1
|
Dornas W, Silva M. Modulation of the antioxidant enzyme paraoxonase-1 for protection against cardiovascular diseases. Nutr Metab Cardiovasc Dis 2024:S0939-4753(24)00154-6. [PMID: 39277536 DOI: 10.1016/j.numecd.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/12/2024] [Accepted: 04/04/2024] [Indexed: 09/17/2024]
Abstract
AIM The enzyme paraoxonase 1 (PON1) bound to high-density lipoprotein has received special attention for its protective role against stress-mediated damage and use as a potential regulatory target in atherosclerosis and related vascular diseases. DATA SYNTHESIS We present an overview of the literature on PON1 activity and mRNA levels by investigating its modulation for clinical translations. Specifically, the expression of PON1 and its regulated activity can be modified in different ways with natural substances, drugs, and lifestyle factors thar affect the development of atherosclerosis. CONCLUSIONS The endothelial contribution of PON1 to overcome differences considering an individual's disease development risk is supported by polymorphism interaction data and the susceptibility to modify PON1 responses in chronic events composed by biological and environmental factors.
Collapse
Affiliation(s)
- Waleska Dornas
- Course Superior of Technology in Radiology, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Maisa Silva
- Department of Basic Life Sciences, Universidade Federal de Juiz de Fora, Governador Valadares, MG, Brazil
| |
Collapse
|
2
|
Medina-Díaz IM, Ponce-Ruíz N, Rojas-García AE, Zambrano-Zargoza JF, Bernal-Hernández YY, González-Arias CA, Barrón-Vivanco BS, Herrera-Moreno JF. The Relationship between Cancer and Paraoxonase 1. Antioxidants (Basel) 2022; 11:antiox11040697. [PMID: 35453382 PMCID: PMC9028432 DOI: 10.3390/antiox11040697] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022] Open
Abstract
Extensive research has been carried out to understand and elucidate the mechanisms of paraoxonase 1 (PON1) in the development of diseases including cancer, cardiovascular diseases, neurological diseases, and inflammatory diseases. This review focuses on the relationship between PON1 and cancer. The data suggest that PON1, oxidative stress, chronic inflammation, and cancer are closely linked. Certainly, the gene expression of PON1 will remain challenging to study. Therefore, targeting PON1, redox-sensitive pathways, and transcription factors promise prevention and therapy in the development of several diseases, including cancer.
Collapse
Affiliation(s)
- Irma Martha Medina-Díaz
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
- Correspondence:
| | - Néstor Ponce-Ruíz
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | - Aurora Elizabeth Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | | | - Yael Y. Bernal-Hernández
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | - Cyndia Azucena González-Arias
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | - Briscia S. Barrón-Vivanco
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | - José Francisco Herrera-Moreno
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| |
Collapse
|
3
|
Novel cytotoxic amphiphilic nitro-compounds derived from a synthetic route for paraconic acids. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
4
|
ELMostafi H, Bahbiti Y, Elhessni A, Bousalham R, Doumar H, Ouichou A, Benmhammed H, Touil T, Mesfioui A. Neuroprotective potential of Argan oil in neuropsychiatric disorders in rats: A review. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
5
|
Gulhan MF. Therapeutic potentials of propolis and pollen on biochemical changes in reproductive function of L-NAME induced hypertensive male rats. Clin Exp Hypertens 2018; 41:292-298. [DOI: 10.1080/10641963.2018.1506470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Mehmet Fuat Gulhan
- Department of Medicinal and Aromatic Plants, Vocational School of Technical Sciences, Aksaray University, Aksaray, Turkey
| |
Collapse
|
6
|
Gilbert J, De Iuliis GN, Tarleton M, McCluskey A, Sakoff JA. ( Z)-2-(3,4-Dichlorophenyl)-3-(1 H-Pyrrol-2-yl)Acrylonitrile Exhibits Selective Antitumor Activity in Breast Cancer Cell Lines via the Aryl Hydrocarbon Receptor Pathway. Mol Pharmacol 2017; 93:168-177. [PMID: 29269419 DOI: 10.1124/mol.117.109827] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/06/2017] [Indexed: 01/29/2023] Open
Abstract
We have previously reported the synthesis and breast cancer selectivity of (Z)-2-(3,4-dichlorophenyl)-3-(1H-pyrrol-2-yl)acrylonitrile (ANI-7) in cancer cell lines. To further evaluate the selectivity of ANI-7, we have expanded upon the initial cell line panel to now include the breast cancer cell lines (MCF7, MCF7/VP16, BT474, T47D, ZR-75-1, SKBR3, MDA-MB-468, BT20, MDA-MB-231); normal breast cells (MCF-10A); and cell lines derived from colon (HT29), ovarian (A2780), lung (H460), skin (A431), neuronal (BE2C), glial (U87, SJG2), and pancreatic (MIA) cancers. We now show that ANI-7 is up to 263-fold more potent at inhibiting the growth of breast cancer cell lines (MCF7, MCF7/VP16, BT474, T47D, ZR-75-1, SKBR3, MDA-MB-468) than normal breast cells (MCF-10A) or cell lines derived from other tumor types. Measures of growth inhibition, cell cycle analysis, morphologic assessment, Western blotting, receptor binding, gene expression, small interfering RNA technology, reporter activity, and enzyme inhibition assays were exploited to define the mechanism of action of ANI-7. In this work, we report that ANI-7 mediates its effects via the activation of the aryl hydrocarbon receptor (AhR) pathway and the subsequent induction of CYP1-metabolizing mono-oxygenases. The metabolic conversion of ANI-7 induces DNA damage, checkpoint activation, S-phase cell cycle arrest, and cell death in sensitive breast cancer cell lines. Basal expression of AhR, the AhR nuclear translocator, and the CYP1 family members do not predict for sensitivity; however, inherent expression of the phase II-metabolizing enzyme sulfur transferase 1A1 does. For the first time, we identify (Z)-2-(3,4-dichlorophenyl)-3-(1H-pyrrol-2-yl)acrylonitrile as a new AhR ligand.
Collapse
Affiliation(s)
- Jayne Gilbert
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital, Waratah, New South Wales, Australia (J.G., J.A.S.); and Priority Research Centre for Reproductive Science, Faculty of Science (G.N.D.I.), and Chemistry, School of Environmental and Life Sciences, Faculty of Science (M.T., A.M., J.A.S.), University of Newcastle, Callaghan, New South Wales, Australia
| | - Geoffry N De Iuliis
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital, Waratah, New South Wales, Australia (J.G., J.A.S.); and Priority Research Centre for Reproductive Science, Faculty of Science (G.N.D.I.), and Chemistry, School of Environmental and Life Sciences, Faculty of Science (M.T., A.M., J.A.S.), University of Newcastle, Callaghan, New South Wales, Australia
| | - Mark Tarleton
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital, Waratah, New South Wales, Australia (J.G., J.A.S.); and Priority Research Centre for Reproductive Science, Faculty of Science (G.N.D.I.), and Chemistry, School of Environmental and Life Sciences, Faculty of Science (M.T., A.M., J.A.S.), University of Newcastle, Callaghan, New South Wales, Australia
| | - Adam McCluskey
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital, Waratah, New South Wales, Australia (J.G., J.A.S.); and Priority Research Centre for Reproductive Science, Faculty of Science (G.N.D.I.), and Chemistry, School of Environmental and Life Sciences, Faculty of Science (M.T., A.M., J.A.S.), University of Newcastle, Callaghan, New South Wales, Australia
| | - Jennette A Sakoff
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital, Waratah, New South Wales, Australia (J.G., J.A.S.); and Priority Research Centre for Reproductive Science, Faculty of Science (G.N.D.I.), and Chemistry, School of Environmental and Life Sciences, Faculty of Science (M.T., A.M., J.A.S.), University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
7
|
Argan Oil-Mediated Attenuation of Organelle Dysfunction, Oxidative Stress and Cell Death Induced by 7-Ketocholesterol in Murine Oligodendrocytes 158N. Int J Mol Sci 2017; 18:ijms18102220. [PMID: 29065513 PMCID: PMC5666899 DOI: 10.3390/ijms18102220] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 02/07/2023] Open
Abstract
Argan oil is widely used in Morocco in traditional medicine. Its ability to treat cardiovascular diseases is well-established. However, nothing is known about its effects on neurodegenerative diseases, which are often associated with increased oxidative stress leading to lipid peroxidation and the formation of 7-ketocholesterol (7KC) resulting from cholesterol auto-oxidation. As 7KC induces oxidative stress, inflammation and cell death, it is important to identify compounds able to impair its harmful effects. These compounds may be either natural or synthetic molecules or mixtures of molecules such as oils. In this context: (i) the lipid profiles of dietary argan oils from Berkane and Agadir (Morocco) in fatty acids, phytosterols, tocopherols and polyphenols were determined by different chromatographic techniques; and (ii) their anti-oxidant and cytoprotective effects in 158N murine oligodendrocytes cultured with 7KC (25-50 µM; 24 h) without and with argan oil (0.1% v/v) or α-tocopherol (400 µM, positive control) were evaluated with complementary techniques of cellular and molecular biology. Among the unsaturated fatty acids present in argan oils, oleate (C18:1 n-9) and linoleate (C18:1 n-6) were the most abundant; the highest quantities of saturated fatty acids were palmitate (C16:0) and stearate (C18:0). Several phytosterols were found, mainly schottenol and spinasterol (specific to argan oil), cycloartenol, β-amyrin and citrostadienol. α- and γ-tocopherols were also present. Tyrosol and protocatechic acid were the only polyphenols detected. Argan and extra virgin olive oils have many compounds in common, principally oleate and linoleate, and tocopherols. Kit Radicaux Libres (KRL) and ferric reducing antioxidant power (FRAP) tests showed that argan and extra virgin olive oils have anti-oxidant properties. Argan oils were able to attenuate the cytotoxic effects of 7KC on 158N cells: loss of cell adhesion, cell growth inhibition, increased plasma membrane permeability, mitochondrial, peroxisomal and lysosomal dysfunction, and the induction of oxiapoptophagy (OXIdation + APOPTOsis + autoPHAGY). Altogether, our data obtained in 158N oligodendrocytes provide evidence that argan oil is able to counteract the toxic effects of 7KC on nerve cells, thus suggesting that some of its compounds could prevent or mitigate neurodegenerative diseases to the extent that they are able to cross the blood-brain barrier.
Collapse
|
8
|
Martini D, Del Bo’ C, Porrini M, Ciappellano S, Riso P. Role of polyphenols and polyphenol-rich foods in the modulation of PON1 activity and expression. J Nutr Biochem 2017. [DOI: 10.1016/j.jnutbio.2017.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Hydroxystilbenes and methoxystilbenes activate human aryl hydrocarbon receptor and induce CYP1A genes in human hepatoma cells and human hepatocytes. Food Chem Toxicol 2017; 103:122-132. [PMID: 28279696 DOI: 10.1016/j.fct.2017.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/18/2017] [Accepted: 03/03/2017] [Indexed: 12/27/2022]
Abstract
Natural polyphenol resveratrol (trihydroxystilbene) is a partial agonist of human aryl hydrocarbon receptor AhR, thereby, displaying a plethora of biological effects. Biological activities of metoxylated and hydroxylated stilbenes were studied in the past. The aim of the current study was to describe the effects of 13 different hydroxy- and methoxystilbenes, including their cis/trans isomers on the transcriptional activity of AhR and the expression of CYP1A genes in hepatic cancer cells HepG2 and in primary human hepatocytes. Techniques of gene reporter assays, qRT-PCR, Simple Western blotting by Sally Sue™ and electrophoretic mobility shift assay EMSA were employed. All compounds activated AhR, but their efficacies, potencies and dose-response profiles differed substantially. The strongest activators of AhR and inducers of CYP1A1 in HepG2 cells were DMU-212 ((E)-3,4,5,4´-tetramethoxystilbene), trans-piceatannol, cis-piceatannol, trans-trismethoxyresveratrol and trans-pinostilbene. While DMU-212 and trans-trismethoxyresveratrol also induced CYP1A1 and CYP1A2 in primary human hepatocytes, the effects of trans-piceatannol, cis-piceatannol and trans-pinostilbene weaned off. On the other hand, trans-4-methoxystilbene was strong CYP1A inducer in hepatocytes but not in HepG2 cells. Differences between effects of stilbenes in HepG2 cells and human hepatocytes are probably due to the extensive phase I and phase II xenobiotic metabolism in human hepatocytes. The data obtained may be of toxicological relevance.
Collapse
|
10
|
Ponce-Ruiz N, Murillo-González FE, Rojas-García AE, Mackness M, Bernal-Hernández YY, Barrón-Vivanco BS, González-Arias CA, Medina-Díaz IM. Transcriptional regulation of human Paraoxonase 1 by nuclear receptors. Chem Biol Interact 2017; 268:77-84. [PMID: 28223025 DOI: 10.1016/j.cbi.2017.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/10/2017] [Indexed: 01/08/2023]
Abstract
Paraoxonase 1 (PON1) is a calcium-dependent lactonase synthesized primarily in the liver and secreted into the plasma, where it is associates with high density lipoproteins (HDL). PON1 acts as antioxidant preventing low-density lipoprotein (LDL) oxidation, a process considered critical in the initiation and progression of atherosclerosis. Additionally, PON1 hydrolyzes and detoxifies some toxic metabolites of organophosphorus compounds (OPs). Thus, PON1 activity and expression levels are important for determining susceptibility to OPs intoxication and risk of developing diseases related to inflammation and oxidative stress. Increasing evidence has demonstrated the modulation of PON1 expression by many factors is due to interaction with nuclear receptors (NRs). Here, we briefly review the studies in this area and discuss the role of nuclear receptors in the regulation of PON1 expression, as well as how understanding these mechanisms may allow us to manipulate PON1 levels to improve drug efficacy and treat disease.
Collapse
Affiliation(s)
- N Ponce-Ruiz
- Universidad Autónoma de Nayarit, Laboratorio de Contaminación y Toxicología, Secretaría de Investigación y Posgrado, Nayarit, Mexico; Posgrado en Ciencias Biológico Agropecuarias, Universidad Autónoma de Nayarit, Tepic, Nayarit, Mexico.
| | - F E Murillo-González
- Universidad Autónoma de Nayarit, Laboratorio de Contaminación y Toxicología, Secretaría de Investigación y Posgrado, Nayarit, Mexico; Posgrado en Ciencias Biológico Agropecuarias, Universidad Autónoma de Nayarit, Tepic, Nayarit, Mexico.
| | - A E Rojas-García
- Universidad Autónoma de Nayarit, Laboratorio de Contaminación y Toxicología, Secretaría de Investigación y Posgrado, Nayarit, Mexico.
| | - Mike Mackness
- Institute of Cardiovascular Sciences, Manchester, United Kingdom.
| | - Y Y Bernal-Hernández
- Universidad Autónoma de Nayarit, Laboratorio de Contaminación y Toxicología, Secretaría de Investigación y Posgrado, Nayarit, Mexico.
| | - B S Barrón-Vivanco
- Universidad Autónoma de Nayarit, Laboratorio de Contaminación y Toxicología, Secretaría de Investigación y Posgrado, Nayarit, Mexico.
| | - C A González-Arias
- Universidad Autónoma de Nayarit, Laboratorio de Contaminación y Toxicología, Secretaría de Investigación y Posgrado, Nayarit, Mexico.
| | - I M Medina-Díaz
- Universidad Autónoma de Nayarit, Laboratorio de Contaminación y Toxicología, Secretaría de Investigación y Posgrado, Nayarit, Mexico.
| |
Collapse
|
11
|
Ponce-Ruiz N, Rojas-García A, Barrón-Vivanco B, Elizondo G, Bernal-Hernández Y, Mejía-García A, Medina-Díaz I. Transcriptional regulation of human paraoxonase 1 by PXR and GR in human hepatoma cells. Toxicol In Vitro 2015; 30:348-54. [DOI: 10.1016/j.tiv.2015.09.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 09/15/2015] [Accepted: 09/30/2015] [Indexed: 01/08/2023]
|
12
|
Marinho AT, Dias CG, Pinheiro PF, Lemos AR, Antunes AMM, Marques MM, Monteiro EC, Miranda JP, Pereira SA. Nevirapine modulation of paraoxonase-1 in the liver: An in vitro three-model approach. Eur J Pharm Sci 2015; 82:147-53. [PMID: 26620700 DOI: 10.1016/j.ejps.2015.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Nevirapine is associated with severe hepatotoxicity, through the formation of reactive metabolites. Paraoxonase-1 (PON-1) is a promiscuous enzyme involved in the metabolism of xeno- and endobiotics and proposed as a biomarker of hepatotoxicity. The aim of this work was to explore the effects of nevirapine and its phase I metabolites, 2-hydroxy-nevirapine and 12-hydroxy-nevirapine, on PON-1 activities. MATERIAL AND METHODS 2D and 3D primary cultures of rat hepatocytes, and also HepG2 2D cell cultures, were exposed to nevirapine, 2-hydroxy-nevirapine, and 12-hydroxy-nevirapine. The paraoxonase (POase), arylesterase (AREase) and lactonase (LACase) activities of PON-1 were quantified. RESULTS Effects of nevirapine and its metabolites were only observed in the 3D cell model. Both nevirapine and 12-hydroxy-nevirapine increased POase (p<0.05, p<0.01) and LACase activities (p<0.05, p<0.001). The AREase activity was increased only upon 12-hydroxy-nevirapine exposure (p<0.01). These modulatory effects were observed at 300μM concentrations of nevirapine and 12-hydroxy-nevirapine. CONCLUSIONS The formation of 12-hydroxy-nevirapine seems to be the main factor responsible for the increase of PON-1 activities induced by nevirapine exposure. This effect was only observed in the 3D model, suggesting that an in vivo-like system is necessary for this modulation to occur. The present data suggest that the 3D model is a more suitable in vitro model than the conventional ones to explore drug effects on PON-1.
Collapse
Affiliation(s)
- Aline T Marinho
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal.
| | - Clara G Dias
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal.
| | - Pedro F Pinheiro
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Ana Rita Lemos
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal.
| | - Alexandra M M Antunes
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - M Matilde Marques
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Emília C Monteiro
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal.
| | - Joana P Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Sofia A Pereira
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal.
| |
Collapse
|
13
|
Bui LC, Tomkiewicz C, Pierre S, Chevallier A, Barouki R, Coumoul X. Regulation of Aquaporin 3 Expression by the AhR Pathway Is Critical to Cell Migration. Toxicol Sci 2015; 149:158-66. [DOI: 10.1093/toxsci/kfv221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
14
|
Lou-Bonafonte JM, Gabás-Rivera C, Navarro MA, Osada J. PON1 and Mediterranean Diet. Nutrients 2015; 7:4068-92. [PMID: 26024295 PMCID: PMC4488773 DOI: 10.3390/nu7064068] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/20/2015] [Indexed: 12/18/2022] Open
Abstract
The Mediterranean diet has been proven to be highly effective in the prevention of cardiovascular diseases. Paraoxonase 1 (PON1) has been implicated in the development of those conditions, especially atherosclerosis. The present work describes a systematic review of current evidence supporting the influence of Mediterranean diet and its constituents on this enzyme. Despite the differential response of some genetic polymorphisms, the Mediterranean diet has been shown to exert a protective action on this enzyme. Extra virgin olive oil, the main source of fat, has been particularly effective in increasing PON1 activity, an action that could be due to low saturated fatty acid intake, oleic acid enrichment of phospholipids present in high-density lipoproteins that favor the activity, and increasing hepatic PON1 mRNA and protein expressions induced by minor components present in this oil. Other Mediterranean diet constituents, such as nuts, fruits and vegetables, have been effective in modulating the activity of the enzyme, pomegranate and its compounds being the best characterized items. Ongoing research on compounds isolated from all these natural products, mainly phenolic compounds and carotenoids, indicates that some of them are particularly effective, and this may enhance the use of nutraceuticals and functional foods capable of potentiating PON1 activity.
Collapse
Affiliation(s)
- José M Lou-Bonafonte
- Departamento de Farmacología y Fisiología, Facultad de Ciencias de la Salud y del Deporte, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Huesca, E-22002, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, E-28029, Spain.
| | - Clara Gabás-Rivera
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, E-28029, Spain.
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, E-50013, Spain.
| | - María A Navarro
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, E-28029, Spain.
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, E-50013, Spain.
| | - Jesús Osada
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, E-28029, Spain.
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, E-50013, Spain.
| |
Collapse
|
15
|
Tsai CF, Hsieh TH, Lee JN, Hsu CY, Wang YC, Lai FJ, Kuo KK, Wu HL, Tsai EM, Kuo PL. Benzyl butyl phthalate induces migration, invasion, and angiogenesis of Huh7 hepatocellular carcinoma cells through nongenomic AhR/G-protein signaling. BMC Cancer 2014; 14:556. [PMID: 25081364 PMCID: PMC4131049 DOI: 10.1186/1471-2407-14-556] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 07/18/2014] [Indexed: 01/04/2023] Open
Abstract
Background The widespread use of phthalates as plasticizers has raised public health concerns regarding their adverse effects, including an association with cancer. Although animal investigations have suggested an association between phthalate exposure and hepatocellular carcinoma, the mechanisms are unknown. Methods The hepatocellular carcinoma cell line Huh7 was treated with benzyl butyl phthalate (BBP), and then analyzed by total internal reflection fluorescence microscopy, confocal microscopy and double immunogold transmission electron microscopy. Following BBP treatment, mRNA levels were measured by RT-PCR, protein levels were measured using western blot, and vascular endothelial growth factor levels were measured by an enzyme-linked immunosorbent assay. Cell migration and invasion assays were evaluated by transwell, and angiogenesis were performed by a tube formation assay. Nude mice were used to investigate metastasis and angiogenesis in vivo. Results BBP affected hepatocellular carcinoma progression through the aryl hydrocarbon receptor (AhR) and that benzyl butyl phthalate (BBP) stimulated AhR at the cell surface, which then interacted with G proteins and triggered a downstream signaling cascade. BBP activated AhR through a nongenomic action involving G-protein signaling rather than the classical genomic AhR action. BBP treatment promoted cell migration and invasion in vitro and metastasis in vivo via the AhR/Gβ/PI3K/Akt/NF-κB pathway. In addition, BBP induced both in vitro and in vivo angiogenesis through the AhR/ERK/VEGF pathway. Conclusions These findings suggest a novel nongenomic AhR mechanism involving G-protein signaling induced by phthalates, which contributes to tumor progression of hepatocellular carcinoma. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-556) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Eing-Mei Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan.
| | | |
Collapse
|
16
|
Poirot M, Silvente-Poirot S. Cholesterol-5,6-epoxides: Chemistry, biochemistry, metabolic fate and cancer. Biochimie 2013; 95:622-31. [DOI: 10.1016/j.biochi.2012.05.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/08/2012] [Indexed: 12/02/2022]
|