1
|
Chemotherapy Resistance: Role of Mitochondrial and Autophagic Components. Cancers (Basel) 2022; 14:cancers14061462. [PMID: 35326612 PMCID: PMC8945922 DOI: 10.3390/cancers14061462] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Chemotherapy resistance is a common occurrence during cancer treatment that cancer researchers are attempting to understand and overcome. Mitochondria are a crucial intracellular signaling core that are becoming important determinants of numerous aspects of cancer genesis and progression, such as metabolic reprogramming, metastatic capability, and chemotherapeutic resistance. Mitophagy, or selective autophagy of mitochondria, can influence both the efficacy of tumor chemotherapy and the degree of drug resistance. Regardless of the fact that mitochondria are well-known for coordinating ATP synthesis from cellular respiration in cellular bioenergetics, little is known its mitophagy regulation in chemoresistance. Recent advancements in mitochondrial research, mitophagy regulatory mechanisms, and their implications for our understanding of chemotherapy resistance are discussed in this review. Abstract Cancer chemotherapy resistance is one of the most critical obstacles in cancer therapy. One of the well-known mechanisms of chemotherapy resistance is the change in the mitochondrial death pathways which occur when cells are under stressful situations, such as chemotherapy. Mitophagy, or mitochondrial selective autophagy, is critical for cell quality control because it can efficiently break down, remove, and recycle defective or damaged mitochondria. As cancer cells use mitophagy to rapidly sweep away damaged mitochondria in order to mediate their own drug resistance, it influences the efficacy of tumor chemotherapy as well as the degree of drug resistance. Yet despite the importance of mitochondria and mitophagy in chemotherapy resistance, little is known about the precise mechanisms involved. As a consequence, identifying potential therapeutic targets by analyzing the signal pathways that govern mitophagy has become a vital research goal. In this paper, we review recent advances in mitochondrial research, mitophagy control mechanisms, and their implications for our understanding of chemotherapy resistance.
Collapse
|
2
|
Lu JF, Zhao J, Sun M, Ji XH, Huang P, Ge HG. Synthesis and Crystal Structure of 1-(3-Amino-4-Morpholino-1H-Indazole-1-Carbonyl)-N-(4-Methoxyphenyl)Cyclopropane-1-Carboxamide, a Molecule with Antiproliferative Activity. CRYSTALLOGR REP+ 2021. [DOI: 10.1134/s1063774521030160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Panina SB, Pei J, Kirienko NV. Mitochondrial metabolism as a target for acute myeloid leukemia treatment. Cancer Metab 2021; 9:17. [PMID: 33883040 PMCID: PMC8058979 DOI: 10.1186/s40170-021-00253-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemias (AML) are a group of aggressive hematologic malignancies resulting from acquired genetic mutations in hematopoietic stem cells that affect patients of all ages. Despite decades of research, standard chemotherapy still remains ineffective for some AML subtypes and is often inappropriate for older patients or those with comorbidities. Recently, a number of studies have identified unique mitochondrial alterations that lead to metabolic vulnerabilities in AML cells that may present viable treatment targets. These include mtDNA, dependency on oxidative phosphorylation, mitochondrial metabolism, and pro-survival signaling, as well as reactive oxygen species generation and mitochondrial dynamics. Moreover, some mitochondria-targeting chemotherapeutics and their combinations with other compounds have been FDA-approved for AML treatment. Here, we review recent studies that illuminate the effects of drugs and synergistic drug combinations that target diverse biomolecules and metabolic pathways related to mitochondria and their promise in experimental studies, clinical trials, and existing chemotherapeutic regimens.
Collapse
Affiliation(s)
| | - Jingqi Pei
- Department of BioSciences, Rice University, Houston, TX, USA
| | | |
Collapse
|
4
|
Zheng B, Yang Y, Li J, Li J, Zuo S, Chu X, Xu S, Ma D, Chu L. Magnesium Isoglycyrrhizinate Alleviates Arsenic Trioxide-Induced Cardiotoxicity: Contribution of Nrf2 and TLR4/NF-κB Signaling Pathway. Drug Des Devel Ther 2021; 15:543-556. [PMID: 33603344 PMCID: PMC7886103 DOI: 10.2147/dddt.s296405] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Magnesium isoglycyrrhizinate (MgIG), a single stereoisomer magnesium salt of glycyrrhizic acid, has beneficial effects on the cardiovascular system through anti-inflammatory, anti-oxidation, and anti-apoptotic actions. However, MgIG has not been shown to provide protection against cardiotoxicity induced by arsenic trioxide (ATO). This study aims to demonstrate the protection of MgIG against ATO-induced cardiac toxicity in mice and to investigate the underlying mechanism. METHODS A mouse cardiotoxicity model was established by administering 5 mg/kg ATO for 7 days. MgIG used in conjunction with the ATO to assess its cardioprotection. RESULTS MgIG administration could significantly reduce reactive oxygen species generation and the changes in tissue morphology. Also, MgIG administration increased the activity of antioxidase, such as superoxide dismutase, catalase, and glutathione peroxidase, and reduced malondialdehyde content and pro-inflammatory cytokine levels. Western blotting showed decreased expression of Bcl-2 associated X protein and Caspase-3, with increased expression of B-cell lymphoma 2. Importantly, MgIG administration increased nuclear factor-erythroid-2-related factor 2 (Nrf2) expression, while the expressions of nuclear factor kappa-B (NF-κB) and toll-like receptor-4 (TLR4) were significantly decreased. CONCLUSION Our data showed that MgIG alleviates ATO-induced cardiotoxicity, which is associated to the anti-inflammation, anti-oxidation, and anti-apoptosis action, potentially through activation of the Nrf2 pathway and suppression of the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Bin Zheng
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People’s Republic of China
| | - Yakun Yang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People’s Republic of China
| | - Jinghan Li
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People’s Republic of China
| | - Jing Li
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People’s Republic of China
| | - Saijie Zuo
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People’s Republic of China
| | - Xi Chu
- Department of Pharmacy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, People’s Republic of China
| | - Shan Xu
- Hebei Province Hospital of Chinese Medicine, Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People’s Republic of China
| | - Donglai Ma
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People’s Republic of China
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People’s Republic of China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People’s Republic of China
| |
Collapse
|
5
|
Diastereoselective synthesis of new Thiazolyl-Indazole derivatives from R-carvone: A combined experimental and theoretical study. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
The Potential of Lonidamine in Combination with Chemotherapy and Physical Therapy in Cancer Treatment. Cancers (Basel) 2020; 12:cancers12113332. [PMID: 33187214 PMCID: PMC7696079 DOI: 10.3390/cancers12113332] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The unique characteristics of tumor energy metabolism (highly dependent on aerobic glycolysis, namely, the Warburg effect) make it an interesting and attractive target for drug discovery. Radio- and chemoresistance are closely associated with the Warburg effect. Lonidamine (LND), as a glycolytic inhibitor, although having low anticancer activity when used alone, exhibits selectivity to various tumors, and its adverse effects do not overlap when combined with other chemotherapeutic drugs. Therefore, LND may be very promising as a sensitizer of tumors to chemotherapeutic agents and physical therapies. This review summarizes the advance of LND in combination with chemotherapy and physical therapy over the past several decades, as well as the promising LND derivative adjudin (ADD). The underlying sensitizing mechanisms were also analyzed and discussed, which may contribute to an improved therapeutic effect in future clinical cancer treatment. Abstract Lonidamine (LND) has the ability to resist spermatogenesis and was first used as an anti-spermatogenic agent. Later, it was found that LND has a degree of anticancer activity. Currently, LND is known to target energy metabolism, mainly involving the inhibition of monocarboxylate transporter (MCT), mitochondrial pyruvate carrier (MPC), respiratory chain complex I/II, mitochondrial permeability transition (PT) pore, and hexokinase II (HK-II). However, phase II clinical studies showed that LND alone had a weak therapeutic effect, and the effect was short and reversible. Interestingly, LND does not have the common side effects of traditional chemotherapeutic drugs, such as alopecia and myelosuppression. In addition, LND has selective activity toward various tumors, and its toxic and side effects do not overlap when combined with other chemotherapeutic drugs. Therefore, LND is commonly used as a chemosensitizer to enhance the antitumor effects of chemotherapeutic drugs based on its disruption of energy metabolism relating to chemo- or radioresistance. In this review, we summarized the combination treatments of LND with several typical chemotherapeutic drugs and several common physical therapies, such as radiotherapy (RT), hyperthermia (HT), and photodynamic therapy (PDT), and discussed the underlying mechanisms of action. Meanwhile, the development of novel formulations of LND in recent years and the research progress of LND derivative adjudin (ADD) as an anticancer drug were also discussed.
Collapse
|
7
|
Benajiba L, Alexe G, Su A, Raffoux E, Soulier J, Hemann MT, Hermine O, Itzykson R, Stegmaier K, Puissant A. Creatine kinase pathway inhibition alters GSK3 and WNT signaling in EVI1-positive AML. Leukemia 2018; 33:800-804. [PMID: 30390009 DOI: 10.1038/s41375-018-0291-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/24/2018] [Accepted: 09/18/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Lina Benajiba
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,The Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA.,INSERM U1163 and CNRS 8254, Imagine Institute, Université Paris Saclay, Paris, France
| | - Gabriela Alexe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,The Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA.,Bioinformatics Graduate Program, Boston University, Boston, MA, USA
| | - Angela Su
- INSERM UMR 944, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris, France
| | - Emmanuel Raffoux
- Département d'Hématologie, Hôpital Saint-Louis, Assistance Publique - Hopitaux de Paris, Paris, France
| | - Jean Soulier
- Département d'Hématologie, Hôpital Saint-Louis, Assistance Publique - Hopitaux de Paris, Paris, France
| | - Michael T Hemann
- Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Olivier Hermine
- INSERM U1163 and CNRS 8254, Imagine Institute, Université Paris Saclay, Paris, France
| | - Raphael Itzykson
- INSERM UMR 944, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris, France.,Département d'Hématologie, Hôpital Saint-Louis, Assistance Publique - Hopitaux de Paris, Paris, France
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA. .,The Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Alexandre Puissant
- INSERM UMR 944, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris, France.
| |
Collapse
|
8
|
Lu JF, Jin LX, Ge HG, Song J, Zhao CB, Guo XH, Yue SY, Li L. Synthesis, Crystal Structure and Antitumour Activity of 4-(3-Amino-4-Morpholino-1H-Indazole-1-Carbonyl)Benzonitrile. JOURNAL OF CHEMICAL RESEARCH 2018. [DOI: 10.3184/174751918x15287920661730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The title compound, 4-(3-amino-4-morpholino-1 H-indazole-1-carbonyl)benzonitrile was synthesised by condensation of 4-cyanobenzoic acid with 4-morpholino-1 H-indazol-3-amine, which was prepared from 2,6-difluorobenzonitrile by amination with morpholine and then cyclisation with hydrazine hydrate. The crystal structure of the title compound was determined and the crystals belong to the monoclinic system, space group P21/ c. In addition, the compound showed some inhibition of the proliferation of some cancer cell lines.
Collapse
Affiliation(s)
- Jiu-fu Lu
- Shaanxi Province Key Laboratory of Catalytic Foundation and Application, College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong 723001, P.R. China
| | - Ling-xia Jin
- Shaanxi Province Key Laboratory of Catalytic Foundation and Application, College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong 723001, P.R. China
| | - Hong-guang Ge
- Shaanxi Province Key Laboratory of Catalytic Foundation and Application, College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong 723001, P.R. China
| | - Juan Song
- Shaanxi Province Key Laboratory of Catalytic Foundation and Application, College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong 723001, P.R. China
| | - Cai-bin Zhao
- Shaanxi Province Key Laboratory of Catalytic Foundation and Application, College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong 723001, P.R. China
| | - Xiao-hua Guo
- Shaanxi Province Key Laboratory of Catalytic Foundation and Application, College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong 723001, P.R. China
| | - Si-yu Yue
- Shaanxi Province Key Laboratory of Catalytic Foundation and Application, College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong 723001, P.R. China
| | - Li Li
- Shaanxi Province Key Laboratory of Catalytic Foundation and Application, College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong 723001, P.R. China
| |
Collapse
|
9
|
Chen QY, Costa M. PI3K/Akt/mTOR Signaling Pathway and the Biphasic Effect of Arsenic in Carcinogenesis. Mol Pharmacol 2018; 94:784-792. [PMID: 29769245 PMCID: PMC5994485 DOI: 10.1124/mol.118.112268] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/30/2018] [Indexed: 12/22/2022] Open
Abstract
Arsenic is a naturally occurring, ubiquitous metalloid found in the Earth’s crust. In its inorganic form, arsenic is highly toxic and carcinogenic and is widely found across the globe and throughout the environment. As an International Agency for Research on Cancer–defined class 1 human carcinogen, arsenic can cause multiple human cancers, including liver, lung, urinary bladder, skin, kidney, and prostate. Mechanisms of arsenic-induced carcinogenesis remain elusive, and this review focuses specifically on the role of the PI3K/AKT/mTOR pathway in promoting cancer development. In addition to exerting potent carcinogenic responses, arsenic is also known for its therapeutic effects against acute promyelocytic leukemia. Current literature suggests that arsenic can achieve both therapeutic as well as carcinogenic effects, and this review serves to examine the paradoxical effects of arsenic, specifically through the PI3K/AKT/mTOR pathway. Furthermore, a comprehensive review of current literature reveals an imperative need for future studies to establish and pinpoint the exact conditions for which arsenic can, and through what mechanisms it is able to, differentially regulate the PI3K/AKT/mTOR pathway to maximize the therapeutic and minimize the carcinogenic properties of arsenic.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| |
Collapse
|
10
|
Bao H, Zhang Q, Du Y, Zhang C, Xu H, Zhu Z, Yan Z. Apoptosis induction in K562 human myelogenous leukaemia cells is connected to the modulation of Wnt/β-catenin signalling by BHX, a novel pyrazoline derivative. Cell Prolif 2018; 51:e12433. [PMID: 29341317 DOI: 10.1111/cpr.12433] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES The goal of this study was to explore the effects of BHX on human chronic myeloid leukaemia (CML) cells and to elucidate the underlying molecular mechanism. MATERIALS AND METHODS CML cell line K562 cells were treated with BHX. The effects of BHX on cell proliferation, apoptosis and cell cycle were detected. Subsequently, the caspase, ATP activity, Ca2+ , ROS and mitochondrial membrane potential (MMP) levels treated with various concentrations of BHX were analysed. The variation of relevant proteins and genes was detected. Further, toxicity of BHX on peripheral blood cells, bone marrow-nucleated cells (BMNC) and organ index were investigated on mice. RESULTS Results showed that BHX suppressed K562 cell proliferation in a dose-dependent manner and induced apoptosis and G0/G1 phase arrest. BHX induced mitochondria-mediated apoptosis, which was associated with downregulation of MMP, activation of caspase-3 and caspase-9, generation of intracellular ROS and elevation of Ca2+ in K562 cells. In treated cells, ATP levels were decreased, expression of total β-catenin, phosphorylated β-catenin and β-catenin in the nucleus was decreased, and expression of cell cycle-related proteins was decreased. Further analysis revealed that BHX lowered the transcriptional level of β-catenin. Lastly, BHX treatment significantly reduced the number of white blood cells, but had no effect on BMNC and organ index. CONCLUSIONS These findings provide further insight into the potential use of BHX as an anti-cancer agent against human leukaemia.
Collapse
Affiliation(s)
- Hanmei Bao
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qing Zhang
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yibo Du
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Cai Zhang
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hui Xu
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhongling Zhu
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhao Yan
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
11
|
Li D, Wei Y, Xu S, Niu Q, Zhang M, Li S, Jing M. A systematic review and meta-analysis of bidirectional effect of arsenic on ERK signaling pathway. Mol Med Rep 2018; 17:4422-4432. [PMID: 29328451 PMCID: PMC5802217 DOI: 10.3892/mmr.2018.8383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/21/2017] [Indexed: 01/05/2023] Open
Abstract
Arsenic is a toxic metal, which ultimately leads to cell apoptosis. ERK is considered a key transcriptional regulator of arsenic‑induced apoptosis. Due to a few controversial issues about arsenic‑mediated extracellular signal‑regulated MAP kinases (ERK) signaling, a meta‑analysis was performed. Subgroup analyses demonstrated that high doses (≥2 µmol/l) of arsenic increased the expression of Ras, ERK, ERK1, ERK2, phosphorylated (p)‑ERK, p‑ERK1, and p‑ERK2, while low doses (<2 µmol/l) decreased the expression of Ras, ERK1, p‑ERK, and p‑ERK2 when compared to control groups. Long term exposure (>24 h) to arsenic led to inhibition of expression of ERK1, p‑ERK1, and p‑ERK2, whereas short‑term exposure (≤24 h) triggered the expression of ERK1, ERK2, p‑ERK, p‑ERK1, and p‑ERK2. Furthermore, normal cells exposed to arsenic exhibited higher production levels of Ras and p‑ERK. Conversely, exposure of cancer cells to arsenic showed a lower level of production of Ras and p‑ERK as well as higher level of p‑ERK1 and p‑ERK2 as compared to control group. Short‑term exposure of normal cells to high doses of arsenic may promote ERK signaling pathway. In contrast, long‑term exposure of cancer cells to low doses of arsenic may inhibit ERK signaling pathway. This study may be helpful in providing a theoretical basis for the diverging result of arsenic adverse effects on one hand and therapeutic mechanisms on the other concerning arsenic‑induced apoptosis.
Collapse
Affiliation(s)
- Dongjie Li
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Yutao Wei
- Department of Cardiothoracic Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Shangzhi Xu
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Qiang Niu
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Mei Zhang
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Shugang Li
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Mingxia Jing
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| |
Collapse
|
12
|
Zhang XY, Zhang M, Cong Q, Zhang MX, Zhang MY, Lu YY, Xu CJ. Hexokinase 2 confers resistance to cisplatin in ovarian cancer cells by enhancing cisplatin-induced autophagy. Int J Biochem Cell Biol 2017; 95:9-16. [PMID: 29247711 DOI: 10.1016/j.biocel.2017.12.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/08/2017] [Accepted: 12/09/2017] [Indexed: 01/06/2023]
Abstract
The high mortality rate of ovarian cancer is connected with the development of acquired resistance to multiple cancer drugs, especially cisplatin. Activation of cytoprotective autophagy has been implicated as a contributing mechanism for acquired cisplatin resistance in ovarian cancer cells. Hexokinase 2 (HK2) phosphorylates glucose to generate glucose-6-phosphate, the rate-limiting step in glycolysis. Higher HK2 expression has been associated with chemoresistance in ovarian cancer. However, whether HK2 functionally contributes to cisplatin resistance in ovarian cancer is unclear. In this study, we investigated the role of HK2 in regulating ovarian cancer cisplatin resistance. Increased HK2 levels were detected in drug-resistant human ovarian cancer cells and tissues. Cisplatin downregulated HK2 in cisplatin-sensitive but not in resistant ovarian cancer cells. HK2 knockdown sensitized resistant ovarian cancer cells to cisplatin-induced cell death and apoptosis. Conversely, HK2 overexpression in cisplatin-sensitive cells induced cisplatin resistance. Mechanistically, cisplatin increased ERK1/2 phosphorylation as well as autophagic activity. Blocking autophagy with the autophagy inhibitor 3-MA sensitized resistant ovarian cancer cells to cisplatin. HK2 overexpression enhanced cisplatin-induced ERK1/2 phosphorylation and autophagy while HK2 knockdown showed the opposite effects. Blocking the MEK/ERK pathway using the MEK inhibitor U0126 prevented cisplatin-induced autophagy enhanced by HK2 overexpression. Furthermore, HK2 knockdown sensitized resistance ovarian tumor xenografts to cisplatin in vivo. In conclusion, our data supported that HK2 promotes cisplatin resistance in ovarian cancer by enhancing drug-induced, ERK-mediated autophagy. Therefore, targeting HK2 may be a new therapeutic strategy to combat chemoresistance in ovarian cancer.
Collapse
Affiliation(s)
- Xiao-Yan Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Meng Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai 200032, China
| | - Qing Cong
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai 200032, China
| | - Ming-Xing Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai 200032, China
| | - Meng-Yu Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Ying-Ying Lu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai 200032, China
| | - Cong-Jian Xu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China.
| |
Collapse
|
13
|
Molecular insight of arsenic-induced carcinogenesis and its prevention. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:443-455. [PMID: 28229170 DOI: 10.1007/s00210-017-1351-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 01/26/2017] [Indexed: 12/20/2022]
Abstract
Population of India and Bangladesh and many other parts of the world are badly exposed to arsenic through drinking water. Due to non-availability of safe drinking water, they are dependent on arsenic-contaminated water. Generally, poverty level is high in those areas with lack of proper nutrition. Arsenic is considered to be an environmental contaminant and widely distributed in the environment due to its natural existence and anthropogenic applications. Contamination of arsenic in both human and animal could occur through air, soil, and other sources. Arsenic exposure mainly occurs in food materials through drinking water with high levels of arsenic in it. High levels of arsenic in groundwater have been found to be associated with various health-related problems including arsenicosis, skin lesions, cardiovascular diseases, reproductive problems, psychological, neurological, immunotoxic, and carcinogenesis. The mechanism of arsenic toxicity consists in its transformation in metaarsenite, which acylates protein sulfhydryl groups, affect on mitochondria by inhibiting succinic dehydrogenase activity and can uncouple oxidative phosphorylation with production of active oxygen species by tissues. A variety of dietary antioxidant supplements are useful to protect the carcinogenetic effects of arsenic. They play crucial role for counteracting oxidative damage and protect carcinogenesis by chelating with heavy metal moiety. Phytochemicals and chelating agents will be beneficial for combating heavy metal-induced carcinogenesis through its biopharmaceutical properties.
Collapse
|
14
|
pH-sensitive micelles for the intracellular co-delivery of curcumin and Pluronic L61 unimers for synergistic reversal effect of multidrug resistance. Sci Rep 2017; 7:42465. [PMID: 28195164 PMCID: PMC5307950 DOI: 10.1038/srep42465] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 01/11/2017] [Indexed: 12/17/2022] Open
Abstract
Pluronic L61 unimers, which are biomacromolecular modulators, and curcumin, a small-molecule modulator, were co-formulated into pH-sensitive micelles to reveal the full synergistic potential of combination drug treatments to reverse multidrug resistance (MDR). Compared to monotherapy, combined therapy significantly improved the cytotoxicity, cellular uptake and apoptotic effects of doxorubicin (DOX) against MCF-7/ADR cells. In mechanistic studies, both L61 and curcumin enhanced the cytotoxic effect by acting on mitochondrial signalling pathways. The compounds selectively accumulated in the mitochondria and disabled the mitochondria by dissipating the mitochondrial membrane potential, decreasing the ATP levels, and releasing cytochrome c, which initiated a cascade of caspase-9 and caspase-3 reactions. Furthermore, both curcumin and L61 down-regulated the expression and function of P-gp in response to drug efflux from the MCF-7/ADR cells. In the MCF-7/ADR tumour-bearing mouse model, intravenous administration of the combined therapy directly targeted the tumour, as revealed by the accumulation of DiR in the tumour site, which led to a significant inhibition of tumour growth without measurable side effects. In conclusion, co-formulation consisting of L61 and curcumin in pH-sensitive micelles induced significant synergistic effects on the reversal of MDR. Therefore, the intracellular co-delivery of various MDR modulators has great potential to reverse MDR in tumours.
Collapse
|
15
|
Mediani L, Gibellini F, Bertacchini J, Frasson C, Bosco R, Accordi B, Basso G, Bonora M, Calabrò ML, Mattiolo A, Sgarbi G, Baracca A, Pinton P, Riva G, Rampazzo E, Petrizza L, Prodi L, Milani D, Luppi M, Potenza L, De Pol A, Cocco L, Capitani S, Marmiroli S. Reversal of the glycolytic phenotype of primary effusion lymphoma cells by combined targeting of cellular metabolism and PI3K/Akt/ mTOR signaling. Oncotarget 2016; 7:5521-37. [PMID: 26575168 PMCID: PMC4868703 DOI: 10.18632/oncotarget.6315] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/27/2015] [Indexed: 12/12/2022] Open
Abstract
PEL is a B-cell non-Hodgkin lymphoma, occurring predominantly as a lymphomatous effusion in body cavities, characterized by aggressive clinical course, with no standard therapy. Based on previous reports that PEL cells display a Warburg phenotype, we hypothesized that the highly hypoxic environment in which they grow in vivo makes them more reliant on glycolysis, and more vulnerable to drugs targeting this pathway. We established here that indeed PEL cells in hypoxia are more sensitive to glycolysis inhibition. Furthermore, since PI3K/Akt/mTOR has been proposed as a drug target in PEL, we ascertained that pathway-specific inhibitors, namely the dual PI3K and mTOR inhibitor, PF-04691502, and the Akt inhibitor, Akti 1/2, display improved cytotoxicity to PEL cells in hypoxic conditions. Unexpectedly, we found that these drugs reduce lactate production/extracellular acidification rate, and, in combination with the glycolysis inhibitor 2-deoxyglucose (2-DG), they shift PEL cells metabolism from aerobic glycolysis towards oxidative respiration. Moreover, the associations possess strong synergistic cytotoxicity towards PEL cells, and thus may reduce adverse reaction in vivo, while displaying very low toxicity to normal lymphocytes. Finally, we showed that the association of 2-DG and PF-04691502 maintains its cytotoxic and proapoptotic effect also in PEL cells co-cultured with human primary mesothelial cells, a condition known to mimic the in vivo environment and to exert a protective and pro-survival action. All together, these results provide a compelling rationale for the clinical development of new therapies for the treatment of PEL, based on combined targeting of glycolytic metabolism and constitutively activated signaling pathways.
Collapse
Affiliation(s)
- Laura Mediani
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Federica Gibellini
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Jessika Bertacchini
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy.,Department of Morphology, Surgery and Experimental Medicine, Section of Anatomy and Histology and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Chiara Frasson
- Department of Woman's and Child's Health and Institute of Pediatric Research - Città della Speranza Foundation, University of Padova, Padova, Italy
| | - Raffaella Bosco
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Benedetta Accordi
- Department of Woman's and Child's Health and Institute of Pediatric Research - Città della Speranza Foundation, University of Padova, Padova, Italy
| | - Giuseppe Basso
- Department of Woman's and Child's Health and Institute of Pediatric Research - Città della Speranza Foundation, University of Padova, Padova, Italy
| | - Massimo Bonora
- Department of Morphology, Surgery and Experimental Medicine Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Maria Luisa Calabrò
- Immunology and Molecular Oncology, Veneto Institute of Oncology, IOV IRCCS, Padova, Italy
| | - Adriana Mattiolo
- Immunology and Molecular Oncology, Veneto Institute of Oncology, IOV IRCCS, Padova, Italy
| | - Gianluca Sgarbi
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandra Baracca
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Giovanni Riva
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, AOU Policlinico, Modena, Italy
| | - Enrico Rampazzo
- Department of Chemistry, University of Bologna, Bologna, Italy
| | - Luca Petrizza
- Department of Chemistry, University of Bologna, Bologna, Italy
| | - Luca Prodi
- Department of Chemistry, University of Bologna, Bologna, Italy
| | - Daniela Milani
- Department of Morphology, Surgery and Experimental Medicine, Section of Anatomy and Histology and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Mario Luppi
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, AOU Policlinico, Modena, Italy
| | - Leonardo Potenza
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, AOU Policlinico, Modena, Italy
| | - Anto De Pol
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Lucio Cocco
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Silvano Capitani
- Department of Morphology, Surgery and Experimental Medicine, Section of Anatomy and Histology and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Sandra Marmiroli
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
16
|
|
17
|
Cheng YH, Xia W, Wong EWP, Xie QR, Shao J, Liu T, Quan Y, Zhang T, Yang X, Geng K, Silvestrini B, Cheng CY. Adjudin--A Male Contraceptive with Other Biological Activities. ACTA ACUST UNITED AC 2016; 9:63-73. [PMID: 26510796 DOI: 10.2174/1872214809666151029113043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/28/2015] [Accepted: 10/28/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Adjudin has been explored as a male contraceptive for the last 15 years since its initial synthesis in the late 1990s. More than 50 papers have been published and listed in PubMed in which its mechanism that induces exfoliation of germ cells from the seminiferous epithelium, such as its effects on actin microfilaments at the apical ES (ectoplasmic specialization, a testis-specific actin-rich anchoring junction) has been delineated. OBJECTIVE Recent studies have demonstrated that, besides its activity to induce germ cell exfoliation from the seminiferous epithelium to cause reversible infertility in male rodents, adjudin possesses other biological activities, which include anti-cancer, anti-inflammation in the brain, and anti-ototoxicity induced by gentamicin in rodents. Results of these findings likely spark the interest of investigators to explore other medical use of this and other indazole-based compounds, possibly mediated by the signaling pathway(s) in the mitochondria of mammalian cells following treatment with adjudin. In this review, we carefully evaluate these recent findings. METHODS Papers published and listed at www.pubmed.org and patents pertinent to adjudin and its related compounds were searched. Findings were reviewed and critically evaluated, and summarized herein. RESULTS Adjudin is a novel compound that possesses anti-spermatogenetic activity. Furthermore, it possesses anti-cancer, anti-inflammation, anti-neurodegeneration, and anti-ototoxicity activities based on studies using different in vitro and in vivo models. CONCLUSION Studies on adjudin should be expanded to better understand its biological activities so that it can become a useful drug for treatment of other ailments besides serving as a male contraceptive.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Chuen-Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York 10065, United States of America.
| |
Collapse
|
18
|
de Blas E, Estañ MC, Del Carmen Gómez de Frutos M, Ramos J, Del Carmen Boyano-Adánez M, Aller P. Selected polyphenols potentiate the apoptotic efficacy of glycolytic inhibitors in human acute myeloid leukemia cell lines. Regulation by protein kinase activities. Cancer Cell Int 2016; 16:70. [PMID: 27610044 PMCID: PMC5015235 DOI: 10.1186/s12935-016-0345-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/30/2016] [Indexed: 12/19/2022] Open
Abstract
Background The glycolysis inhibitor 2-deoxy-d-glucose (2-DG) is a safe, potentially useful anti-tumour drug, but its efficacy is normally low when used alone. Recent studies indicated that 2-DG stimulates the PI3K/Akt and MEK/ERK defensive pathways, which limits the apoptotic efficacy in tumour cell lines. We hypothesized that co-treatment with selected polyphenols could improve 2-DG-provoked apoptosis by preventing defensive kinase activation. Methods Cell proliferation was measured by cell counting or the MTT assay. Cell cycle, apoptosis and necrosis were determined by propidium iodide staining and/or annexin V labeling followed by flow cytometry. Mitochondria pore transition and depolarization were determined by calcein-ATM or rhodamine 123 labeling followed flow cytometry. Intracellular reactive oxygen species and GSH were determined by dichlorodihydrofluorescein diacetate or monochlorobimane labeling followed by flow cytometry or fluorimetry. Expression and phosphorylation of protein kinases were analyzed by the Western blot. Results (i) 2-DG-provoked apoptosis was greatly potentiated by co-treatment with the sub-lethal concentrations of the flavonoid quercetin in human HL60 acute myeloblastic leukemia cells. Allowing for quantitative differences, apoptosis potentiation was also obtained using NB4 promyelocytic and THP-1 promonocytic cells, using curcumin or genistein instead of quercetin, and using lonidamine instead of 2-DG, but not when 2-DG was substituted by incubation in glucose-free medium. (ii) Quercetin and 2-DG rapidly elicited the opening of mitochondria pore transition, which preceded the trigger of apoptosis. (iii) Treatments did not affect GSH levels, and caused disparate effects on reactive oxygen species generation, which did not match the changes in lethality. (iv) 2-DG and lonidamine stimulated defensive Akt and ERK phosphorylation/activation, while glucose starvation was ineffective. Polyphenols prevented the stimulation of Akt phosphorylation, and in some cases also ERK phosphorylation. In addition, quercetin and 2-DG stimulated GSK-3α,β phosphorylation/inactivation, although with different isoform specificity. The use of pharmacologic inhibitors confirmed the importance of these kinase modifications for apoptosis. Conclusions The present in vitro observations suggest that co-treatment with low concentrations of selected polyphenols might represent a manner of improving the poor anti-tumour efficacy of some glycolytic inhibitors, and that apoptosis potentiation may be at least in part explained by the regulation of defensive protein kinase activities. Electronic supplementary material The online version of this article (doi:10.1186/s12935-016-0345-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena de Blas
- Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María Cristina Estañ
- Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain ; Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Del Carmen Gómez de Frutos
- Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain ; Departamento de Biología de Sistemas, Unidad de Bioquímica y Biología Molecular, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Javier Ramos
- Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain ; Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica, Madrid, Spain
| | - María Del Carmen Boyano-Adánez
- Departamento de Biología de Sistemas, Unidad de Bioquímica y Biología Molecular, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Patricio Aller
- Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
19
|
A sirtuin activator and an anti-inflammatory molecule-multifaceted roles of adjudin and its potential applications for aging-related diseases. Semin Cell Dev Biol 2016; 59:71-78. [PMID: 27450234 DOI: 10.1016/j.semcdb.2016.07.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 12/27/2022]
Abstract
Adjudin was originally developed as an improved analog of lonidamine to serve as a non-hormonal reversible male contraceptive that could cause exfoliation of the immature sperms from the seminiferous epithelium. Recently, the functionality spectrum of adjudin expands beyond as an anti-spermatogenic agent, namely, it could function as an anti-cancer drug potentially useful for combination chemotherapy, and as an anti-inflammatory molecule that could protect against ischemic stroke injury. Most strikingly, adjudin acts through activation of mitochondrion-located Sirt3 to safeguard hair cells of the cochlea from ototoxicant such as gentamycin. Recent studies also indicate that adjudin could attenuate oxidative stress and cellular senescence. These findings suggest wider applications of this small molecule, particularly in aging-related diseases.
Collapse
|
20
|
Wang P, Cao J, Liu N, Ma L, Zhou X, Zhang H, Wang Y. Protective Effects of Edaravone in Adult Rats with Surgery and Lipopolysaccharide Administration-Induced Cognitive Function Impairment. PLoS One 2016; 11:e0153708. [PMID: 27116382 PMCID: PMC4846078 DOI: 10.1371/journal.pone.0153708] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 04/03/2016] [Indexed: 11/19/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a clinical syndrome characterized by cognitive declines in patients after surgery. Previous studies have suggested that surgery contributed to such impairment. It has been proven that neuroinflammation may exacerbate surgery-induced cognitive impairment in aged rats. The free radical scavenger edaravone has high blood brain barrier permeability, and was demonstrated to effectively remove free radicals from the brain and alleviate the development of POCD in patients undergoing carotid endarterectomy, suggesting its potential role in preventing POCD. For this reason, this study was designed to determine whether edaravone is protective against POCD through its inhibitory effects on inflammatory cytokines and oxidative stress. First, Sprague Dawley adult male rats were administered 3 mg/kg edaravone intraperitoneally after undergoing a unilateral nephrectomy combined with lipopolysaccharide injection. Second, behavioral parameters related to cognitive function were recorded by fear conditioning and Morris Water Maze tests. Last, superoxide dismutase activities and malondialdehyde levels were measured in the hippocampi and prefrontal cortex on postoperative days 3 and 7, and microglial (Iba1) activation, p-Akt and p-mTOR protein expression, and synaptic function (synapsin 1) were also examined 3 and 7 days after surgery. Rats that underwent surgery plus lipopolysaccharide administration showed significant impairments in spatial and working memory, accompanied by significant reductions in hippocampal-dependent and independent fear responses. All impairments were attenuated by treatment with edaravone. Moreover, an abnormal decrease in superoxide dismutase activation, abnormal increase in malondialdehyde levels, significant increase in microglial reactivity, downregulation of p-Akt and p-mTOR protein expression, and a statistically significant decrease in synapsin-1 were observed in the hippocampi and prefrontal cortices of rats at different time points after surgery. All mentioned abnormal changes were totally or partially reversed by edaravone. To our knowledge, few reports have shown greater protective effects of edaravone on POCD induced by surgery plus lipopolysaccharide administration from its anti-oxidative stress and anti-inflammatory effects, as well as maintenance of Akt/mTOR signal pathway activation; these might be closely related to the therapeutic effects of edaravone. Our research demonstrates the potential use of edaravone in the treatment of POCD.
Collapse
Affiliation(s)
- Peiqi Wang
- Department of Anesthesiology and Operation Center, Chinese PLA, General Hospital, Beijing, China
| | - Jiangbei Cao
- Department of Anesthesiology and Operation Center, Chinese PLA, General Hospital, Beijing, China
| | - Na Liu
- Department of Anesthesiology and Operation Center, Chinese PLA, General Hospital, Beijing, China
- Department of Anesthesiology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Li Ma
- Department of Anesthesiology and Operation Center, Chinese PLA, General Hospital, Beijing, China
- Department of Anesthesiology, Beijing Military General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Xueyue Zhou
- Department of Anesthesiology and Operation Center, Chinese PLA, General Hospital, Beijing, China
| | - Hong Zhang
- Department of Anesthesiology and Operation Center, Chinese PLA, General Hospital, Beijing, China
- * E-mail: (HZ); (YW)
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Academy of Military Medical Sciences, Beijing, China
- * E-mail: (HZ); (YW)
| |
Collapse
|
21
|
Hauge M, Bruserud Ø, Hatfield KJ. Targeting of cell metabolism in human acute myeloid leukemia - more than targeting of isocitrate dehydrogenase mutations and PI3K/AKT/mTOR signaling? Eur J Haematol 2015; 96:211-21. [DOI: 10.1111/ejh.12690] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Michelle Hauge
- Department of Medicine; Haukeland University Hospital; Bergen Norway
| | - Øystein Bruserud
- Department of Medicine; Haukeland University Hospital; Bergen Norway
- Department of Clinical Science; University of Bergen; Bergen Norway
| | | |
Collapse
|
22
|
Lee M, Yoon JH. Metabolic interplay between glycolysis and mitochondrial oxidation: The reverse Warburg effect and its therapeutic implication. World J Biol Chem 2015; 6:148-61. [PMID: 26322173 PMCID: PMC4549759 DOI: 10.4331/wjbc.v6.i3.148] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 05/26/2015] [Accepted: 07/21/2015] [Indexed: 02/05/2023] Open
Abstract
Aerobic glycolysis, i.e., the Warburg effect, may contribute to the aggressive phenotype of hepatocellular carcinoma. However, increasing evidence highlights the limitations of the Warburg effect, such as high mitochondrial respiration and low glycolysis rates in cancer cells. To explain such contradictory phenomena with regard to the Warburg effect, a metabolic interplay between glycolytic and oxidative cells was proposed, i.e., the "reverse Warburg effect". Aerobic glycolysis may also occur in the stromal compartment that surrounds the tumor; thus, the stromal cells feed the cancer cells with lactate and this interaction prevents the creation of an acidic condition in the tumor microenvironment. This concept provides great heterogeneity in tumors, which makes the disease difficult to cure using a single agent. Understanding metabolic flexibility by lactate shuttles offers new perspectives to develop treatments that target the hypoxic tumor microenvironment and overcome the limitations of glycolytic inhibitors.
Collapse
|
23
|
Perturbation of cellular oxidative state induced by dichloroacetate and arsenic trioxide for treatment of acute myeloid leukemia. Leuk Res 2015; 39:719-29. [PMID: 25982179 DOI: 10.1016/j.leukres.2015.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 03/24/2015] [Accepted: 04/06/2015] [Indexed: 11/20/2022]
Abstract
The incidence of acute myeloid leukemia (AML) is rising and the outcome of current therapy, which has not changed significantly in the last 40 years, is suboptimal. Cellular oxidative state is a credible target to selectively eradicate AML cells, because it is a fundamental property of each cell that is sufficiently different between leukemic and normal cells, yet its aberrancy shared among different AML cells. To this end, we tested whether a short-time treatment of AML cells, including cells with FLT3-ITD mutation, with sub-lethal dose of dichloroacetate (DCA) (priming) followed by pharmacologic dose of arsenic trioxide (ATO) in presence of low-dose DCA could produce insurmountable level of oxidative damage that kill AML cells. Using cellular cytotoxicity, apoptotic and metabolic assays with both established AML cell lines and primary AML cells, we found that priming with DCA significantly potentiated the cytotoxicity of ATO in AML cells in a synergistic manner. The combination decreased the mitochondrial membrane potential as well as expression of Mcl-1 and GPx in primary AML cells more than either drug alone. One patient with AML whose disease was refractory to several lines of prior treatments was treated with this combination, and tolerated it well. These data suggest that targeting cellular redox balance in leukemia may provide a therapeutic option for AML patients with relapsed/refractory disease.
Collapse
|
24
|
Zheng CY, Lam SK, Li YY, Ho JCM. Arsenic trioxide-induced cytotoxicity in small cell lung cancer via altered redox homeostasis and mitochondrial integrity. Int J Oncol 2015; 46:1067-78. [PMID: 25572414 DOI: 10.3892/ijo.2015.2826] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 11/04/2014] [Indexed: 11/06/2022] Open
Abstract
Arsenic trioxide (ATO) has demonstrated anticancer activity in different malignancies, especially acute promyelocytic leukemia, with a wide array of putative mechanisms. In this study, we aimed to elucidate the activity and mechanisms of ATO in small cell lung cancer (SCLC). A panel of SCLC cell lines (H841, DMS79, H526, H69 and H187) was employed to demonstrate the activity of ATO. Cell viability, apoptosis and mitochondrial membrane depolarization were assessed. Western blotting was performed to determine the alteration of pro-apoptotic and anti-apoptotic mediators. Reactive oxygen species (ROS) (hydrogen peroxide and superoxide) and intracellular glutathione (GSH) were measured. Antioxidants, N-acetyl-L-cysteine (NAC) and butylated hydroxyanisole (BHA), were applied to restore GSH content and reduce production of ROS. All SCLC cell lines were relatively sensitive to ATO with IC50 values below 10 µM. ATO induced cell death mainly through apoptosis in H841 cells in a dose-dependent manner. Hydrogen peroxide was the major ROS in SCLC cells induced by ATO. Along with GSH depletion and Bcl-2 downregulation, mitochondrial membrane permeabilization was enhanced, followed by release of AIF and SMAC from mitochondria to initiate different cell death pathways. NAC reversed cell death and molecular changes induced by ATO via restoring GSH and reducing ROS content. BHA inhibited hydrogen peroxide production completely and partially restored GSH content accounting for partial reversal of cell inhibition and mitochondrial dysfunction. Nonetheless, ATO reduced both reduced and oxidized form of thioredoxin 1 (Trx1) with no effect on Trx1 redox potential. ATO led to cell death in SCLC mainly through mitochondrial dysfunction, resulting from altered cellular redox homeostasis, namely, hydrogen peroxide generation, GSH depletion and Trx1 downregulation.
Collapse
Affiliation(s)
- Chun-Yan Zheng
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, SAR, P.R. China
| | - Sze-Kwan Lam
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, SAR, P.R. China
| | - Yuan-Yuan Li
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, SAR, P.R. China
| | - James Chung-Man Ho
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, SAR, P.R. China
| |
Collapse
|
25
|
Apoptotic efficacy of etomoxir in human acute myeloid leukemia cells. Cooperation with arsenic trioxide and glycolytic inhibitors, and regulation by oxidative stress and protein kinase activities. PLoS One 2014; 9:e115250. [PMID: 25506699 PMCID: PMC4266683 DOI: 10.1371/journal.pone.0115250] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/20/2014] [Indexed: 12/18/2022] Open
Abstract
Fatty acid synthesis and oxidation are frequently exacerbated in leukemia cells, and may therefore represent a target for therapeutic intervention. In this work we analyzed the apoptotic and chemo-sensitizing action of the fatty acid oxidation inhibitor etomoxir in human acute myeloid leukemia cells. Etomoxir caused negligible lethality at concentrations up to 100 µM, but efficaciously cooperated to cause apoptosis with the anti-leukemic agent arsenic trioxide (ATO, Trisenox), and with lower efficacy with other anti-tumour drugs (etoposide, cisplatin), in HL60 cells. Etomoxir-ATO cooperation was also observed in NB4 human acute promyelocytic cells, but not in normal (non-tumour) mitogen-stimulated human peripheral blood lymphocytes. Biochemical determinations in HL60 cells indicated that etomoxir (25–200 µM) dose-dependently inhibited mitochondrial respiration while slightly stimulating glycolysis, and only caused marginal alterations in total ATP content and adenine nucleotide pool distribution. In addition, etomoxir caused oxidative stress (increase in intracellular reactive oxygen species accumulation, decrease in reduced glutathione content), as well as pro-apoptotic LKB-1/AMPK pathway activation, all of which may in part explain the chemo-sensitizing capacity of the drug. Etomoxir also cooperated with glycolytic inhibitors (2-deoxy-D-glucose, lonidamine) to induce apoptosis in HL60 cells, but not in NB4 cells. The combined etomoxir plus 2-deoxy-D-glucose treatment did not increase oxidative stress, caused moderate decrease in net ATP content, increased the AMP/ATP ratio with concomitant drop in energy charge, and caused defensive Akt and ERK kinase activation. Apoptosis generation by etomoxir plus 2-deoxy-D-glucose was further increased by co-incubation with ATO, which is apparently explained by the capacity of ATO to attenuate Akt and ERK activation. In summary, co-treatment with etomoxir may represent an interesting strategy to increase the apoptotic efficacy of ATO and (with some limitations) 2-deoxy-D-glucose which, although clinically important anti-tumour agents, exhibit low efficacy in monotherapy.
Collapse
|
26
|
Chinese medicines induce cell death: the molecular and cellular mechanisms for cancer therapy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:530342. [PMID: 25379508 PMCID: PMC4212527 DOI: 10.1155/2014/530342] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 07/23/2014] [Indexed: 02/07/2023]
Abstract
Chinese medicines have long history in treating cancer. With the growing scientific evidence of biomedical researches and clinical trials in cancer therapy, they are increasingly accepted as a complementary and alternative treatment. One of the mechanisms is to induce cancer cell death. Aim. To comprehensively review the publications concerning cancer cell death induced by Chinese medicines in recent years and provide insights on anticancer drug discovery from Chinese medicines. Materials and Methods. Chinese medicines (including Chinese medicinal herbs, animal parts, and minerals) were used in the study. The key words including “cancer”, “cell death”, “apoptosis”, “autophagy,” “necrosis,” and “Chinese medicine” were used in retrieval of related information from PubMed and other databases. Results. The cell death induced by Chinese medicines is described as apoptotic, autophagic, or necrotic cell death and other types with an emphasis on their mechanisms of anticancer action. The relationship among different types of cell death induced by Chinese medicines is critically reviewed and discussed. Conclusions. This review summarizes that CMs treatment could induce multiple pathways leading to cancer cell death, in which apoptosis is the dominant type. To apply these preclinical researches to clinic application will be a key issue in the future.
Collapse
|
27
|
YU YAO, YANG YU, WANG JING. Anti-apoptotic and apoptotic pathway analysis of arsenic trioxide-induced apoptosis in human gastric cancer SGC-7901 cells. Oncol Rep 2014; 32:973-8. [DOI: 10.3892/or.2014.3276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/28/2014] [Indexed: 11/05/2022] Open
|
28
|
Guilbert C, Annis MG, Dong Z, Siegel PM, Miller WH, Mann KK. Arsenic trioxide overcomes rapamycin-induced feedback activation of AKT and ERK signaling to enhance the anti-tumor effects in breast cancer. PLoS One 2013; 8:e85995. [PMID: 24392034 PMCID: PMC3877392 DOI: 10.1371/journal.pone.0085995] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 12/03/2013] [Indexed: 11/18/2022] Open
Abstract
Inhibitors of the mammalian target of rapamycin (mTORi) have clinical activity; however, the benefits of mTOR inhibition by rapamycin and rapamycin-derivatives (rapalogs) may be limited by a feedback mechanism that results in AKT activation. Increased AKT activity resulting from mTOR inhibition can be a result of increased signaling via the mTOR complex, TORC2. Previously, we published that arsenic trioxide (ATO) inhibits AKT activity and in some cases, decreases AKT protein expression. Therefore, we propose that combining ATO and rapamycin may circumvent the AKT feedback loop and increase the anti-tumor effects. Using a panel of breast cancer cell lines, we find that ATO, at clinically-achievable doses, can enhance the inhibitory activity of the mTORi temsirolimus. In all cell lines, temsirolimus treatment resulted in AKT activation, which was decreased by concomitant ATO treatment only in those cell lines where ATO enhanced growth inhibition. Treatment with rapalog also results in activated ERK signaling, which is decreased with ATO co-treatment in all cell lines tested. We next tested the toxicity and efficacy of rapamycin plus ATO combination therapy in a MDA-MB-468 breast cancer xenograft model. The drug combination was well-tolerated, and rapamycin did not increase ATO-induced liver enzyme levels. In addition, combination of these drugs was significantly more effective at inhibiting tumor growth compared to individual drug treatments, which corresponded with diminished phospho-Akt and phospho-ERK levels when compared with rapamycin-treated tumors. Therefore, we propose that combining ATO and mTORi may overcome the feedback loop by decreasing activation of the MAPK and AKT signaling pathways.
Collapse
Affiliation(s)
- Cynthia Guilbert
- Lady Davis Institute for Medical Research, McGill University, Montreal, Canada
| | - Matthew G. Annis
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Zhifeng Dong
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Peter M. Siegel
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Wilson H. Miller
- Lady Davis Institute for Medical Research, McGill University, Montreal, Canada
- Department of Oncology, McGill University, Montreal, Canada
| | - Koren K. Mann
- Lady Davis Institute for Medical Research, McGill University, Montreal, Canada
- Department of Oncology, McGill University, Montreal, Canada
- * E-mail:
| |
Collapse
|
29
|
Calviño E, Estañ MC, Sánchez-Martín C, Brea R, de Blas E, Boyano-Adánez MDC, Rial E, Aller P. Regulation of death induction and chemosensitizing action of 3-bromopyruvate in myeloid leukemia cells: energy depletion, oxidative stress, and protein kinase activity modulation. J Pharmacol Exp Ther 2013; 348:324-35. [PMID: 24307199 DOI: 10.1124/jpet.113.206714] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
3-Bromopyruvate (3-BrP) is an alkylating, energy-depleting drug that is of interest in antitumor therapies, although the mechanisms underlying its cytotoxicity are ill-defined. We show here that 3-BrP causes concentration-dependent cell death of HL60 and other human myeloid leukemia cells, inducing both apoptosis and necrosis at 20-30 μM and a pure necrotic response at 60 μM. Low concentrations of 3-BrP (10-20 μM) brought about a rapid inhibition of glycolysis, which at higher concentrations was followed by the inhibition of mitochondrial respiration. The combination of these effects causes concentration-dependent ATP depletion, although this cannot explain the lethality at intermediate 3-BrP concentrations (20-30 μM). The oxidative stress caused by exposure to 3-BrP was evident as a moderate overproduction of reactive oxygen species and a concentration-dependent depletion of glutathione, which was an important determinant of 3-BrP toxicity. In addition, 3-BrP caused glutathione-dependent stimulation of p38 mitogen-activated protein kinase (MAPK), mitogen-induced extracellular kinase (MEK)/extracellular signal-regulated kinase (ERK), and protein kinase B (Akt)/mammalian target of rapamycin/p70S6K phosphorylation or activation, as well as rapid LKB-1/AMP kinase (AMPK) activation, which was later followed by Akt-mediated inactivation. Experiments with pharmacological inhibitors revealed that p38 MAPK activation enhances 3-BrP toxicity, which is conversely restrained by ERK and Akt activity. Finally, 3-BrP was seen to cooperate with antitumor agents like arsenic trioxide and curcumin in causing cell death, a response apparently mediated by both the generation of oxidative stress induced by 3-BrP and the attenuation of Akt and ERK activation by curcumin. In summary, 3-BrP cytotoxicity is the result of several combined regulatory mechanisms that might represent important targets to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Eva Calviño
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain (E.C., M.C.E., C.S.-M., R.B., E.B., E.R., P.A.); and Departamento de Biología de Sistemas, Unidad de Bioquímica y Biología Molecular, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Spain (M.C.B.-A.)
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Li Q, Fu GB, Zheng JT, He J, Niu XB, Chen QD, Yin Y, Qian X, Xu Q, Wang M, Sun AF, Shu Y, Rui H, Liu LZ, Jiang BH. NADPH oxidase subunit p22(phox)-mediated reactive oxygen species contribute to angiogenesis and tumor growth through AKT and ERK1/2 signaling pathways in prostate cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3375-3385. [PMID: 24113386 DOI: 10.1016/j.bbamcr.2013.09.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 12/27/2022]
Abstract
Excessive generation of reactive oxygen species (ROS) in cancer cells is associated with cancer development, but the underlying mechanisms and therapeutic significance remain elusive. In this study, we reported that levels of ROS and p22(phox) expression are greatly increased in human prostate cancer tissues, and knockdown of p22(phox) by specific small interfering RNA (siRNA) decreased ROS levels in prostate cancer cells. We also showed that stable downregulation of p22(phox) in prostate cancer cells inhibited cell proliferation and colony formation, which was mediated by AKT and extracellular signal-regulated kinase (ERK)1/2 signaling pathways and their downstream molecules hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF). The NADPH oxidase subunit NOX1 was also elevated in prostate cancer cells, and was involved in activation of AKT/ERK/HIF-1/VEGF pathway and regulation of cell proliferation. Knockdown of p22(phox) resulted in inhibition of tumor angiogenesis and tumor growth in nude mice. These findings reveal a new function of p22(phox) in tumor angiogenesis and tumor growth, and suggest that p22(phox) is a potential novel target for prostate cancer treatment.
Collapse
Affiliation(s)
- Qi Li
- State Key Lab of Reproductive Medicine, and Department of Pathology, Cancer Center, Nanjing Medical, Nanjing 210029, China
| | - Guang-Bo Fu
- Department of Urology and Pathology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an 223300, China
| | - Ji-Tai Zheng
- State Key Lab of Reproductive Medicine, and Department of Pathology, Cancer Center, Nanjing Medical, Nanjing 210029, China
| | - Jun He
- Department of Pathology, Anatomy and Cell Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Xiao-Bing Niu
- Department of Urology and Pathology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an 223300, China
| | - Qiu-Dan Chen
- State Key Lab of Reproductive Medicine, and Department of Pathology, Cancer Center, Nanjing Medical, Nanjing 210029, China
| | - Yu Yin
- State Key Lab of Reproductive Medicine, and Department of Pathology, Cancer Center, Nanjing Medical, Nanjing 210029, China; Department of Pathology, Anhui Medical University, Hefei 230032, China
| | - Xu Qian
- State Key Lab of Reproductive Medicine, and Department of Pathology, Cancer Center, Nanjing Medical, Nanjing 210029, China
| | - Qing Xu
- State Key Lab of Reproductive Medicine, and Department of Pathology, Cancer Center, Nanjing Medical, Nanjing 210029, China
| | - Min Wang
- State Key Lab of Reproductive Medicine, and Department of Pathology, Cancer Center, Nanjing Medical, Nanjing 210029, China
| | - An-Fang Sun
- Department of Urology and Pathology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an 223300, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hallgeir Rui
- Department of Pathology, Anatomy and Cell Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ling-Zhi Liu
- Department of Pathology, Anatomy and Cell Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Bing-Hua Jiang
- State Key Lab of Reproductive Medicine, and Department of Pathology, Cancer Center, Nanjing Medical, Nanjing 210029, China; Department of Pathology, Anatomy and Cell Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
31
|
Krasnov GS, Dmitriev AA, Lakunina VA, Kirpiy AA, Kudryavtseva AV. Targeting VDAC-bound hexokinase II: a promising approach for concomitant anti-cancer therapy. Expert Opin Ther Targets 2013; 17:1221-33. [DOI: 10.1517/14728222.2013.833607] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Targeting tumour energy metabolism potentiates the cytotoxicity of 5-aminolevulinic acid photodynamic therapy. Br J Cancer 2013; 109:976-82. [PMID: 23860536 PMCID: PMC3749566 DOI: 10.1038/bjc.2013.391] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/19/2013] [Accepted: 06/24/2013] [Indexed: 12/18/2022] Open
Abstract
Background: Cancerous cells usually exhibit increased aerobic glycolysis, compared with normal tissue (the Warburg effect), making this pathway an attractive therapeutic target. Methods: Cell viability, cell number, clonogenic assay, reactive oxygen (ROS), ATP, and apoptosis were assayed in MCF-7 tumour cells and corresponding primary human mammary epithelial cells (HMEC). Results: Combining the glycolysis inhibitors 2-deoxyglucose (2DG; 180 mM) or lonidamine (300 μM) with 10 J cm−2 5-aminolevulinic acid (ALA) photodynamic therapy (PDT) increases MCF-7 cytotoxicity (by 3.5-fold to 70% death after 24 h, and by 10-fold in 9-day clonogenic assays). However, glycolysis inhibition only slightly increases HMEC PDT cytotoxicity (between two-fold and three-fold to a maximum of 9% death after 24 h). The potentiation of PDT cytotoxicity only occurred if the glycolysis inhibitors were added after ALA incubation, as they inhibited intracellular accumulation of photosensitiser if coincubated with ALA. Conclusion: As 2DG and lonidamine are already used as cancer chemotherapeutic agents, our results are directly translatable to combination therapies with existing topical PDT.
Collapse
|
33
|
Li N, Zhang CX, Wang XX, Zhang L, Ma X, Zhou J, Ju RJ, Li XY, Zhao WY, Lu WL. Development of targeting lonidamine liposomes that circumvent drug-resistant cancer by acting on mitochondrial signaling pathways. Biomaterials 2013; 34:3366-80. [PMID: 23410681 DOI: 10.1016/j.biomaterials.2013.01.055] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 01/10/2013] [Indexed: 01/05/2023]
Abstract
Even when faced with elimination, functional materials may offer new alternatives to expensive drugs. Once used to treat benign prostate hypertrophy, the US Food and Drug Administration (FDA) suspended the use of lonidamine due to the occurrence of liver problems arising from its poor pharmaceutical properties. The objectives of the present study were to develop targeting lonidamine liposomes in combination with targeting epirubicin liposomes to circumvent drug-resistant cancer. Evaluations were performed on A549 and drug-resistant A549cDDP lung cancer cells and drug-resistant A549cDDP xenografted BALB/c nude mice. A DQA-PEG(2000)-DSPE conjugate was incorporated onto the liposomes as a targeting molecule. The constructed targeting lonidamine liposomes and targeting epirubicin liposomes measured were approximately 80 nm. The targeting lonidamine liposomes significantly enhanced the inhibitory effect of the targeting epirubicin liposomes in the drug-resistant A549cDDP cells in a lonidamine dose-dependent manner. Mechanism studies revealed that the targeting liposomes were selectively accumulated in the mitochondria, dissipating the mitochondrial membrane potential, opening the mitochondrial permeability transition pores, and releasing cytochrome C by translocation. This initiated a cascade of caspase 9 and 3 reactions and activated the pro-apoptotic Bax protein while suppressing the anti-apoptotic Mcl-1 protein, thereby enhancing the cytotoxic effect by acting on the mitochondrial signaling pathways. The efficacy in treating the drug-resistant A549cDDP xenografted tumor model after administration of the targeting lonidamine liposomes plus targeting epirubicin liposomes was the most significant compared with the administration of the controls at comparable doses. In conclusion, targeting lonidamine liposomes could be used as a potent co-therapy with an anticancer agent to enhance the efficacy of treating drug-resistant cancer by acting on the mitochondrial signaling pathways.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lu XY, Cao K, Li QY, Yuan ZC, Lu PS. The synergistic therapeutic effect of temozolomide and hyperbaric oxygen on glioma U251 cell lines is accompanied by alterations in vascular endothelial growth factor and multidrug resistance-associated protein-1 levels. J Int Med Res 2013; 40:995-1004. [PMID: 22906272 DOI: 10.1177/147323001204000318] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE Temozolomide (TMZ) is an oral alkylating agent widely used in the treatment of refractory glioma. Its efficacy is limited, however, by poor cancer cell penetration and drug resistance. The present study, therefore, aimed to investigate whether hyperbaric oxygen (HBO) may facilitate drug delivery and enhance the anticancer effect of TMZ. METHODS Cultured glioma U251 cells were treated with HBO, TMZ, or TMZ + HBO, or were untreated (controls). Rates of growth inhibition, cell death and apoptosis were investigated using the 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, propidium iodide staining and flow cytometry, respectively. Protein levels of vascular endothelial growth factor (VEGF) and multidrug resistance-associated protein-1 (MRP-1) were evaluated by enzyme-linked immunosorbent assay. RESULTS Compared with TMZ or HBO alone, combined treatment with both therapies synergistically inhibited growth and induced apoptosis and death of cultured glioma U251 cells, which was accompanied by a significant decrease in levels of VEGF and MRP-1. CONCLUSIONS TMZ and HBO synergistically induced the apoptosis of glioma cells, possibly through reduced vascularization and inhibition of drug resistance. The combination of TMZ and HBO may be a powerful treatment for malignant glioma.
Collapse
Affiliation(s)
- X-Y Lu
- Department of Neurosurgery, People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu Province, China
| | | | | | | | | |
Collapse
|
35
|
Aravena C, Beltrán AR, Cornejo M, Torres V, Díaz ES, Guzmán-Gutiérrez E, Pardo F, Leiva A, Sobrevia L, Ramírez MA. Potential role of sodium-proton exchangers in the low concentration arsenic trioxide-increased intracellular pH and cell proliferation. PLoS One 2012; 7:e51451. [PMID: 23236503 PMCID: PMC3516555 DOI: 10.1371/journal.pone.0051451] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 11/01/2012] [Indexed: 01/01/2023] Open
Abstract
Arsenic main inorganic compound is arsenic trioxide (ATO) presented in solution mainly as arsenite. ATO increases intracellular pH (pHi), cell proliferation and tumor growth. Sodium-proton exchangers (NHEs) modulate the pHi, with NHE1 playing significant roles. Whether ATO-increased cell proliferation results from altered NHEs expression and activity is unknown. We hypothesize that ATO increases cell proliferation by altering pHi due to increased NHEs-like transport activity. Madin-Darby canine kidney (MDCK) cells grown in 5 mmol/L D-glucose-containing DMEM were exposed to ATO (0.05, 0.5 or 5 µmol/L, 0–48 hours) in the absence or presence of 5-N,N-hexamethylene amiloride (HMA, 5–100 µmol/L, NHEs inhibitor), PD-98059 (30 µmol/L, MAPK1/2 inhibitor), Gö6976 (10 µmol/L, PKCα, βI and μ inhibitor), or Schering 28080 (10 µmol/L, H+/K+ATPase inhibitor) plus concanamycin (0.1 µmol/L, V type ATPases inhibitor). Incorporation of [3H]thymidine was used to estimate cell proliferation, and counting cells with a hemocytometer to determine the cell number. The pHi was measured by fluorometry in 2,7-bicarboxyethyl-5,6-carboxyfluorescein loaded cells. The Na+-dependent HMA-sensitive NHEs-like mediated proton transport kinetics, NHE1 protein abundance in the total, cytoplasm and plasma membrane protein fractions, and phosphorylated and total p42/44 mitogen-activated protein kinases (p42/44mapk) were also determined. Lowest ATO (0.05 µmol/L, ∼0.01 ppm) used in this study increased cell proliferation, pHi, NHEs-like transport and plasma membrane NHE1 protein abundance, effects blocked by HMA, PD-98059 or Gö6976. Cell-buffering capacity did not change by ATO. The results show that a low ATO concentration increases MDCK cells proliferation by NHEs (probably NHE1)-like transport dependent-increased pHi requiring p42/44mapk and PKCα, βI and/or μ activity. This finding could be crucial in diseases where uncontrolled cell growth occurs, such as tumor growth, and in circumstances where ATO, likely arsenite, is available at the drinking-water at these levels.
Collapse
Affiliation(s)
- Carmen Aravena
- Cellular Physiology Laboratory, Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Antofagasta, Chile
| | - Ana R. Beltrán
- Cellular Physiology Laboratory, Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Antofagasta, Chile
- Department of Education, Faculty of Education, Universidad de Antofagasta, Antofagasta, Chile
| | - Marcelo Cornejo
- Cellular Physiology Laboratory, Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Antofagasta, Chile
| | - Viviana Torres
- Advanced Microscopy Centre (CMA Bío-Bío), Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Emilce S. Díaz
- Cellular Physiology Laboratory, Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Antofagasta, Chile
| | - Enrique Guzmán-Gutiérrez
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fabián Pardo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea Leiva
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail: (MAR); (LS)
| | - Marco A. Ramírez
- Cellular Physiology Laboratory, Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Antofagasta, Chile
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail: (MAR); (LS)
| |
Collapse
|
36
|
Xie QR, Liu Y, Shao J, Yang J, Liu T, Zhang T, Wang B, Mruk DD, Silvestrini B, Cheng CY, Xia W. Male contraceptive Adjudin is a potential anti-cancer drug. Biochem Pharmacol 2012. [PMID: 23178657 DOI: 10.1016/j.bcp.2012.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Adjudin, also known as AF-2364 and an analog of lonidamine (LND), is a male contraceptive acting through the induction of premature sperm depletion from the seminiferous epithelium when orally administered to adult rats, rabbits or dogs. It is also known that LND can target mitochondria and block energy metabolism in tumor cells. However, whether Adjudin exhibits any anti-cancer activity remains to be elucidated. Herein we described the anti-proliferative activity of Adjudin on cancer cells in vitro and on lung and prostate tumors inoculated in nude mice. We found that Adjudin induced apoptosis in cancer cells through a Caspase-3-dependent pathway. Further experiments revealed that Adjudin could trigger mitochondrial dysfunction in cancer cells, apparently affecting the mitochondrial mass, inducing the loss of mitochondrial membrane potential and reducing cellular ATP levels. Intraperitoneal administration of Adjudin to tumor-bearing athymic nude mice also significantly suppressed the lung and prostate tumor growth. When used in combination with cisplatin, Adjudin enhances the sensitivity to cisplatin-induced cancer cell cytotoxicity. Taken together, these findings have demonstrated that Adjudin may be a potential drug for cancer therapy.
Collapse
Affiliation(s)
- Qian Reuben Xie
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
2-Deoxy-D-glucose cooperates with arsenic trioxide to induce apoptosis in leukemia cells: involvement of IGF-1R-regulated Akt/mTOR, MEK/ERK and LKB-1/AMPK signaling pathways. Biochem Pharmacol 2012; 84:1604-16. [PMID: 23041229 DOI: 10.1016/j.bcp.2012.09.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 09/07/2012] [Accepted: 09/17/2012] [Indexed: 01/28/2023]
Abstract
While the anti-tumor efficacy of 2-deoxy-D-glucose (2-DG) is normally low in monotherapy, it may represent a valuable radio- and chemo-sensitizing agent. We here demonstrate that 2-10 mM 2-DG cooperates with arsenic trioxide (ATO) and other antitumor drugs to induce apoptosis in human myeloid leukemia cell lines. Using ATO and HL60 as drug and cell models, respectively, we observed that 2-DG/ATO combination activates the mitochondrial apoptotic pathway, as indicated by Bid-, and Bax-regulated cytochrome c and Omi/HtrA2 release, XIAP down-regulation, and caspase-9/-3 pathway activation. 2-DG neither causes oxidative stress nor increases ATO uptake, but causes inner mitochondria membrane permeabilization as well as moderate ATP depletion, which nevertheless do not satisfactorily explain the pro-apoptotic response. Surprisingly 2-DG causes cell line-specific decrease in LKB-1/AMPK phosphorylation/activation, and also causes Akt/mTOR/p70S6K and MEK/ERK activation, which is prevented by co-treatment with ATO. The use of kinase-specific pharmacologic inhibitors and/or siRNAs reveals that apoptosis is facilitated by AMPK inactivation and restrained by Akt and ERK activation, and that Akt and ERK activation mediates AMPK inhibition. Finally, 2-DG stimulates IGF-1R phosphorylation/activation, and co-treatment with IGF-1R inhibitor prevents 2-DG effects on Akt, ERK and AMPK, and facilitates 2-DG-provoked apoptosis. In summary 2-DG elicits IGF-1R-mediated AMPK inactivation and Akt and ERK activation, which facilitates or restrain apoptosis, respectively. 2-DG-provoked AMPK inactivation increases the apoptotic efficacy of ATO, while in turn ATO-provoked Akt and ERK inactivation may increase the efficacy of 2-DG as anti-tumor drug.
Collapse
|
38
|
Histone deacetylase inhibitors facilitate dihydroartemisinin-induced apoptosis in liver cancer in vitro and in vivo. PLoS One 2012; 7:e39870. [PMID: 22761917 PMCID: PMC3386188 DOI: 10.1371/journal.pone.0039870] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/28/2012] [Indexed: 02/06/2023] Open
Abstract
Liver cancer ranks in prevalence and mortality among top five cancers worldwide. Accumulating interests have been focused in developing new strategies for liver cancer treatment. We have previously showed that dihydroartemisinin (DHA) exhibited antitumor activity towards liver cancer. In this study, we demonstrated that histone deacetylase inhibitors (HDACi) significantly augmented the antineoplastic effect of DHA via increasing apoptosis in vitro and in vivo. Inhibition of ERK phosphorylation contributed to DHA-induced apoptosis, due to the fact that inhibitor of ERK phosphorylation (PD98059) increased DHA-induced apoptosis. Compared with DHA alone, the combined treatment with DHA and HDACi reduced mitochondria membrane potential, released cytochrome c into cytoplasm, increased p53 and Bak, decreased Mcl-1 and p-ERK, activated caspase 3 and PARP, and induced apoptotic cells. Furthermore, we showed that HDACi pretreatment facilitated DHA-induced apoptosis. In Hep G2-xenograft carrying nude mice, the intraperitoneal injection of DHA and SAHA resulted in significant inhibition of xenograft tumors. Results of TUNEL and H&E staining showed more apoptosis induced by combined treatment. Immunohistochemistry data revealed the activation of PARP, and the decrease of Ki-67, p-ERK and Mcl-1. Taken together, our data suggest that the combination of HDACi and DHA offers an antitumor effect on liver cancer, and this combination treatment should be considered as a promising strategy for chemotherapy.
Collapse
|
39
|
Cheng CY, Lie PP, Wong EW, Mruk DD, Silvestrini B. Adjudin disrupts spermatogenesis via the action of some unlikely partners: Eps8, Arp2/3 complex, drebrin E, PAR6 and 14-3-3. SPERMATOGENESIS 2011; 1:291-297. [PMID: 22332112 DOI: 10.4161/spmg.1.4.18393] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/10/2011] [Accepted: 10/11/2011] [Indexed: 02/08/2023]
Abstract
Adjudin, 1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide (formerly called AF-2364), is a potent analog of lonidamine [1-(2,4-dichlorobenzyl)-1H-indazole-3-carboxylic acid] known to disrupt germ cell adhesion, most notably elongating and elongated spermatids, in the seminiferous epithelium of adult rat testes and thus, leads to infertility in rats. Since the population of spermatogonia and spermatogonial stem cells (SSCs) in the seminiferous tubules is not significantly reduced by the treatment of rats with adjudin, adjudin-induced infertility is highly reversible, which enables reinitiation of spermatogenesis and germ cell re-population of the voided seminiferous epithelium. Furthermore, adjudin appears to exert its effects at the testis-specific atypical adherens junction (AJ) type known as ectoplasmic specialization (ES), most notably the apical ES at the Sertoli cell-spermatid interface. Thus, the hypothalamic-pituitary-gonadal axis is not unaffected and systemic side-effects are minimal. This also makes adjudin a potential candidate for male contraceptive development. Herein, we critically evaluate recent findings in the field and provide an updated model regarding the mechanism underlying adjudin-induced apical ES disruption. In short, adjudin targets actin filament bundles at the apical ES, the hallmark ultrastructure of this testis-specific junction type not found in any other epithelia/endothelia in mammals, by suppressing the expression of Eps8 (epidermal growth factor receptor pathway substrate 8), an actin capping protein that also plays a role in actin bundling, so that actin filament bundles can no longer be maintained at the apical ES. This is concomitant with a mis-localization of Arp3 (actin-related protein 3, a component of the Arp2/3 complex that induces actin nucleation/branching) recruited by drebrin E, causing "unwanted" actin branching, further destabilizing actin filament bundles at the apical ES. Additionally, adjudin blocks the expression of PAR6 (partitioning defective protein 6) and 14-3-3 (also known as PAR5) considerably at the apical ES, disrupting the homeostasis of endocytic vesicle-mediated protein trafficking, which in turn leads to an increase in protein endocytosis. The net result of these changes destabilizes cell adhesion and induces degeneration of the apical ES, causing premature release of spermatids, mimicking spermiation.
Collapse
Affiliation(s)
- C Yan Cheng
- Center for Biomedical Research; The Population Council; New York, NY USA
| | | | | | | | | |
Collapse
|