1
|
Salminen A. The role of inhibitory immune checkpoint receptors in the pathogenesis of Alzheimer's disease. J Mol Med (Berl) 2025; 103:1-19. [PMID: 39601807 PMCID: PMC11739239 DOI: 10.1007/s00109-024-02504-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/16/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
There is mounting evidence that microglial cells have a key role in the pathogenesis of Alzheimer's disease (AD). In AD pathology, microglial cells not only are unable to remove β-amyloid (Aβ) plaques and invading pathogens but also are involved in synaptic pruning, chronic neuroinflammation, and neuronal degeneration. Microglial cells possess many different inhibitory immune checkpoint receptors, such as PD-1, LILRB2-4, Siglecs, and SIRPα receptors, which can be targeted by diverse cell membrane-bound and soluble ligand proteins to suppress the functions of microglia. Interestingly, in the brains of AD patients there are elevated levels of many of the inhibitory ligands acting via these inhibitory checkpoint receptors. For instance, Aβ oligomers, ApoE4, and fibronectin are able to stimulate the LILRB2-4 receptors. Increased deposition of sialoglycans, e.g., gangliosides, inhibits microglial function via Siglec receptors. AD pathology augments the accumulation of senescent cells, which are known to possess a high level of PD-L1 proteins, and thus, they can evade immune surveillance. A decrease in the expression of SIRPα receptor in microglia and its ligand CD47 in neurons enhances the phagocytic pruning of synapses in AD brains. Moreover, cerebral neurons contain inhibitory checkpoint receptors which can inhibit axonal growth, reduce synaptic plasticity, and impair learning and memory. It seems that inappropriate inhibitory immune checkpoint signaling impairs the functions of microglia and neurons thus promoting AD pathogenesis. KEY MESSAGES: Microglial cells have a major role in the pathogenesis of AD. A decline in immune activity of microglia promotes AD pathology. Microglial cells and neurons contain diverse inhibitory immune checkpoint receptors. The level of ligands for inhibitory checkpoint receptors is increased in AD pathology. Impaired signaling of inhibitory immune checkpoint receptors promotes AD pathology.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
2
|
Huber M, Brummer T. Enzyme Is the Name-Adapter Is the Game. Cells 2024; 13:1249. [PMID: 39120280 PMCID: PMC11311582 DOI: 10.3390/cells13151249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
Signaling proteins in eukaryotes usually comprise a catalytic domain coupled to one or several interaction domains, such as SH2 and SH3 domains. An additional class of proteins critically involved in cellular communication are adapter or scaffold proteins, which fulfill their purely non-enzymatic functions by organizing protein-protein interactions. Intriguingly, certain signaling enzymes, e.g., kinases and phosphatases, have been demonstrated to promote particular cellular functions by means of their interaction domains only. In this review, we will refer to such a function as "the adapter function of an enzyme". Though many stories can be told, we will concentrate on several proteins executing critical adapter functions in cells of the immune system, such as Bruton´s tyrosine kinase (BTK), phosphatidylinositol 3-kinase (PI3K), and SH2-containing inositol phosphatase 1 (SHIP1), as well as in cancer cells, such as proteins of the rat sarcoma/extracellular signal-regulated kinase (RAS/ERK) mitogen-activated protein kinase (MAPK) pathway. We will also discuss how these adaptor functions of enzymes determine or even undermine the efficacy of targeted therapy compounds, such as ATP-competitive kinase inhibitors. Thereby, we are highlighting the need to develop pharmacological approaches, such as proteolysis-targeting chimeras (PROTACs), that eliminate the entire protein, and thus both enzymatic and adapter functions of the signaling protein. We also review how genetic knock-out and knock-in approaches can be leveraged to identify adaptor functions of signaling proteins.
Collapse
Affiliation(s)
- Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research, IMMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Center for Biological Signalling Studies BIOSS, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
3
|
Hu JC, Tzeng HT, Lee WC, Li JR, Chuang YC. Promising Experimental Treatment in Animal Models and Human Studies of Interstitial Cystitis/Bladder Pain Syndrome. Int J Mol Sci 2024; 25:8015. [PMID: 39125584 PMCID: PMC11312208 DOI: 10.3390/ijms25158015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Interstitial cystitis/bladder pain Syndrome (IC/BPS) remains a mysterious and intricate urological disorder, presenting significant challenges to healthcare providers. Traditional guidelines for IC/BPS follow a hierarchical model based on symptom severity, advocating for conservative interventions as the initial step, followed by oral pharmacotherapy, intravesical treatments, and, in refractory cases, invasive surgical procedures. This approach embraces a multi-tiered strategy. However, the evolving understanding that IC/BPS represents a paroxysmal chronic pain syndrome, often involving extravesical manifestations and different subtypes, calls for a departure from this uniform approach. This review provides insights into recent advancements in experimental strategies in animal models and human studies. The identified therapeutic approaches fall into four categories: (i) anti-inflammation and anti-angiogenesis using monoclonal antibodies or immune modulation, (ii) regenerative medicine, including stem cell therapy, platelet-rich plasma, and low-intensity extracorporeal shock wave therapy, (iii) drug delivery systems leveraging nanotechnology, and (iv) drug delivery systems assisted by energy devices. Future investigations will require a broader range of animal models, studies on human bladder tissues, and well-designed clinical trials to establish the efficacy and safety of these therapeutic interventions.
Collapse
Affiliation(s)
- Ju-Chuan Hu
- Department of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan; (J.-C.H.); (J.-R.L.)
| | - Hong-Tai Tzeng
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Wei-Chia Lee
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| | - Jian-Ri Li
- Department of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan; (J.-C.H.); (J.-R.L.)
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- College of Nursing, Hungkuang University, Taichung 433, Taiwan
| | - Yao-Chi Chuang
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| |
Collapse
|
4
|
Zhao Y, Song W, Yuan Z, Li M, Wang G, Wang L, Liu Y, Diao B. Exosome Derived from Human Umbilical Cord Mesenchymal Cell Exerts Immunomodulatory Effects on B Cells from SLE Patients. J Immunol Res 2023; 2023:3177584. [PMID: 37215068 PMCID: PMC10198761 DOI: 10.1155/2023/3177584] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Background Excessive proliferation and activation of B cells, resulting in the production of various autoantibodies, is a crucial link and significant feature of the pathogenesis of systemic lupus erythematosus (SLE), as well as the pathological basis of systemic multiorgan damage. However, whether exosomes derived from human umbilical cord mesenchymal stem cells (hucMSCs-Exo) are involved in the immune regulation of SLE has not been clarified. Objectives Therefore, our study aimed to investigate the efficacy of hucMSCs-Exo for treating SLE. Methods hucMSCs-Exo and peripheral blood mononuclear cells (PBMCs) of SLE patients were cocultured in vitro, and B cell apoptosis, activation, proliferation, and inflammation levels were detected by flow cytometry. Subsequently, the expression level of miR-155 in B lymphocytes of SLE patients was detected by qRT-PCR, and the target gene relationship between miR-155 and SHIP-1 was found through bioinformatics and dual luciferase activity experiments, which verified the inhibition of miR-155 in B lymphocytes of SLE patients to regulate immunity. Results We found that hucMSCs-Exo promoted B cell apoptosis, prevented B cell overactivation, and reduced inflammation. MicroRNA-155 (miR-155) has a powerful regulatory function in B cells. It was demonstrated that hucMSCs-Exo acts synergistically with miR-155 inhibitors to target SHIP-1 to B cells more effectively than exosomes alone. Conclusion Our results provide insight into how hucMSCs-Exo regulates autoimmunity in patients with lupus and suggest targeting miR-155 for autoimmunity while protecting immunity.
Collapse
Affiliation(s)
- Ying Zhao
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, Hubei Province, China
- Basic Medical Laboratory, General Hospital of the Central Theater Command, Wuhan 430070, Hubei Province, China
- Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan 430070, Hubei Province, China
| | - Wenbin Song
- People's Hospital of Xinyang, Xinyang 464000, Hennan Province, China
| | - Zilin Yuan
- Basic Medical Laboratory, General Hospital of the Central Theater Command, Wuhan 430070, Hubei Province, China
- Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan 430070, Hubei Province, China
| | - Min Li
- Basic Medical Laboratory, General Hospital of the Central Theater Command, Wuhan 430070, Hubei Province, China
- Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan 430070, Hubei Province, China
| | - Gang Wang
- Basic Medical Laboratory, General Hospital of the Central Theater Command, Wuhan 430070, Hubei Province, China
- Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan 430070, Hubei Province, China
| | - Liping Wang
- Basic Medical Laboratory, General Hospital of the Central Theater Command, Wuhan 430070, Hubei Province, China
- Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan 430070, Hubei Province, China
| | - Yueping Liu
- Basic Medical Laboratory, General Hospital of the Central Theater Command, Wuhan 430070, Hubei Province, China
- Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan 430070, Hubei Province, China
| | - Bo Diao
- Basic Medical Laboratory, General Hospital of the Central Theater Command, Wuhan 430070, Hubei Province, China
- Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan 430070, Hubei Province, China
| |
Collapse
|
5
|
Olivera I, Bolaños E, Gonzalez-Gomariz J, Hervas-Stubbs S, Mariño KV, Luri-Rey C, Etxeberria I, Cirella A, Egea J, Glez-Vaz J, Garasa S, Alvarez M, Eguren-Santamaria I, Guedan S, Sanmamed MF, Berraondo P, Rabinovich GA, Teijeira A, Melero I. mRNAs encoding IL-12 and a decoy-resistant variant of IL-18 synergize to engineer T cells for efficacious intratumoral adoptive immunotherapy. Cell Rep Med 2023; 4:100978. [PMID: 36933554 PMCID: PMC10040457 DOI: 10.1016/j.xcrm.2023.100978] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/22/2022] [Accepted: 02/21/2023] [Indexed: 03/19/2023]
Abstract
Interleukin-12 (IL-12) gene transfer enhances the therapeutic potency of adoptive T cell therapies. We previously reported that transient engineering of tumor-specific CD8 T cells with IL-12 mRNA enhanced their systemic therapeutic efficacy when delivered intratumorally. Here, we mix T cells engineered with mRNAs to express either single-chain IL-12 (scIL-12) or an IL-18 decoy-resistant variant (DRIL18) that is not functionally hampered by IL-18 binding protein (IL-18BP). These mRNA-engineered T cell mixtures are repeatedly injected into mouse tumors. Pmel-1 T cell receptor (TCR)-transgenic T cells electroporated with scIL-12 or DRIL18 mRNAs exert powerful therapeutic effects in local and distant melanoma lesions. These effects are associated with T cell metabolic fitness, enhanced miR-155 control on immunosuppressive target genes, enhanced expression of various cytokines, and changes in the glycosylation profile of surface proteins, enabling adhesiveness to E-selectin. Efficacy of this intratumoral immunotherapeutic strategy is recapitulated in cultures of tumor-infiltrating lymphocytes (TILs) and chimeric antigen receptor (CAR) T cells on IL-12 and DRIL18 mRNA electroporation.
Collapse
Affiliation(s)
- Irene Olivera
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Elixabet Bolaños
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Jose Gonzalez-Gomariz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Sandra Hervas-Stubbs
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires 1428, Argentina
| | - Carlos Luri-Rey
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Iñaki Etxeberria
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Assunta Cirella
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Josune Egea
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Javier Glez-Vaz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Saray Garasa
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Maite Alvarez
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Iñaki Eguren-Santamaria
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Sonia Guedan
- Department of Hematology and Oncology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain
| | - Miguel F Sanmamed
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires 1428, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires 1428, Argentina
| | - Alvaro Teijeira
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
6
|
Ehm P, Nelson N, Giehler S, Schaks M, Bettin B, Kirchmair J, Jücker M. Reduced expression and activity of patient-derived SHIP1 phosphatase domain mutants. Cell Signal 2023; 101:110485. [PMID: 36208705 DOI: 10.1016/j.cellsig.2022.110485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022]
Abstract
The characterization of dysregulated proteins in cell signaling pathways is important for the development of therapeutic approaches. The PI3K/AKT/mTOR pathway is frequently upregulated in cancer cells and the SH2-containing inositol 5-phosphatase SHIP1 can act as a negative regulator of the PI3K/AKT pathway. In this study, we investigated different patient-derived mutations within the conserved phosphatase domain of SHIP1. We could demonstrate that 2 out of 7 SHIP1-phosphatase domain mutations (G585K and R673Q) possessed reduced protein expression and reduced enzymatic activity in comparison to SHIP1 wild type (WT) protein and two additional mutations (E452K, R551Q) possessed reduced enzymatic activity at a comparable expression level compared to SHIP1 WT in the cell line H1299. The investigated mutations resulted in protein expression levels that were up to 93% lower than those of the SHIP1 WT for SHIP1 mutant R673Q and the enzymatic activity was below the detection limit of the performed phosphatase assay. Whereas the protein level of the R673Q mutant was reduced in comparison to SHIP1 WT the mRNA level was comparable indicating a post-transcriptional regulation. SHIP1 R673Q was rapidly degraded, with a calculated half-life of l.5 h. In addition, SHIP1 R673Q levels were significantly increased by the treatment with the proteasome inhibitor MG-132 in comparison to the DMSO control. Therefore, SHIP1 was confirmed as the target of enhanced proteasomal degradation. Computational analysis of the wild type and mutant protein structures revealed that the loss of the positively charged arginine residue R673 is associated with the loss of two salt bridges to the negatively charged amino acids D617 and E634 leading to an intramolecular instability of the mutated SHIP1 R673Q protein. Six out of seven SHIP1 mutants significantly affected the PI3K/AKT/mTOR pathway in the three cancer cell lines H1299, Reh and Sem. Four out of seven SHIP1 mutants affected phosphorylation of AKT and its target GSK3β positively compared to SHIP1 WT, whereas a negative effect on the phosphorylation of S6 was found in five out of seven mutants. In general, SHIP1 mutants impacting signal transduction were either associated with decreased SHIP1 activity or SHIP1 expression or both. Overall, the presented results indicate a regulation of the protein expression and activity of SHIP1 by patient-derived mutations in its phosphatase domain.
Collapse
Affiliation(s)
- Patrick Ehm
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Nina Nelson
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Susanne Giehler
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Matthias Schaks
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Bettina Bettin
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Johannes Kirchmair
- Division of Pharmaceutica Chemistry, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| |
Collapse
|
7
|
Zhou M, Dascani P, Ding C, Kos JT, Tieri D, Lin X, Caster D, Powell D, Wen C, Watson CT, Yan J. Integrin CD11b Negatively Regulates B Cell Receptor Signaling to Shape Humoral Response during Immunization and Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2021; 207:1785-1797. [PMID: 34470858 DOI: 10.4049/jimmunol.2100070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/29/2021] [Indexed: 11/19/2022]
Abstract
Our previous work has revealed the ability of CD11b to regulate BCR signaling and control autoimmune disease in mice. However, how CD11b regulates the immune response under normal conditions remains unknown. Through the use of a CD11b knockout model on a nonautoimmune background, we demonstrated that CD11b-deficient mice have an elevated Ag-specific humoral response on immunization. Deletion of CD11b resulted in elevated low-affinity and high-affinity IgG Ab and increases in Ag-specific germinal center B cells and plasma cells (PCs). Examination of BCR signaling in CD11b-deficient mice revealed defects in association of negative regulators pLyn and CD22 with the BCR, but increases in colocalizations between positive regulator pSyk and BCR after stimulation. Using a CD11b-reporter mouse model, we identified multiple novel CD11b-expressing B cell subsets that are dynamically altered during immunization. Subsequent experiments using a cell-specific CD11b deletion model revealed this effect to be B cell intrinsic and not altered by myeloid cell CD11b expression. Importantly, CD11b expression on PCs also impacts on BCR repertoire selection and diversity in autoimmunity. These studies describe a novel role for CD11b in regulation of the healthy humoral response and autoimmunity, and reveal previously unknown populations of CD11b-expressing B cell subsets, suggesting a complex function for CD11b in B cells during development and activation.
Collapse
Affiliation(s)
- Mingqian Zhou
- Division of Immunotherapy, The Hiram C. Polk, Jr. Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY.,College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Paul Dascani
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY
| | - Chuanlin Ding
- Division of Immunotherapy, The Hiram C. Polk, Jr. Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY
| | - Justin T Kos
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY; and
| | - David Tieri
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY; and
| | - Xiaoying Lin
- Division of Immunotherapy, The Hiram C. Polk, Jr. Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY.,College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Dawn Caster
- Department of Medicine, University of Louisville, Louisville, KY
| | - David Powell
- Department of Medicine, University of Louisville, Louisville, KY
| | - Chengping Wen
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY; and
| | - Jun Yan
- Division of Immunotherapy, The Hiram C. Polk, Jr. Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY; .,Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY
| |
Collapse
|
8
|
Xu JJ, Li HD, Du XS, Li JJ, Meng XM, Huang C, Li J. Role of the F-BAR Family Member PSTPIP2 in Autoinflammatory Diseases. Front Immunol 2021; 12:585412. [PMID: 34262554 PMCID: PMC8273435 DOI: 10.3389/fimmu.2021.585412] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Proline-serine-threonine-phosphatase-interacting protein 2 (PSTPIP2) belongs to the Fes/CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain family. It exhibits lipid-binding, membrane deformation, and F-actin binding activity, suggesting broader roles at the membrane–cytoskeleton interface. PSTPIP2 is known to participate in macrophage activation, neutrophil migration, cytokine production, and osteoclast differentiation. In recent years, it has been observed to play important roles in innate immune diseases and autoinflammatory diseases (AIDs). Current research indicates that the protein tyrosine phosphatase PTP-PEST, Src homology domain-containing inositol 5’-phosphatase 1 (SHIP1), and C‐terminal Src kinase (CSK) can bind to PSTPIP2 and inhibit the development of AIDs. However, the mechanisms underlying the function of PSTPIP2 have not been fully elucidated. This article reviews the research progress and mechanisms of PSTPIP2 in AIDs. PSTPIP2 also provides a new therapeutic target for the treatment of AIDs.
Collapse
Affiliation(s)
- Jie-Jie Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hai-Di Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Sa Du
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Juan-Juan Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
9
|
Recent advances in tumor microenvironment-targeted nanomedicine delivery approaches to overcome limitations of immune checkpoint blockade-based immunotherapy. J Control Release 2021; 332:109-126. [DOI: 10.1016/j.jconrel.2021.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/24/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
|
10
|
Villalobos-Ayala K, Ortiz Rivera I, Alvarez C, Husain K, DeLoach D, Krystal G, Hibbs ML, Jiang K, Ghansah T. Apigenin Increases SHIP-1 Expression, Promotes Tumoricidal Macrophages and Anti-Tumor Immune Responses in Murine Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12123631. [PMID: 33291556 PMCID: PMC7761852 DOI: 10.3390/cancers12123631] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) has an extremely poor prognosis due to the expansion of immunosuppressive myeloid-derived suppressor cells (MDSC) and tumor-associated macrophages (TAM) in the inflammatory tumor microenvironment (TME), which halts the recruitment of effector immune cells and renders immunotherapy ineffective. Thus, the identification of new molecular targets that can modulate the immunosuppressive TME is warranted for PC intervention. Src Homology-2 (SH2) domain-containing Inositol 5'-Phosphatase-1 (SHIP-1) is a lipid signaling protein and a regulator of myeloid cell development and function. Herein, we used the bioflavonoid apigenin (API) to reduce inflammation in different PC models. Wild type mice harboring heterotopic or orthotopic PC were treated with API, which induced SHIP-1 expression, reduced inflammatory tumor-derived factors (TDF), increased the proportion of tumoricidal macrophages and enhanced anti-tumor immune responses, resulting in a reduction in tumor burden compared to vehicle-treated PC mice. In contrast, SHIP-1-deficient mice exhibited an increased tumor burden and displayed augmented proportions of pro-tumor macrophages. These results provide further support for the importance of SHIP-1 expression in promoting pro-tumor macrophage development in the pancreatic TME. Our findings suggest that agents augmenting SHIP-1 expression may provide novel therapeutic options for the treatment of PC.
Collapse
Affiliation(s)
- Krystal Villalobos-Ayala
- Department of Molecular Medicine, Morsani College of Medicine at the University of South Florida, Tampa, FL 33612, USA; (K.V.-A.); (I.O.R.); (C.A.); (K.H.)
| | - Ivannie Ortiz Rivera
- Department of Molecular Medicine, Morsani College of Medicine at the University of South Florida, Tampa, FL 33612, USA; (K.V.-A.); (I.O.R.); (C.A.); (K.H.)
| | - Ciara Alvarez
- Department of Molecular Medicine, Morsani College of Medicine at the University of South Florida, Tampa, FL 33612, USA; (K.V.-A.); (I.O.R.); (C.A.); (K.H.)
| | - Kazim Husain
- Department of Molecular Medicine, Morsani College of Medicine at the University of South Florida, Tampa, FL 33612, USA; (K.V.-A.); (I.O.R.); (C.A.); (K.H.)
| | - DeVon DeLoach
- Comparative Medicine at the University of South Florida, Tampa, FL 33612, USA;
| | - Gerald Krystal
- The Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada;
| | - Margaret L. Hibbs
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne 3004, Australia;
| | - Kun Jiang
- Anatomic Pathology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA;
| | - Tomar Ghansah
- Department of Molecular Medicine, Morsani College of Medicine at the University of South Florida, Tampa, FL 33612, USA; (K.V.-A.); (I.O.R.); (C.A.); (K.H.)
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-974-1825
| |
Collapse
|
11
|
Kandell WM, Donatelli SS, Trinh TL, Calescibetta AR, So T, Tu N, Gilvary DL, Chen X, Cheng P, Adams WA, Chen YK, Liu J, Djeu JY, Wei S, Eksioglu EA. MicroRNA-155 governs SHIP-1 expression and localization in NK cells and regulates subsequent infiltration into murine AT3 mammary carcinoma. PLoS One 2020; 15:e0225820. [PMID: 32040476 PMCID: PMC7010306 DOI: 10.1371/journal.pone.0225820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 11/13/2019] [Indexed: 01/29/2023] Open
Abstract
NK cell migration and activation are crucial elements of tumor immune surveillance. In mammary carcinomas, the number and function of NK cells is diminished, despite being positively associated with clinical outcome. MicroRNA-155 (miR-155) has been shown to be an important regulator of NK cell activation through its interaction with SHIP-1 downstream of inhibitory NK receptor signaling, but has not been explored in regard to NK cell migration. Here, we explored the migratory potential and function of NK cells in subcutaneous AT3 in mice lacking miR-155. Without tumor, these bic/miR-155-/- mice possess similar numbers of NK cells that exhibit comparable surface levels of cytotoxic receptors as NK cells from wild-type (WT) mice. Isolated miR-155-/- NK cells also exhibit equivalent cytotoxicity towards tumor targets in vitro compared to isolated WT control NK cells, despite overexpression of known miR-155 gene targets. NK cells isolated from miR-155-/- mice exhibit impaired F-actin polymerization and migratory capacity in Boyden-chamber assays in response chemokine (C-C motif) ligand 2 (CCL2). This migratory capacity could be normalized in the presence of SHIP-1 inhibitors. Of note, miR-155-/- mice challenged with mammary carcinomas exhibited heightened tumor burden which correlated with a lower number of tumor-infiltrating NK1.1+ cells. Our results support a novel, physiological role for SHIP-1 in the control of NK cell tumor trafficking, and implicate miR-155 in the regulation of NK cell chemotaxis, in the context of mammary carcinoma. This may implicate dysfunctional NK cells in the lack of tumor clearance in mice.
Collapse
Affiliation(s)
- Wendy M. Kandell
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, United States of America
| | - Sarah S. Donatelli
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Thu Le Trinh
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
- Dong Nai Technology University, Dong Nai Province, Vietnam
| | | | - Tina So
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Nhan Tu
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Danielle L. Gilvary
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Xianghong Chen
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Pingyan Cheng
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - William A. Adams
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Yin-Kai Chen
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Jinhong Liu
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Julie Y. Djeu
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Sheng Wei
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Erika A. Eksioglu
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
12
|
Jiang K, Yang J, Guo S, Zhao G, Wu H, Deng G. Peripheral Circulating Exosome-Mediated Delivery of miR-155 as a Novel Mechanism for Acute Lung Inflammation. Mol Ther 2019; 27:1758-1771. [PMID: 31405809 DOI: 10.1016/j.ymthe.2019.07.003] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 12/25/2022] Open
Abstract
Emerging evidence has revealed that excessive activation of macrophages may result in an adverse lung inflammation involved in sepsis-related acute lung injury (ALI). However, it has never been clearly identified whether peripheral circulating serum exosomes participate in the pathogenesis of sepsis-related ALI. Therefore, the purposes of our study were to investigate the effect of serum exosomes on macrophage activation and elucidate a novel mechanism underlying sepsis-related ALI. Here we found that exosomes were abundant in the peripheral blood from ALI mice and selectively loaded microRNAs (miRNAs), such as miR-155. In vivo experiments revealed that intravenous injection of serum exosomes harvested from ALI mice, but not control mice, increased the number of M1 macrophages in the lung, and it caused lung inflammation in naive mice. In vitro, we demonstrated that serum exosomes from ALI mice delivered miR-155 to macrophages, stimulated nuclear factor κB (NF-κB) activation, and induced the production of tumor necrosis factor alpha (TNF-α) and interleukin (IL)-6. Furthermore, we also showed that serum exosome-derived miR-155 promoted macrophage proliferation and inflammation by targeting SHIP1 and SOCS1, respectively. Collectively, our data suggest the important role of circulating exosomes secreted into peripheral blood as a key mediator of septic lung injury via exosome-shuttling miR-155.
Collapse
Affiliation(s)
- Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Jing Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Gan Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Haichong Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
13
|
Tsubata T. Ligand Recognition Determines the Role of Inhibitory B Cell Co-receptors in the Regulation of B Cell Homeostasis and Autoimmunity. Front Immunol 2018; 9:2276. [PMID: 30333834 PMCID: PMC6175988 DOI: 10.3389/fimmu.2018.02276] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/13/2018] [Indexed: 01/13/2023] Open
Abstract
B cells express various inhibitory co-receptors including CD22, CD72, and Siglec-G. These receptors contain immunoreceptor tyrosine-based inhibition motifs (ITIMs) in the cytoplasmic region. Although many of the inhibitory co-receptors negatively regulate BCR signaling by activating SH2-containing protein tyrosine phosphatase 1 (SHP-1), different inhibitory co-receptors have distinct functional properties. CD22, Siglec-G, and CD72 preferentially regulate tonic signaling in conventional B cells, B-1 cell homeostasis, and development of lupus-like disease, respectively. CD72 recognizes RNA-related lupus self-antigen Sm/RNP as a ligand. This ligand recognition recruits CD72 to BCR in Sm/RNP-reactive B cells thereby suppressing production of anti-Sm/RNP autoantibody involved in the pathogenesis of lupus. In contrast, Siglec-G recognizes α2,3 as well as α2,6 sialic acids whereas CD22 recognizes α2,6 sialic acid alone. Because glycoproteins including BCR are dominantly glycosylated with α2,3 sialic acids in B-1 cells, Siglec-G but not CD22 recruits BCR as a ligand specifically in B-1 cells, and regulates B-1 cell homeostasis by suppressing BCR signaling in B-1 cells. Thus, recognition of distinct ligands determines functional properties of different inhibitory B cell co-receptors.
Collapse
Affiliation(s)
- Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
14
|
Mortazavi-Jahromi SS, Farazmand A, Motamed N, Navabi SS, Mirshafiey A. Effects of guluronic acid (G2013) on SHIP1, SOCS1 induction and related molecules in TLR4 signaling pathway. Int Immunopharmacol 2018; 55:323-329. [DOI: 10.1016/j.intimp.2018.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 12/18/2017] [Accepted: 01/03/2018] [Indexed: 12/19/2022]
|
15
|
Current Pharmacologic Approaches in Painful Bladder Research: An Update. Int Neurourol J 2017; 21:235-242. [PMID: 29298474 PMCID: PMC5756823 DOI: 10.5213/inj.1735022.511] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 11/26/2017] [Indexed: 12/31/2022] Open
Abstract
The symptoms of interstitial cystitis (IC)/bladder pain syndrome (BPS) may have multiple causes and involve many contributing factors. Traditional treatments (intravesical instillations) have had a primary focus on the bladder as origin of symptoms without adequately considering the potential influence of other local (pelvic) or systemic factors. Systemic pharmacological treatments have had modest success. A contributing factor to the low efficacy is the lack of phenotyping the patients. Individualized treatment based on is desirable, but further phenotype categorization is needed. There seems to be general agreement that IC is a unique disease and that BPS is a syndrome with multiple pathophysiologies, but this has so far not been not been well reflected in preclinical research with the aim of finding new pharmacological treatments. Current research approaches, including anti-nerve growth factor treatment, anti-tumor necrosis factor-α treatment, activation of SHIP1 (AQX-1125), and P2X3 receptor antagonists, and α1-adrenoceptor antagonists are potential systemic treatments, implying that not only the bladder is exposed to the administered drug, which may be beneficial if the IC/BPS is a bladder manifestation of a systemic disease, or negative (adverse effects) if it is a local bladder condition. Local treatment approaches such as the antagonism of Toll-like receptors (which still is only experimental) and intravesical liposomes (with positive proof-of-concept), may have the advantages of a low number of systemic adverse effects, but cannot be expected to have effects on symptoms generated outside the bladder. Assessment of which of the treatment approaches discussed in this review that can be developed into useful therapies requires further studies.
Collapse
|
16
|
Liu CF, Min XY, Wang N, Wang JX, Ma N, Dong X, Zhang B, Wu W, Li ZF, Zhou W, Li K. Complement Receptor 3 Has Negative Impact on Tumor Surveillance through Suppression of Natural Killer Cell Function. Front Immunol 2017; 8:1602. [PMID: 29209332 PMCID: PMC5702005 DOI: 10.3389/fimmu.2017.01602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/06/2017] [Indexed: 01/31/2023] Open
Abstract
Complement receptor 3 (CR3) is expressed abundantly on natural killer (NK) cells; however, whether it plays roles in NK cell-dependent tumor surveillance is largely unknown. Here, we show that CR3 is an important negative regulator of NK cell function, which has negative impact on tumor surveillance. Mice deficient in CR3 (CD11b-/- mice) exhibited a more activated NK phenotype and had enhanced NK-dependent tumor killing. In a B16-luc melanoma-induced lung tumor growth and metastasis model, mice deficient in CR3 had reduced tumor growth and metastases, compared with WT mice. In addition, adaptive transfer of NK cells lacking CR3 (into NK-deficient mice) mediated more efficient suppression of tumor growth and metastases, compared with the transfer of CR3 sufficient NK cells, suggesting that CR3 can impair tumor surveillance through suppression of NK cell function. In vitro analyses showed that engagement of CR3 with iC3b (classical CR3 ligand) on NK cells negatively regulated NK cell activity and effector functions (i.e. direct tumor cell killing, antibody-dependent NK-mediated tumor killing). Cell signaling analyses showed that iC3b stimulation caused activation of Src homology 2 domain-containing inositol-5-phosphatase-1 (SHIP-1) and JNK, and suppression of ERK in NK cells, supporting that iC3b mediates negative regulation of NK cell function through its effects on SHIP-1, JNK, and ERK signal transduction pathways. Thus, our findings demonstrate a previously unknown role for CR3 in dysregulation of NK-dependent tumor surveillance and suggest that the iC3b/CR3 signaling is a critical negative regulator of NK cell function and may represent a new target for preserving NK cell function in cancer patients and improving NK cell-based therapy.
Collapse
Affiliation(s)
- Cheng-Fei Liu
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xiao-Yun Min
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Naiyin Wang
- Medical Research Council (MRC) Centre for Transplantation, King's College London, Guy's Hospital, London, United Kingdom
| | - Jia-Xing Wang
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Ning Ma
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xia Dong
- Medical Research Council (MRC) Centre for Transplantation, King's College London, Guy's Hospital, London, United Kingdom
| | - Bing Zhang
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Weiju Wu
- Medical Research Council (MRC) Centre for Transplantation, King's College London, Guy's Hospital, London, United Kingdom
| | - Zong-Fang Li
- National Local Joint Engineering Research Centre of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
| | - Wuding Zhou
- Medical Research Council (MRC) Centre for Transplantation, King's College London, Guy's Hospital, London, United Kingdom
| | - Ke Li
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Centre of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
17
|
Abstract
Self-reactive B cells are tolerized at various stages of B-cell development and differentiation, including the immature B-cell stage (central tolerance) and the germinal center (GC) B-cell stage, and B-cell tolerance involves various mechanisms such as deletion, anergy, and receptor editing. Self-reactive B cells generated by random immunoglobulin variable gene rearrangements are tolerized by central tolerance and anergy in the periphery, and these processes involve apoptosis regulated by Bim, a pro-apoptotic member of the Bcl-2 family, and regulation of B-cell signaling by various phosphatases, including SHIP-1 and SHP-1. Self-reactive B cells generated by somatic mutations during GC reaction are also eliminated. Fas is not directly involved in this process but prevents persistence of GC reaction that allows generation of less stringently regulated B cells, including self-reactive B cells. Defects in self-tolerance preferentially cause lupus-like disease with production of anti-nuclear antibodies, probably due to the presence of a large potential B-cell repertoire reactive to nucleic acids and the presence of nucleic acid-induced activation mechanisms in various immune cells, including B cells and dendritic cells. A feed-forward loop composed of anti-nuclear antibodies produced by B cells and type 1 interferons secreted from nucleic acid-activated dendritic cells plays a crucial role in the development of systemic lupus erythematosus.
Collapse
Affiliation(s)
- Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| |
Collapse
|
18
|
Lu ZJ, Wu JJ, Jiang WL, Xiao JH, Tao KZ, Ma L, Zheng P, Wan R, Wang XP. MicroRNA-155 promotes the pathogenesis of experimental colitis by repressing SHIP-1 expression. World J Gastroenterol 2017; 23:976-985. [PMID: 28246471 PMCID: PMC5311107 DOI: 10.3748/wjg.v23.i6.976] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/27/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023] Open
Abstract
AIM
To explore the mechanism by which microRNA-155 (miR-155) regulates the pathogenesis of experimental colitis.
METHODS
A luciferase assay was performed to confirm the binding of miR-155 to the SHIP-1 3’-UTR. MiR-155 mimics, negative controls and SHIP-1 expression/knockdown vectors were established and then utilized in gain- and loss-of-function studies performed in raw264.7 cells and primary bone marrow-derived macrophages (BMDMs). Thereafter, dextran sulfate sodium (DSS)-induced colitis mouse model with or without antagomiR-155 treatment was established, and the levels of miR-155 and SHIP-1, as well as the pro-inflammatory capabilities, were measured by western blot, quantitative polymerase chain reaction, and immunohistochemistry.
RESULTS
MiR-155 directly bound to the 3’-UTR of SHIP-1 mRNA and induced a significant decrease in SHIP-1 expression in both raw264.7 cells and primary BMDMs. MiR-155 markedly promoted cell proliferation and pro-inflammatory secretions including IL-6, TNF-α, IL-1β, and IFN-γ, whereas these effects could be reversed by the restoration of SHIP-1 expression. In vivo studies showed that antagomiR-155 administration could alleviate DSS-induced intestinal inflammation in Balb/c mice. Moreover, significantly increased SHIP-1 expression, as well as decreased Akt activation and inflammatory response, were observed in the antagomiR-155-treated mice.
CONCLUSION
MiR-155 promotes experimental colitis by repressing SHIP-1 expression. Thus, the inhibition of miR-155 might be a promising strategy for therapy.
Collapse
MESH Headings
- 3' Untranslated Regions
- Animals
- Antagomirs/administration & dosage
- Antagomirs/therapeutic use
- Blotting, Western
- Colitis, Ulcerative/chemically induced
- Colitis, Ulcerative/drug therapy
- Colitis, Ulcerative/metabolism
- Cytokines/metabolism
- Dextran Sulfate/toxicity
- Disease Models, Animal
- Down-Regulation
- Female
- Immunohistochemistry
- Mice
- Mice, Inbred BALB C
- MicroRNAs/metabolism
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism
- Primary Cell Culture
- Proto-Oncogene Proteins c-akt/metabolism
- RAW 264.7 Cells
- RNA Interference
- RNA, Small Interfering
- Signal Transduction
Collapse
|
19
|
Hamilton MJ, Halvorsen EC, LePard NE, Bosiljcic M, Ho VW, Lam V, Banáth J, Bennewith KL, Krystal G. SHIP represses lung inflammation and inhibits mammary tumor metastasis in BALB/c mice. Oncotarget 2016; 7:3677-91. [PMID: 26683227 PMCID: PMC4826161 DOI: 10.18632/oncotarget.6611] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 11/26/2015] [Indexed: 11/25/2022] Open
Abstract
SH2-containing-inositol-5'-phosphatase (SHIP) is a negative regulator of the phosphatidylinositol-3-kinase pathway in hematopoietic cells and limits the development of leukemias and lymphomas. The potential role of SHIP in solid tumor development and metastasis remains unknown. While SHIP restricts the aberrant development of myeloid cells in C57BL/6 mice, there are conflicting reports regarding the effect of SHIP deletion in BALB/c mice with important consequences for determining the influence of SHIP in different model tumor systems. We generated SHIP-/- BALB/c mice and challenged them with syngeneic non-metastatic 67NR or metastatic 4T1 mammary tumors. We demonstrate that SHIP restricts the development, alternative-activation, and immunosuppressive function of myeloid cells in tumor-free and tumor-bearing BALB/c mice. Tumor-free SHIP-/- BALB/c mice exhibited pulmonary inflammation, myeloid hyperplasia, and M2-polarized macrophages and this phenotype was greatly exacerbated by 4T1, but not 67NR, tumors. 4T1-bearing SHIP-/- mice rapidly lost weight and died from necrohemorrhagic inflammatory pulmonary disease, characterized by massive infiltration of pulmonary macrophages and myeloid-derived suppressor cells that were more M2-polarized and immunosuppressive than wild-type cells. Importantly, while SHIP loss did not affect primary tumor growth, 4T1-bearing SHIP-/- mice had 7.5-fold more metastatic tumor cells in their lungs than wild-type mice, consistent with the influence of immunosuppressive myeloid cells on metastatic growth. Our findings identify the hematopoietic cell-restricted protein SHIP as an intriguing target to influence the development of solid tumor metastases, and support development of SHIP agonists to prevent the accumulation of immunosuppressive myeloid cells and tumor metastases in the lungs to improve treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Melisa J Hamilton
- Department of Integrative Oncology, British Columbia Cancer Agency Research Centre, Vancouver, BC, Canada
| | - Elizabeth C Halvorsen
- Department of Integrative Oncology, British Columbia Cancer Agency Research Centre, Vancouver, BC, Canada
| | - Nancy E LePard
- Department of Integrative Oncology, British Columbia Cancer Agency Research Centre, Vancouver, BC, Canada
| | - Momir Bosiljcic
- Department of Integrative Oncology, British Columbia Cancer Agency Research Centre, Vancouver, BC, Canada
| | - Victor W Ho
- Terry Fox Laboratory, British Columbia Cancer Agency Research Centre, Vancouver, BC, Canada
| | - Vivian Lam
- Terry Fox Laboratory, British Columbia Cancer Agency Research Centre, Vancouver, BC, Canada
| | - Judit Banáth
- Department of Integrative Oncology, British Columbia Cancer Agency Research Centre, Vancouver, BC, Canada
| | - Kevin L Bennewith
- Department of Integrative Oncology, British Columbia Cancer Agency Research Centre, Vancouver, BC, Canada
| | - Gerald Krystal
- Terry Fox Laboratory, British Columbia Cancer Agency Research Centre, Vancouver, BC, Canada
| |
Collapse
|
20
|
Expression, Purification, Crystallisation and X-ray Crystallographic Analysis of a Truncated Form of Human Src Homology 2 Containing Inositol 5-Phosphatase 2. Protein J 2016; 35:225-30. [DOI: 10.1007/s10930-016-9665-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Blanco-Menéndez N, Del Fresno C, Fernandes S, Calvo E, Conde-Garrosa R, Kerr WG, Sancho D. SHIP-1 Couples to the Dectin-1 hemITAM and Selectively Modulates Reactive Oxygen Species Production in Dendritic Cells in Response to Candida albicans. THE JOURNAL OF IMMUNOLOGY 2015; 195:4466-4478. [PMID: 26416276 DOI: 10.4049/jimmunol.1402874] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 08/29/2015] [Indexed: 12/12/2022]
Abstract
Dectin-1 (Clec7a) is a paradigmatic C-type lectin receptor that binds Syk through a hemITAM motif and couples sensing of pathogens such as fungi to induction of innate responses. Dectin-1 engagement triggers a plethora of activating events, but little is known about the modulation of such pathways. Trying to define a more precise picture of early Dectin-1 signaling, we explored the interactome of the intracellular tail of the receptor in mouse dendritic cells. We found unexpected binding of SHIP-1 phosphatase to the phosphorylated hemITAM. SHIP-1 colocalized with Dectin-1 during phagocytosis of zymosan in a hemITAM-dependent fashion. Moreover, endogenous SHIP-1 relocated to live or heat-killed Candida albicans-containing phagosomes in a Dectin-1-dependent manner in GM-CSF-derived bone marrow cells (GM-BM). However, SHIP-1 absence in GM-BM did not affect activation of MAPK or production of cytokines and readouts dependent on NF-κB and NFAT. Notably, ROS production was enhanced in SHIP-1-deficient GM-BM treated with heat-killed C. albicans, live C. albicans, or the specific Dectin-1 agonists curdlan or whole glucan particles. This increased oxidative burst was dependent on Dectin-1, Syk, PI3K, phosphoinositide-dependent protein kinase 1, and NADPH oxidase. GM-BM from CD11c∆SHIP-1 mice also showed increased killing activity against live C. albicans that was dependent on Dectin-1, Syk, and NADPH oxidase. These results illustrate the complexity of myeloid C-type lectin receptor signaling, and how an activating hemITAM can also couple to intracellular inositol phosphatases to modulate selected functional responses and tightly regulate processes such as ROS production that could be deleterious to the host.
Collapse
Affiliation(s)
- Noelia Blanco-Menéndez
- Centro Nacional de Investigaciones Cardiovasculares "Carlos III" (CNIC), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - Carlos Del Fresno
- Centro Nacional de Investigaciones Cardiovasculares "Carlos III" (CNIC), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - Sandra Fernandes
- Microbiology and Immunology Department, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Enrique Calvo
- Proteomic Unit, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Ruth Conde-Garrosa
- Centro Nacional de Investigaciones Cardiovasculares "Carlos III" (CNIC), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - William G Kerr
- Microbiology and Immunology Department, SUNY Upstate Medical University, Syracuse, New York, USA.,Pediatrics Department, SUNY Upstate Medical University, Syracuse, New York, USA.,Chemistry Department, Syracuse University, Syracuse, New York, USA
| | - David Sancho
- Centro Nacional de Investigaciones Cardiovasculares "Carlos III" (CNIC), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| |
Collapse
|
22
|
Drobek A, Kralova J, Skopcova T, Kucova M, Novák P, Angelisová P, Otahal P, Alberich-Jorda M, Brdicka T. PSTPIP2, a Protein Associated with Autoinflammatory Disease, Interacts with Inhibitory Enzymes SHIP1 and Csk. THE JOURNAL OF IMMUNOLOGY 2015; 195:3416-26. [PMID: 26304991 DOI: 10.4049/jimmunol.1401494] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/28/2015] [Indexed: 11/19/2022]
Abstract
Mutations in the adaptor protein PSTPIP2 are the cause of the autoinflammatory disease chronic multifocal osteomyelitis in mice. This disease closely resembles the human disorder chronic recurrent multifocal osteomyelitis, characterized by sterile inflammation of the bones and often associated with inflammation in other organs, such as the skin. The most critical process in the disease's development is the enhanced production of IL-1β. This excessive IL-1β is likely produced by neutrophils. In addition, the increased activity of macrophages, osteoclasts, and megakaryocytes has also been described. However, the molecular mechanism of how PSTPIP2 deficiency results in this phenotype is poorly understood. Part of the PSTPIP2 inhibitory function is mediated by protein tyrosine phosphatases from the proline-, glutamic acid-, serine- and threonine-rich (PEST) family, which are known to interact with the central part of this protein, but other regions of PSTPIP2 not required for PEST-family phosphatase binding were also shown to be indispensable for PSTPIP2 function. In this article, we show that PSTPIP2 binds the inhibitory enzymes Csk and SHIP1. The interaction with SHIP1 is of particular importance because it binds to the critical tyrosine residues at the C terminus of PSTPIP2, which is known to be crucial for its PEST-phosphatase-independent inhibitory effects in different cellular systems. We demonstrate that in neutrophils this region is important for the PSTPIP2-mediated suppression of IL-1β processing and that SHIP1 inhibition results in the enhancement of this processing. We also describe deregulated neutrophil response to multiple activators, including silica, Ab aggregates, and LPS, which is suggestive of a rather generalized hypersensitivity of these cells to various external stimulants.
Collapse
Affiliation(s)
- Ales Drobek
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic
| | - Jarmila Kralova
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic
| | - Tereza Skopcova
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic
| | - Marketa Kucova
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic
| | - Petr Novák
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic
| | - Pavla Angelisová
- Laboratory of Molecular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic; and
| | - Pavel Otahal
- Laboratory of Molecular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic; and
| | - Meritxell Alberich-Jorda
- Laboratory of Hemato-oncology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic
| | - Tomas Brdicka
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic;
| |
Collapse
|
23
|
Abstract
Myeloid derived suppressor cells (MDSC) suppress anti-tumor immune responses. Our recent publication provides evidence that SHIP-1 plays a prominent role in pancreatic tumor development by regulating MDSC. Therefore, SHIP-1 may be a potential therapeutic target for the treatment of MDSC-related hematological malignancies and solid tumors.
Collapse
Affiliation(s)
- Tomar Ghansah
- University of South Florida; Department of Molecular Medicine; Tampa, FL USA
| |
Collapse
|
24
|
Xue H, Hua LM, Guo M, Luo JM. SHIP1 is targeted by miR-155 in acute myeloid leukemia. Oncol Rep 2014; 32:2253-9. [PMID: 25175984 DOI: 10.3892/or.2014.3435] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/29/2014] [Indexed: 11/06/2022] Open
Abstract
The SH2 domain-containing inositol 5'-phosphatase 1 (SHIP1) has been implicated as a suppressor of hematopoietic transformation as its activity can inhibit the PI3K/Akt signaling pathway. Reduced activity of SHIP1 has been observed in acute myeloid leukemia (AML). SHIP1 is a target of microRNA-155 (miR-155). Therefore, the aim of the present study was to investigate the role of miR-155/SHIP1 in the pathogenesis of AML. We examined the levels of SHIP1 protein and miR-155 in tissue samples of patients with AML and in AML cell lines. In addition, we investigated cell proliferation, apoptosis and expression of SHIP1/PI3K/AKT pathway molecules in the THP-1 and U937 cell lines after miR-155 inhibitor or mimics were transfected. We showed that the levels of SHIP1 protein were significantly decreased in tissue samples of patients with some subtypes of AML (M4 or M5) and in AML cell lines with concomitant overexpression of miR-155. In addition, we demonstrated that decreased expression of SHIP1 in the AML cell lines was a consequence of increased levels of miR-155 and can therefore be reversed in vitro through inhibition of miR-155, with subsequent inhibition of cell proliferation and promotion of cell apoptosis. In conclusion, expression of the SHIP1 protein is targeted by miR-155 in AML. miR-155 acts as an onco-miR, and the miR-155/SHIP1/PI3K/AKT signaling pathway could play an important role in the pathogenesis of AML.
Collapse
Affiliation(s)
- Hua Xue
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Luo-Ming Hua
- Department of Hematology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Ming Guo
- Department of Hematology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Jian-Min Luo
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
25
|
Chylek LA, Holowka DA, Baird BA, Hlavacek WS. An Interaction Library for the FcεRI Signaling Network. Front Immunol 2014; 5:172. [PMID: 24782869 PMCID: PMC3995055 DOI: 10.3389/fimmu.2014.00172] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/31/2014] [Indexed: 12/20/2022] Open
Abstract
Antigen receptors play a central role in adaptive immune responses. Although the molecular networks associated with these receptors have been extensively studied, we currently lack a systems-level understanding of how combinations of non-covalent interactions and post-translational modifications are regulated during signaling to impact cellular decision-making. To fill this knowledge gap, it will be necessary to formalize and piece together information about individual molecular mechanisms to form large-scale computational models of signaling networks. To this end, we have developed an interaction library for signaling by the high-affinity IgE receptor, FcεRI. The library consists of executable rules for protein–protein and protein–lipid interactions. This library extends earlier models for FcεRI signaling and introduces new interactions that have not previously been considered in a model. Thus, this interaction library is a toolkit with which existing models can be expanded and from which new models can be built. As an example, we present models of branching pathways from the adaptor protein Lat, which influence production of the phospholipid PIP3 at the plasma membrane and the soluble second messenger IP3. We find that inclusion of a positive feedback loop gives rise to a bistable switch, which may ensure robust responses to stimulation above a threshold level. In addition, the library is visualized to facilitate understanding of network circuitry and identification of network motifs.
Collapse
Affiliation(s)
- Lily A Chylek
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, NY , USA ; Los Alamos National Laboratory, Theoretical Division, Center for Non-linear Studies , Los Alamos, NM , USA
| | - David A Holowka
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, NY , USA
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, NY , USA
| | - William S Hlavacek
- Los Alamos National Laboratory, Theoretical Division, Center for Non-linear Studies , Los Alamos, NM , USA
| |
Collapse
|
26
|
Jin HM, Kim TJ, Choi JH, Kim MJ, Cho YN, Nam KI, Kee SJ, Moon JB, Choi SY, Park DJ, Lee SS, Park YW. MicroRNA-155 as a proinflammatory regulator via SHIP-1 down-regulation in acute gouty arthritis. Arthritis Res Ther 2014; 16:R88. [PMID: 24708712 PMCID: PMC4060367 DOI: 10.1186/ar4531] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 03/25/2014] [Indexed: 12/17/2022] Open
Abstract
Introduction Gout is characterized by episodes of intense joint inflammation in response to intra-articular monosodium urate monohydrate (MSU) crystals. miR-155 is crucial for the proinflammatory activation of human myeloid cells and antigen-driven inflammatory arthritis. The functional role of miR-155 in acute gouty arthritis has not been defined. Therefore, the aim of this study was to examine the role of miR-155 in pathogenesis of acute gouty arthritis. Methods Samples from 14 patients with acute gouty arthritis and 10 healthy controls (HCs) were obtained. Peripheral blood mononuclear cells (PBMCs) and synovial fluid mononuclear cells (SFMCs) were cultured in vitro with MSU crystals, and gene expression (human miR-155 and SHIP-1) were assessed by real-time PCR. THP-1 cells were stimulated by MSU crystals and/or miR-155 transfection and then subjected to Western blot analysis. Levels of human tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-1β in cell culture supernatants were measured by Luminex. Immunohistochemistry was performed on formalin-fixed gout tissues with anti–SHIP-1 antibody. A C57BL/6 J male mouse model of gout was used to analyze the expressions of miR-155, SHIP-1, and inflammatory cytokines. Results The samples from gouty arthritis were highly enriched in miR-155, with levels of expression being higher than those found in PBMC from HC. Treatment of the cells with MSU crystals strongly induced miR-155. In addition, overexpression of miR-155 in the cells decreased levels of SHIP-1 and promoted production of MSU-induced proinflammatory cytokines, such as TNF-α and IL-1β. Consistent with in vitro observations, miR-155 expression was elevated in the mouse model of gout. The production of inflammatory cytokines was markedly increased in MSU crystal induced peritonitis mice. Conclusions Overexpression of miR-155 in the gouty SFMC leads to suppress SHIP-1 levels and enhance proinflammatory cytokines.
Collapse
|
27
|
Negative regulation of chemokine receptor signaling and B-cell chemotaxis by p66Shc. Cell Death Dis 2014; 5:e1068. [PMID: 24556683 PMCID: PMC3944259 DOI: 10.1038/cddis.2014.44] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/20/2013] [Accepted: 01/02/2014] [Indexed: 12/11/2022]
Abstract
Shc (Src homology 2 domain containing) adaptors are ubiquitous components of the signaling pathways triggered by tyrosine kinase-coupled receptors. In lymphocytes, similar to other cell types, the p52 and p66 isoforms of ShcA/Shc participate in a self-limiting loop where p52Shc acts as a positive regulator of antigen receptor signaling by promoting Ras activation, whereas p66Shc limits this activity by competitively inhibiting p52Shc. Based on the fact that many signaling mediators are shared by antigen and chemokine receptors, including p52Shc, we have assessed the potential implication of p66Shc in the regulation of B-cell responses to chemokines, focusing on the homing receptors CXCR4 (C-X-C chemokine receptor type 4) and CXCR5 (C-X-C chemokine receptor type 5). The results identify p66Shc as a negative regulator of the chemotactic responses triggered by these receptors, including adhesion, polarization and migration. We also provide evidence that this function is dependent on the ability of p66Shc to interact with the chemokine receptors and promote the assembly of an inhibitory complex, which includes the phosphatases SHP-1 (Src homology phosphatase-1) and SHIP-1 (SH2 domain-containing inositol 5'-phosphatase-1), that results in impaired Vav-dependent reorganization of the actin cytoskeleton. This function maps to the phosphorylatable tyrosine residues in the collagen homology 1 (CH1) domain. The results identify p66Shc as a negative regulator of B-cell chemotaxis and suggest a role for this adaptor in the control of B-cell homing.
Collapse
|
28
|
Deletion of microRNA-155 reduces autoantibody responses and alleviates lupus-like disease in the Fas(lpr) mouse. Proc Natl Acad Sci U S A 2013; 110:20194-9. [PMID: 24282294 DOI: 10.1073/pnas.1317632110] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
MicroRNA-155 (miR-155) regulates antibody responses and subsequent B-cell effector functions to exogenous antigens. However, the role of miR-155 in systemic autoimmunity is not known. Using the death receptor deficient (Fas(lpr)) lupus-prone mouse, we show here that ablation of miR-155 reduced autoantibody responses accompanied by a decrease in serum IgG but not IgM anti-dsDNA antibodies and a reduction of kidney inflammation. MiR-155 deletion in Fas(lpr) B cells restored the reduced SH2 domain-containing inositol 5'-phosphatase 1 to normal levels. In addition, coaggregation of the Fc γ receptor IIB with the B-cell receptor in miR-155(-/-)-Fas(lpr) B cells resulted in decreased ERK activation, proliferation, and production of switched antibodies compared with miR-155 sufficient Fas(lpr) B cells. Thus, by controlling the levels of SH2 domain-containing inositol 5'-phosphatase 1, miR-155 in part maintains an activation threshold that allows B cells to respond to antigens.
Collapse
|
29
|
Yang Z, Zhang Y, Chen L. Investigation of anti-cancer mechanisms by comparative analysis of naked mole rat and rat. BMC SYSTEMS BIOLOGY 2013; 7 Suppl 2:S5. [PMID: 24565050 PMCID: PMC3852044 DOI: 10.1186/1752-0509-7-s2-s5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background The naked mole rats (NMRs) are small-sized underground rodents with plenty of unusual traits. Their life expectancy can be up to thirty years, more than seven times longer than laboratory rat. Furthermore, they are resistant to both congenital and experimentally induced cancer genesis. These peculiar physiological and pathological characteristics allow them to become a suitable model for cancer and aging research. Results In this paper, we carried out a genome-wide comparative analysis of rat and NMR using the recently published genome sequence of NMR. First, we identified all the rat-NMR orthologous genes and specific genes within each of them. The expanded and contracted numbers of protein families in NMR were also analyzed when compared to rat. Seven cancer-related protein families appeared to be significantly expanded, whereas several receptor families were found to be contracted in NMR. We then chose those rat genes that were inexistent in NMR and adopted KEGG pathway database to investigate the metabolic processes in which their proteins may be involved. These genes were significantly enriched in two rat cancer pathways, "Pathway in cancer" and "Bladder cancer". In the rat "Pathway in cancer", 9 out of 14 paths leading to evading apoptosis appeared to be affected in NMR. In addition, a significant number of other NMR-missing genes enriched in several cancer-related pathways have been known to be related to a variety of cancers, implying that many of them may be also related to tumorigenesis in mammals. Finally, investigation of sequence variations among orthologous proteins between rat and NMR revealed that significant fragment insertions/deletions within important functional domains were present in some NMR proteins, which might lead to expressional and/or functional changes of these genes in different species. Conclusions Overall, this study provides insights into understanding the possible anti-cancer mechanisms of NMR as well as searching for new cancer-related candidate genes.
Collapse
|
30
|
Stenton GR, Mackenzie LF, Tam P, Cross JL, Harwig C, Raymond J, Toews J, Wu J, Ogden N, MacRury T, Szabo C. Characterization of AQX-1125, a small-molecule SHIP1 activator: Part 1. Effects on inflammatory cell activation and chemotaxis in vitro and pharmacokinetic characterization in vivo. Br J Pharmacol 2013; 168:1506-18. [PMID: 23121445 DOI: 10.1111/bph.12039] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 09/14/2012] [Accepted: 10/16/2012] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The SH2-containing inositol-5'-phosphatase 1 (SHIP1) metabolizes PI(3,4,5)P3 to PI(3,4)P2. SHIP1-deficient mice exhibit progressive inflammation. Pharmacological activation of SHIP1 is emerging as a potential therapy for pulmonary inflammatory diseases. Here we characterize the efficacy of AQX-1125, a small-molecule SHIP1 activator currently in clinical development. EXPERIMENTAL APPROACH The effects of AQX-1125 were tested in several in vitro assays: on enzyme catalytic activity utilizing recombinant human SHIP1, on Akt phosphorylation in SHIP1-proficient and SHIP1-deficient cell lines, on cytokine release in murine splenocytes, on human leukocyte chemotaxis using modified Boyden chambers and on β-hexosaminidase release from murine mast cells. In addition, pharmacokinetic and drug distribution studies were performed in rats and dogs. RESULTS AQX-1125 increased the catalytic activity of human recombinant SHIP1, an effect, which was absent after deletion of the C2 region. AQX-1125 inhibited Akt phosphorylation in SHIP1-proficient but not in SHIP1-deficient cells, reduced cytokine production in splenocytes, inhibited the activation of mast cells and inhibited human leukocyte chemotaxis. In vivo, AQX-1125 exhibited >80% oral bioavailability and >5 h terminal half-life. CONCLUSIONS Consistent with the role of SHIP1 in cell activation and chemotaxis, the SHIP1 activator AQX-1125 inhibits Akt phosphorylation, inflammatory mediator production and leukocyte chemotaxis in vitro. The in vitro effects and the pharmacokinetic properties of the compound make it a suitable candidate for in vivo testing in various models of inflammation.
Collapse
|
31
|
Cytotoxicity of pomegranate polyphenolics in breast cancer cells in vitro and vivo: potential role of miRNA-27a and miRNA-155 in cell survival and inflammation. Breast Cancer Res Treat 2012; 136:21-34. [PMID: 22941571 DOI: 10.1007/s10549-012-2224-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/17/2012] [Indexed: 12/18/2022]
Abstract
Several studies have demonstrated that polyphenolics from pomegranate (Punica granatum L.) are potent inhibitors of cancer cell proliferation and induce apoptosis, cell cycle arrest, and also decrease inflammation in vitro and vivo. There is growing evidence that botanicals exert their cytotoxic and anti-inflammatory activities, at least in part, by decreasing specificity protein (Sp) transcription factors. These are overexpressed in breast tumors and regulate genes important for cancer cell survival and inflammation such as the p65 unit of NF-κB. Moreover, previous studies have shown that Pg extracts decrease inflammation in lung cancer cell lines by inhibiting phosphatidylinositol-3,4,5-trisphosphate (PI3K)-dependent phosphorylation of AKT in vitro and inhibiting the activation of NF-kB in vivo. The objective of this study was to investigate the roles of miR-27a-ZBTB10-Sp and miR-155-SHIP-1-PI3K on the anti-inflammatory and cytotoxic activity of pomegranate extract. Pg extract (2.5-50 μg/ml) inhibited growth of BT-474 and MDA-MB-231 cells but not the non-cancer MCF-10F and MCF-12F cells. Pg extract significantly decreased Sp1, Sp3, and Sp4 as well as miR-27a in BT474 and MDA-MB-231 cells and increased expression of the transcriptional repressor ZBTB10. A significant decrease in Sp proteins and Sp-regulated genes was also observed. Pg extract also induced SHIP-1 expression and this was accompanied by downregulation of miRNA-155 and inhibition of PI3K-dependent phosphorylation of AKT. Similar results were observed in tumors from nude mice bearing BT474 cells as xenografts and treated with Pg extract. The effects of antagomirs and knockdown of SHIP-1 by RNA interference confirmed that the anti-inflammatory and cytotoxic effects of Pg extract were partly due to the disruption of both miR-27a-ZBTB10 and miR-155-SHIP-1. In summary, the anticancer activities of Pg extract in breast cancer cells were due in part to targeting microRNAs155 and 27a. Both pathways play an important role in the proliferative/inflammatory phenotype exhibited by these cell lines.
Collapse
|
32
|
MacGlashan DW. IgE-dependent signaling as a therapeutic target for allergies. Trends Pharmacol Sci 2012; 33:502-9. [PMID: 22749712 PMCID: PMC3427396 DOI: 10.1016/j.tips.2012.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/02/2012] [Accepted: 06/07/2012] [Indexed: 01/21/2023]
Abstract
Atopic diseases are complex, with many immunological participants, but the central element in their expression is IgE antibody. In an atopic individual, the immune system pathologically reacts to environmental substances by producing IgE, and these allergen-specific IgE antibodies confer to IgE receptor-bearing cells responsiveness to the environmental substances. Mast cells and basophils are central to the immediate hypersensitivity reaction that is mediated by IgE. In humans, there are various other immune cells, notably dendritic cells and B cells, which can also bind IgE. For mast cells, basophils and dendritic cells, the receptor that binds IgE is the high-affinity receptor, FcɛRI. For B cells and a few other cell types, the low affinity receptor, FcɛRII, provides the cell with a means to sense the presence of IgE. This overview will focus on events following activation of the high-affinity receptor because FcɛRI generates the classical immediate hypersensitivity reaction.
Collapse
|
33
|
Condé C, Rambout X, Lebrun M, Lecat A, Di Valentin E, Dequiedt F, Piette J, Gloire G, Legrand S. The inositol phosphatase SHIP-1 inhibits NOD2-induced NF-κB activation by disturbing the interaction of XIAP with RIP2. PLoS One 2012; 7:e41005. [PMID: 22815893 PMCID: PMC3398883 DOI: 10.1371/journal.pone.0041005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/15/2012] [Indexed: 01/01/2023] Open
Abstract
SHIP-1 is an inositol phosphatase predominantly expressed in hematopoietic cells. Over the ten past years, SHIP-1 has been described as an important regulator of immune functions. Here, we characterize a new inhibitory function for SHIP-1 in NOD2 signaling. NOD2 is a crucial cytoplasmic bacterial sensor that activates proinflammatory and antimicrobial responses upon bacterial invasion. We observed that SHIP-1 decreases NOD2-induced NF-κB activation in macrophages. This negative regulation relies on its interaction with XIAP. Indeed, we observed that XIAP is an essential mediator of the NOD2 signaling pathway that enables proper NF-κB activation in macrophages. Upon NOD2 activation, SHIP-1 C-terminal proline rich domain (PRD) interacts with XIAP, thereby disturbing the interaction between XIAP and RIP2 in order to decrease NF-κB signaling.
Collapse
Affiliation(s)
- Claude Condé
- Laboratory of Virology and Immunology, Signal Transduction Unit, GIGA-R, University of Liège, Liège, Belgium
| | - Xavier Rambout
- The laboratory of protein signaling and interactions, Signal Transduction Unit, GIGA-R, University of Liège, Liège, Belgium
| | - Marielle Lebrun
- Laboratory of Virology and Immunology, Signal Transduction Unit, GIGA-R, University of Liège, Liège, Belgium
| | - Aurore Lecat
- Laboratory of Virology and Immunology, Signal Transduction Unit, GIGA-R, University of Liège, Liège, Belgium
| | | | - Franck Dequiedt
- The laboratory of protein signaling and interactions, Signal Transduction Unit, GIGA-R, University of Liège, Liège, Belgium
| | - Jacques Piette
- Laboratory of Virology and Immunology, Signal Transduction Unit, GIGA-R, University of Liège, Liège, Belgium
| | - Geoffrey Gloire
- Interface Entreprises-Université Liège Science park, Liège, Belgium
| | - Sylvie Legrand
- Laboratory of Virology and Immunology, Signal Transduction Unit, GIGA-R, University of Liège, Liège, Belgium
| |
Collapse
|
34
|
Pilon-Thomas S, Nelson N, Vohra N, Jerald M, Pendleton L, Szekeres K, Ghansah T. Murine pancreatic adenocarcinoma dampens SHIP-1 expression and alters MDSC homeostasis and function. PLoS One 2011; 6:e27729. [PMID: 22132131 PMCID: PMC3222660 DOI: 10.1371/journal.pone.0027729] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/23/2011] [Indexed: 01/04/2023] Open
Abstract
Background Pancreatic cancer is one of the most aggressive cancers, with tumor-induced myeloid-derived suppressor cells (MDSC) contributing to its pathogenesis and ineffective therapies. In response to cytokine/chemokine receptor activation, src homology 2 domain-containing inositol 5′-phosphatase-1 (SHIP-1) influences phosphatidylinositol-3-kinase (PI3K) signaling events, which regulate immunohomeostasis. We hypothesize that factors from murine pancreatic cancer cells cause the down-regulation of SHIP-1 expression, which may potentially contribute to MDSC expansion, and the suppression of CD8+ T cell immune responses. Therefore, we sought to determine the role of SHIP-1 in solid tumor progression, such as murine pancreatic cancer. Methodology and Principal Findings Immunocompetent C57BL/6 mice were inoculated with either murine Panc02 cells (tumor-bearing [TB] mice) or Phosphate Buffer Saline (PBS) (control mice). Cytometric Bead Array (CBA) analysis of supernatants of cultured Panc02 detected pro-inflammatory cytokines such as IL-6, IL-10 and MCP-1. TB mice showed a significant increase in serum levels of pro-inflammatory factors IL-6 and MCP-1 measured by CBA. qRT-PCR and Western blot analyses revealed the in vivo down-regulation of SHIP-1 expression in splenocytes from TB mice. Western blot analyses also detected reduced SHIP-1 activity, increased AKT-1 and BAD hyper-phosphorylation and up-regulation of BCL-2 expression in splenocytes from TB mice. In vitro, qRT-PCR and Western blot analyses detected reduced SHIP-1 mRNA and protein expression in control splenocytes co-cultured with Panc02 cells. Flow cytometry results showed significant expansion of MDSC in peripheral blood and splenocytes from TB mice. AutoMACS sorted TB MDSC exhibited hyper-phosphorylation of AKT-1 and over-expression of BCL-2 detected by western blot analysis. TB MDSC significantly suppressed antigen-specific CD8+ T cell immune responses in vitro. Conclusion/Significance SHIP-1 may regulate immune development that impacts MDSC expansion and function, contributing to pancreatic tumor progression. Thus, SHIP-1 can be a potential therapeutic target to help restore immunohomeostasis and improve therapeutic responses in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Shari Pilon-Thomas
- Immunology Program, H. Lee Moffitt Comprehensive Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Nadine Nelson
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Nasreen Vohra
- Immunology Program, H. Lee Moffitt Comprehensive Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Maya Jerald
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Laura Pendleton
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Karoly Szekeres
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Tomar Ghansah
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|