. Collectively, these results suggest that P. gingivalis internalization is not necessary for LC3 lipidation. Primary human gingival epithelial cells isolated from patients with periodontitis showed both LC3II and MREG puncta whereas cells from disease-free individuals exhibited little co-localization of these two proteins. These results suggest that the prevalence of a particular LPS moiety may modulate the degradative capacity of host cells, so influencing bacterial survival.
Collapse
Affiliation(s)
- I Blasi
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Orthodontics, School of Dentistry, International University of Catalonia, Barcelona, Spain
| | - J Korostoff
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - A Dhingra
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J Reyes-Reveles
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - B J Shenker
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - N Shahabuddin
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - D Alexander
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E T Lally
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - A Bragin
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - K Boesze-Battaglia
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
40
|
Ajona D, Pajares MJ, Chiara MD, Rodrigo JP, Jantus-Lewintre E, Camps C, Suarez C, Bagán JV, Montuenga LM, Pio R. Complement activation product C4d in oral and oropharyngeal squamous cell carcinoma. Oral Dis 2015; 21:899-904. [DOI: 10.1111/odi.12363] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/23/2015] [Accepted: 07/26/2015] [Indexed: 02/05/2023]
Affiliation(s)
- D Ajona
- Program in Solid Tumors and Biomarkers; Center for Applied Medical Research (CIMA); Pamplona Spain
- Navarra's Health Research Institute (IDISNA); Pamplona Spain
| | - MJ Pajares
- Program in Solid Tumors and Biomarkers; Center for Applied Medical Research (CIMA); Pamplona Spain
- Navarra's Health Research Institute (IDISNA); Pamplona Spain
- Department of Histology and Pathology; School of Medicine; University of Navarra; Pamplona Spain
| | - MD Chiara
- Servicio de Otorrinolaringología; Hospital Universitario Central de Asturias; Instituto Universitario de Oncología del Principado de Asturias; Universidad de Oviedo; Oviedo Spain
| | - JP Rodrigo
- Servicio de Otorrinolaringología; Hospital Universitario Central de Asturias; Instituto Universitario de Oncología del Principado de Asturias; Universidad de Oviedo; Oviedo Spain
| | - E Jantus-Lewintre
- Molecular Oncology Laboratory; Fundación para la Investigación del Hospital General Universitario de Valencia; Valencia Spain
- Department of Biotechnology; Universitat Politècnica de Valencia; Valencia Spain
| | - C Camps
- Department of Medicine; University of Valencia; Valencia Spain
- Department of Medical Oncology; Hospital General Universitario de Valencia; Valencia Spain
| | - C Suarez
- Servicio de Otorrinolaringología; Hospital Universitario Central de Asturias; Instituto Universitario de Oncología del Principado de Asturias; Universidad de Oviedo; Oviedo Spain
| | - JV Bagán
- Department of Oral Medicine; University of Valencia, and Service of Stomatology and Maxillofacial Surgery; University General Hospital; Valencia Spain
| | - LM Montuenga
- Program in Solid Tumors and Biomarkers; Center for Applied Medical Research (CIMA); Pamplona Spain
- Navarra's Health Research Institute (IDISNA); Pamplona Spain
- Department of Histology and Pathology; School of Medicine; University of Navarra; Pamplona Spain
| | - R Pio
- Program in Solid Tumors and Biomarkers; Center for Applied Medical Research (CIMA); Pamplona Spain
- Navarra's Health Research Institute (IDISNA); Pamplona Spain
- Department of Biochemistry and Genetics; School of Sciences; University of Navarra; Pamplona Spain
| |
Collapse
|
41
|
Jusko M, Potempa J, Mizgalska D, Bielecka E, Ksiazek M, Riesbeck K, Garred P, Eick S, Blom AM. A Metalloproteinase Mirolysin of Tannerella forsythia Inhibits All Pathways of the Complement System. THE JOURNAL OF IMMUNOLOGY 2015. [PMID: 26209620 DOI: 10.4049/jimmunol.1402892] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Recent reports focusing on virulence factors of periodontal pathogens implicated proteinases as major determinants of remarkable pathogenicity of these species, with special emphasis on their capacity to modulate complement activity. In particular, bacteria-mediated cleavage of C5 and subsequent release of C5a seems to be an important phenomenon in the manipulation of the local inflammatory response in periodontitis. In this study, we present mirolysin, a novel metalloproteinase secreted by Tannerella forsythia, a well-recognized pathogen strongly associated with periodontitis. Mirolysin exhibited a strong effect on all complement pathways. It inhibited the classical and lectin complement pathways due to efficient degradation of mannose-binding lectin, ficolin-2, ficolin-3, and C4, whereas inhibition of the alternative pathway was caused by degradation of C5. This specificity toward complement largely resembled the activity of a previously characterized metalloproteinase of T. forsythia, karilysin. Interestingly, mirolysin released the biologically active C5a peptide in human plasma and induced migration of neutrophils. Importantly, we demonstrated that combination of mirolysin with karilysin, as well as a cysteine proteinase of another periodontal pathogen, Prevotella intermedia, resulted in a strong synergistic effect on complement. Furthermore, mutant strains of T. forsythia, devoid of either mirolysin or karilysin, showed diminished survival in human serum, providing further evidence for the synergistic inactivation of complement by these metalloproteinases. Taken together, our findings on interactions of mirolysin with complement significantly add to the understanding of immune evasion strategies of T. forsythia and expand the knowledge on molecular mechanisms driving pathogenic events in the infected periodontium.
Collapse
Affiliation(s)
- Monika Jusko
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 205 02 Malmö, Sweden
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30 387 Krakow, Poland; Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202
| | - Danuta Mizgalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30 387 Krakow, Poland
| | - Ewa Bielecka
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 205 02 Malmö, Sweden; Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30 387 Krakow, Poland
| | - Miroslaw Ksiazek
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30 387 Krakow, Poland
| | - Kristian Riesbeck
- Division of Clinical Microbiology, Department of Translational Medicine, Lund University, 205 02 Malmö, Sweden
| | - Peter Garred
- Department of Clinical Immunology, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; and
| | - Sigrun Eick
- Department of Periodontology, Laboratory of Oral Microbiology, University of Bern, 3010 Bern, Switzerland
| | - Anna M Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 205 02 Malmö, Sweden;
| |
Collapse
|
42
|
Arooj M, Sakkiah S, Cao GP, Kim S, Arulalapperumal V, Lee KW. Finding off-targets, biological pathways, and target diseases for chymase inhibitors via structure-based systems biology approach. Proteins 2015; 83:1209-24. [DOI: 10.1002/prot.24677] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/08/2014] [Accepted: 08/14/2014] [Indexed: 02/03/2023]
Affiliation(s)
- Mahreen Arooj
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute (CHIRI); Curtin University Australia
| | - Sugunadevi Sakkiah
- Division of Applied Life Science (BK21 Program); Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science(RINS), Gyeongsang National University (GNU); 501 Jinju-daero Gazha-dong Jinju 660-701 Republic of Korea
| | - Guang Ping Cao
- Division of Applied Life Science (BK21 Program); Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science(RINS), Gyeongsang National University (GNU); 501 Jinju-daero Gazha-dong Jinju 660-701 Republic of Korea
| | - Songmi Kim
- Division of Applied Life Science (BK21 Program); Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science(RINS), Gyeongsang National University (GNU); 501 Jinju-daero Gazha-dong Jinju 660-701 Republic of Korea
| | - Venkatesh Arulalapperumal
- Division of Applied Life Science (BK21 Program); Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science(RINS), Gyeongsang National University (GNU); 501 Jinju-daero Gazha-dong Jinju 660-701 Republic of Korea
| | - Keun Woo Lee
- Division of Applied Life Science (BK21 Program); Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science(RINS), Gyeongsang National University (GNU); 501 Jinju-daero Gazha-dong Jinju 660-701 Republic of Korea
| |
Collapse
|
43
|
Porphyromonas gingivalis Periodontal Infection and Its Putative Links with Alzheimer's Disease. Mediators Inflamm 2015; 2015:137357. [PMID: 26063967 PMCID: PMC4430664 DOI: 10.1155/2015/137357] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/01/2015] [Indexed: 12/18/2022] Open
Abstract
Periodontal disease (PD) and Alzheimer's disease (AD) are inflammatory conditions affecting the global adult population. In the pathogenesis of PD, subgingival complex bacterial biofilm induces inflammation that leads to connective tissue degradation and alveolar bone resorption around the teeth. In health, junctional epithelium seals the gingiva to the tooth enamel, thus preventing bacteria from entering the gingivae. Chronic PD involves major pathogens (Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia) which have an immune armoury that can circumvent host's immune surveillance to create and maintain an inflammatory mediator rich and toxic environment to grow and survive. The neurodegenerative condition, AD, is characterised by poor memory and specific hallmark proteins; periodontal pathogens are increasingly being linked with this dementing condition. It is therefore becoming important to understand associations of periodontitis with relevance to late-onset AD. The aim of this review is to discuss the relevance of finding the keystone periodontal pathogen P. gingivalis in AD brains and its plausible contribution to the aetiological hypothesis of this dementing condition.
Collapse
|
44
|
Guan LZ, Tong Q, Xu J. Elevated serum levels of mannose-binding lectin and diabetic nephropathy in type 2 diabetes. PLoS One 2015; 10:e0119699. [PMID: 25803807 PMCID: PMC4372410 DOI: 10.1371/journal.pone.0119699] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/15/2015] [Indexed: 01/04/2023] Open
Abstract
Objective Inflammation and complement activation initiated by mannose-binding lectin (MBL) may be implicated in the pathogenesis of diabetic vascular complications. We investigated serum MBL levels in type 2 diabetes with diabetic nephropathy (DN) and with persistent normoalbuminuria. Method Serum MBL levels were determined in 242 type 2 diabetes with overt nephropathy and 242 type 2 diabetes with persistent normoalbuminuria matched for age, sex, and duration of diabetes, as well as in 100 healthy control subjects. The prediction value of MBL was compared with HbA1c, Hs-CRP and with other known predictors. Multivariate analyses were performed using logistic regression models. Results The serum MBL levels were significantly higher in diabetes with DN as compared to with persistent normoalbuminuria (P<0.0001). Multivariate logistic regression analysis adjusted for common factors showed that serum MBL levels≥2950ug/L was an independent indictor of DN (OR=7.55; 95%CI: 3.44–19.04). Based on the ROC curve, the optimal cutoff value of serum MBL levels as an indicator for diagnosis of DN was projected to be 2950ug/L, which yielded a sensitivity of 77.2 % and a specificity of 80.8%, with the area under the curve at 0.809 (95%CI, 0.769—0.848). Conclusion Our findings suggested that MBL may be involved in the pathogenesis of DN in type 2 diabetes, and that determination of MBL status might be used to identify patients at increased risk of developing nephropathy complications.
Collapse
Affiliation(s)
- Ling-Zhi Guan
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Qiang Tong
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Jing Xu
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, P. R. China
- * E-mail:
| |
Collapse
|
45
|
Kirst ME, Li EC, Alfant B, Chi YY, Walker C, Magnusson I, Wang GP. Dysbiosis and alterations in predicted functions of the subgingival microbiome in chronic periodontitis. Appl Environ Microbiol 2015; 81:783-93. [PMID: 25398868 PMCID: PMC4277562 DOI: 10.1128/aem.02712-14] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/10/2014] [Indexed: 01/29/2023] Open
Abstract
Chronic periodontitis is an inflammatory disease of the periodontium affecting nearly 65 million adults in the United States. Changes in subgingival microbiota have long been associated with chronic periodontitis. Recent culture-independent molecular studies have revealed the immense richness and complexity of oral microbial communities. However, data sets across studies have not been directly compared, and whether the observed microbial variations are consistent across different studies is not known. Here, we used 16S rRNA sequencing to survey the subgingival microbiota in 25 subjects with chronic periodontal disease and 25 healthy controls and compared our data sets with those of three previously reported microbiome studies. Consistent with data from previous studies, our results demonstrate a significantly altered microbial community structure with decreased heterogeneity in periodontal disease. Comparison with data from three previously reported studies revealed that subgingival microbiota clustered by study. However, differences between periodontal health and disease were larger than the technical variations across studies. Using a prediction score and applying five different distance metrics, we observed two predominant clusters. One cluster was driven by Fusobacterium and Porphyromonas and was associated with clinically apparent periodontitis, and the second cluster was dominated by Rothia and Streptococcus in the majority of healthy sites. The predicted functional capabilities of the periodontitis microbiome were significantly altered. Genes involved in bacterial motility, energy metabolism, and lipopolysaccharide biosynthesis were overrepresented in periodontal disease, whereas genes associated with transporters, the phosphotransferase system, transcription factors, amino acid biosynthesis, and glycolysis/gluconeogenesis were enriched in healthy controls. These results demonstrate significant alterations in microbial composition and function in periodontitis and suggest genes and metabolic pathways associated with periodontal disease.
Collapse
Affiliation(s)
- Mariana E Kirst
- College of Medicine, Department of Medicine, Division of Infectious Diseases and Global Medicine, University of Florida, Gainesville, Florida, USA
| | - Eric C Li
- College of Medicine, Department of Medicine, Division of Infectious Diseases and Global Medicine, University of Florida, Gainesville, Florida, USA
| | - Barnett Alfant
- College of Dentistry, Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Yueh-Yun Chi
- College of Medicine and College of Public Health and Health Professions, Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Clay Walker
- College of Dentistry, Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Ingvar Magnusson
- College of Dentistry, Department of Periodontology, University of Florida, Gainesville, Florida, USA
| | - Gary P Wang
- College of Medicine, Department of Medicine, Division of Infectious Diseases and Global Medicine, University of Florida, Gainesville, Florida, USA North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
| |
Collapse
|
46
|
Hajishengallis G, Russell MW. Innate Humoral Defense Factors. Mucosal Immunol 2015. [PMCID: PMC7149745 DOI: 10.1016/b978-0-12-415847-4.00015-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although innate immunity came into the research spotlight in the late 1990s when its instructive role in the adaptive immune response was recognized, innate humoral defense factors have a much older history. The exocrine secretions of the body contain a plethora of distinct soluble factors (lysozyme, lactoferrin, peroxidases, proline-rich proteins, histatins, etc.) that protect the body from mucosal microbial pathogens. More recent studies have established that the humoral arm of innate immunity contains a heterogeneous group of pattern-recognition molecules (e.g., pentraxins, collectins, and ficolins), which perform diverse host-defense functions, such as agglutination and neutralization, opsonization, control of inflammation, and complement activation and regulation. These pattern-recognition molecules, which act as functional predecessors of antibodies (“ante-antibodies”), and the classic soluble innate defense factors form an integrated system with complementary specificity, action, and tissue distribution, and they are the subject of this chapter.
Collapse
|
47
|
Lamont RJ, Hajishengallis G. Polymicrobial synergy and dysbiosis in inflammatory disease. Trends Mol Med 2014; 21:172-83. [PMID: 25498392 DOI: 10.1016/j.molmed.2014.11.004] [Citation(s) in RCA: 346] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/14/2014] [Accepted: 11/17/2014] [Indexed: 12/17/2022]
Abstract
Uncontrolled inflammation of the periodontal area may arise when complex microbial communities transition from a commensal to a pathogenic entity. Communication among constituent species leads to polymicrobial synergy between metabolically compatible organisms that acquire functional specialization within the developing community. Keystone pathogens, even at low abundance, elevate community virulence, and the resulting dysbiotic community targets specific aspects of host immunity to further disable immune surveillance while promoting an overall inflammatory response. Inflammophilic organisms benefit from proteinaceous substrates derived from inflammatory tissue breakdown. Inflammation and dysbiosis reinforce each other, and the escalating environmental changes further select for a pathobiotic community. We have synthesized the polymicrobial synergy and dysbiotic components of the process into a new model for inflammatory diseases.
Collapse
Affiliation(s)
- Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA.
| | - George Hajishengallis
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
48
|
Severe periodontal disease associated with long-term treatment with intravenous immunoglobulin. Case Rep Dent 2014; 2014:860804. [PMID: 25379295 PMCID: PMC4213401 DOI: 10.1155/2014/860804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/18/2014] [Indexed: 02/02/2023] Open
Abstract
Intravenous immunoglobulin (IVIG) is used in the treatment of neuropathy. This case report presents, for the first time, a patient with severe periodontal destruction after chronic therapy with IVIG. The patient reported having extracted his maxillary anterior teeth himself due to high mobility. Clinical examination and radiographic images show a generalized and severe periodontitis. No significant alterations in genetic or microbiological features were observed. The present case suggests that periodontal disease aggravation could be considered a new adverse effect of IVIG therapy. Postulated mechanisms are immune complexes formation, complement activation, and a direct effect in osteoclasts. In conclusion, it is important that patients that will receive IVIG treatment underwent dental evaluation.
Collapse
|
49
|
Fabri GMC, Savioli C, Siqueira JT, Campos LM, Bonfá E, Silva CA. [Periodontal disease in pediatric rheumatic diseases]. REVISTA BRASILEIRA DE REUMATOLOGIA 2014; 54:311-7. [PMID: 25627227 DOI: 10.1016/j.rbr.2013.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/23/2013] [Indexed: 12/15/2022] Open
Abstract
Gingivitis and periodontitis are immunoinflammatory periodontal diseases characterized by chronic localized infections usually associated with insidious inflammation This narrative review discusses periodontal diseases and mechanisms influencing the immune response and autoimmunity in pediatric rheumatic diseases (PRD), particularly juvenile idiopathic arthritis (JIA), childhood-onset systemic lupus erythematosus (C-SLE) and juvenile dermatomyositis (JDM). Gingivitis was more frequently observed in these diseases compared to health controls, whereas periodontitis was a rare finding. In JIA patients, gingivitis and periodontitis were related to mechanical factors, chronic arthritis with functional disability, dysregulation of the immunoinflammatory response, diet and drugs, mainly corticosteroids and cyclosporine. In C-SLE, gingivitis was associated with longer disease period, high doses of corticosteroids, B-cell hyperactivation and immunoglobulin G elevation. There are scarce data on periodontal diseases in JDM population, and a unique gingival pattern, characterized by gingival erythema, capillary dilation and bush-loop formation, was observed in active patients. In conclusion, gingivitis was the most common periodontal disease in PRD. The observed association with disease activity reinforces the need for future studies to determine if resolution of this complication will influence disease course or severity.
Collapse
Affiliation(s)
- Gisele M C Fabri
- Divisão de Odontologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil; Faculdade de Odontologia, Universidade Federal de Juiz de Fora, MG, Brasil
| | - Cynthia Savioli
- Divisão de Odontologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - José T Siqueira
- Divisão de Odontologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Lucia M Campos
- Unidade de Reumatologia Pediátrica, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Eloisa Bonfá
- Divisão de Reumatologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Clovis A Silva
- Unidade de Reumatologia Pediátrica, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil; Divisão de Reumatologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil.
| |
Collapse
|
50
|
Damgaard C, Holmstrup P, Van Dyke TE, Nielsen CH. The complement system and its role in the pathogenesis of periodontitis: current concepts. J Periodontal Res 2014; 50:283-93. [PMID: 25040158 DOI: 10.1111/jre.12209] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2014] [Indexed: 12/11/2022]
Abstract
Periodontitis is a highly prevalent inflammatory disease in tooth supporting tissues, induced by bacteria growing in a biofilm on tooth surfaces. Components of the complement system are present in the periodontal tissue and the system is activated in periodontitis. Continuous complement activation and modulation by bacteria within the biofilm in periodontal pockets, however, may enhance local tissue destruction, providing the biofilm with both essential nutrients and space to grow. A more profound understanding of the mechanisms involved in complement-derived tissue degradation may facilitate the development of new treatment concepts for periodontitis. Further studies on the role of complement in periodontitis pathogenesis may also contribute to the understanding of why some individuals fail to resolve periodontitis. Here, we review evidence that links complement to the pathogenesis of periodontitis with an emphasis on interaction of complement with bacteria from periodontitis-associated biofilm.
Collapse
Affiliation(s)
- C Damgaard
- Section for Periodontology, Microbiology and Community Dentistry, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases and Rheumatology, Institute for Inflammation Research, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Department of Applied Oral Sciences, Center for Periodontology, The Forsyth Institute, Cambridge, Massachusetts, USA
| | | | | | | |
Collapse
|