1
|
Deswal B, Bagchi U, Santra MK, Garg M, Kapoor S. Inhibition of STAT3 by 2-Methoxyestradiol suppresses M2 polarization and protumoral functions of macrophages in breast cancer. BMC Cancer 2024; 24:1129. [PMID: 39256694 PMCID: PMC11389501 DOI: 10.1186/s12885-024-12871-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Breast cancer metastasis remains the leading cause of cancer-related deaths in women worldwide. Infiltration of tumor-associated macrophages (TAMs) in the tumor stroma is known to be correlated with reduced overall survival. The inhibitors of TAMs are sought after for reprogramming the tumor microenvironment. Signal transducer and activator of transcription 3 (STAT3) is well known to contribute in pro-tumoral properties of TAMs. 2-Methoxyestradiol (2ME2), a potent anticancer and antiangiogenic agent, has been in clinical trials for treatment of breast cancer. Here, we investigated the potential of 2ME2 in modulating the pro-tumoral effects of TAMs in breast cancer. METHODS THP-1-derived macrophages were polarized to macrophages with or without 2ME2. The effect of 2ME2 on macrophage surface markers and anti-inflammatory genes was determined by Western blotting, flow cytometry, immunofluorescence, qRT‒PCR. The concentration of cytokines secreted by cells was monitored by ELISA. The effect of M2 macrophages on malignant properties of breast cancer cells was determined using colony formation, wound healing, transwell, and gelatin zymography assays. An orthotopic model of breast cancer was used to determine the effect of 2ME2 on macrophage polarization and metastasis in vivo. RESULTS First, our study found that polarization of monocytes to alternatively activated M2 macrophages is associated with the reorganization of the microtubule cytoskeleton. At lower concentrations, 2ME2 treatment depolymerized microtubules and reduced the expression of CD206 and CD163, suggesting that it inhibits the polarization of macrophages to M2 phenotype. However, the M1 polarization was not significantly affected at these concentrations. Importantly, 2ME2 inhibited the expression of several anti-inflammatory cytokines and growth factors, including CCL18, TGF-β, IL-10, FNT, arginase, CXCL12, MMP9, and VEGF-A, and hindered the metastasis-promoting effects of M2 macrophages. Concurrently, 2ME2 treatment reduced the expression of CD163 in tumors and inhibited lung metastasis in the orthotopic breast cancer model. Mechanistically, 2ME2 treatment reduced the phosphorylation and nuclear translocation of STAT3, an effect which was abrogated by colivelin. CONCLUSIONS Our study presents novel findings on mechanism of 2ME2 from the perspective of its effects on the polarization of the TAMs via the STAT3 signaling in breast cancer. Altogether, the data supports further clinical investigation of 2ME2 and its derivatives as therapeutic agents to modulate the tumor microenvironment and immune response in breast carcinoma.
Collapse
Affiliation(s)
- Bhawna Deswal
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201313, India
| | - Urmi Bagchi
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201313, India
| | - Manas Kumar Santra
- National Centre for Cell Science Complex, Savitribai Phule Pune University, Campus Ganeshkhind Road, Pune, Maharashtra, 411007, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201313, India.
| | - Sonia Kapoor
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
2
|
Seephan S, Sasaki SI, Wattanathamsan O, Singharajkomron N, He K, Ucche S, Kungsukool S, Petchjorm S, Chantaravisoot N, Wongkongkathep P, Hayakawa Y, Pongrakhananon V. CAMSAP3 negatively regulates lung cancer cell invasion and angiogenesis through nucleolin/HIF-1α mRNA complex stabilization. Life Sci 2023; 322:121655. [PMID: 37019300 DOI: 10.1016/j.lfs.2023.121655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
AIMS Cancer metastasis is a major cause of lung cancer-related mortality, so identification of related molecular mechanisms is of interest. Calmodulin-regulated spectrin-associated protein 3 (CAMSAP3) has been implicated in lung cancer malignancies; however, its role in metastatic processes, including invasion and angiogenesis, is largely unknown. MAIN METHOD The clinical relevance of CAMSAP3 expression in lung cancer was evaluated. The relevance of CAMSAP3 expression to in vitro cell invasion and angiogenesis was assessed in human lung cancer cells and endothelial cells, respectively. The molecular mechanism was identified by qRT-PCR, immunoprecipitation, mass spectrometry, and RNA immunoprecipitation. The in vivo metastatic and angiogenic activities of lung cancer cells were assessed. KEY FINDINGS Low CAMSAP3 expression was found in malignant lung tissues and strongly correlated with a poor prognosis in lung adenocarcinoma (LUAD). CAMSAP3-knockout NSCLC exhibited high invasive ability, and CAMSAP3 knockout induced HUVEC proliferation and tube formation; these effects were significantly attenuated by reintroduction of exogenous wild-type CAMSAP3. Mechanistically, in the absence of CAMSAP3, the expression of hypoxia-inducible factor-1α (HIF-1α) was upregulated, which increased the levels of downstream HIF-1α targets such as vascular endothelial growth factor A (VEGFA) and matrix metalloproteinases (MMPs) 2 and 9. Proteomic analysis revealed that nucleolin (NCL) bound to CAMSAP3 to regulate HIF-1α mRNA stabilization. In addition, CAMSAP3-knockout lung cancer cells displayed highly aggressive behavior in metastasis and angiogenesis in vivo. SIGNIFICANCE This study reveals that CAMSAP3 plays a negative regulatory role in lung cancer cell metastatic behavior both in vitro and in vivo through NCL/HIF-1α mRNA complex stabilization.
Collapse
Affiliation(s)
- Suthasinee Seephan
- Pharmaceutical Sciences and Technology Graduate Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - So-Ichiro Sasaki
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Onsurang Wattanathamsan
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Natsaranyatron Singharajkomron
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Ka He
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Sisca Ucche
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Sakkarin Kungsukool
- Department of Respiratory Medicine, Central Chest Institute of Thailand, Muang District, Nonthaburi, Thailand
| | - Supinda Petchjorm
- Division of Anatomical Pathology, Central Chest Institute of Thailand, Muang District, Nonthaburi, Thailand
| | - Naphat Chantaravisoot
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Piriya Wongkongkathep
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Varisa Pongrakhananon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
3
|
Kumari A, Panda D. Monitoring the Disruptive Effects of Tubulin-Binding Agents on Cellular Microtubules. Methods Mol Biol 2022; 2430:431-448. [PMID: 35476348 DOI: 10.1007/978-1-0716-1983-4_27] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tubulin-binding agents are an important class of chemotherapeutic agents. This chapter describes detailed protocols to examine the effects of tubulin-binding agents on cellular microtubules. The methods can be utilized for the screening of novel chemotherapeutic agents targeting microtubules. These assays can also be extended to study the effects of various proteins on the stability of microtubules. We have described five assays, which together provides qualitative and quantitative information about the effects of tubulin-binding agents on microtubule stability and dynamics. The key steps and crucial information regarding different steps have been included along with the theory of each of the assays.
Collapse
Affiliation(s)
- Anuradha Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
4
|
Roncato F, Regev O, Yadav SK, Alon R. Microtubule destabilization is a critical checkpoint of chemotaxis and transendothelial migration in melanoma cells but not in T cells. Cell Adh Migr 2021; 15:166-179. [PMID: 34152257 PMCID: PMC8218694 DOI: 10.1080/19336918.2021.1934958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Microtubules (MTs) control cell shape and intracellular cargo transport. The role of MT turnover in the migration of slow-moving cells through endothelial barriers remains unclear. To irreversibly interfere with MT disassembly, we have used the MT-stabilizing agent zampanolide (ZMP) in Β16F10 melanoma as amodel of slow-moving cells. ZMP-treated B16 cells failed to follow chemotactic gradients across rigid confinements and could not generate stable sub-endothelial pseudopodia under endothelial monolayers. In vivo, ZMP-treated Β16 cells failed to extravasate though lung capillaries. In contrast to melanoma cells, the chemotaxis and transendothelial migration of ZMP-treated Tcells were largely conserved. This is afirst demonstration that MT disassembly is akey checkpoint in the directional migration of cancer cells but not of lymphocytes.
Collapse
Affiliation(s)
- Francesco Roncato
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ofer Regev
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Ronen Alon
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
5
|
Khwaja S, Fatima K, Mishra D, Babu V, Kumar Y, Malik SB, Tabassum M, Luqman S, Bawankule DU, Chanda D, Khan F, Mondhe DM, Negi AS. An improved synthesis of indanocine and antiproliferative activity of 2-benzylindanocine via microtubule destabilization. Chem Biol Drug Des 2021; 98:127-143. [PMID: 33969634 DOI: 10.1111/cbdd.13857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/08/2021] [Accepted: 05/01/2021] [Indexed: 11/28/2022]
Abstract
Indanocine, a potent anticancer investigational drug of National Cancer Institute-USA, has been much discussed in recent years. Present communication aimed at total synthesis of indanocine and its close analogues. Total synthesis was improved by double yields than previously reported yields. Some of the benzylidene and 2-benzyl derivatives with free rotation at C2 position exhibited potential cytotoxicities against various human cancer cell lines. Five such analogues exhibited potential antiproliferative effect against HCT-116 and MIA PACA-2 cell lines. Benzylindanocine 12i induced microtubule destabilization by occupying colchicine binding pocket of β-tubulin. It also exhibited anti-inflammatory activity by down-regulating IL-6 and TNF-α. In Ehrlich ascites carcinoma model, 12i reduced 78.4% of EAC tumour in Swiss albino mice at 90 mg/kg (i.p.) dose. Further, in in vivo safety studies, 12i was found to be safe to rodents up to 1,000 mg/kg dose. Concomitant anticancer and anti-inflammatory activity of benzylindanocine is distinctive, which suggests its further optimization for better efficacy and druggability.
Collapse
Affiliation(s)
- Sadiya Khwaja
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) P.O. CIMAP, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kaneez Fatima
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) P.O. CIMAP, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Divya Mishra
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) P.O. CIMAP, Lucknow, India
| | - Vineet Babu
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) P.O. CIMAP, Lucknow, India
| | - Yogesh Kumar
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) P.O. CIMAP, Lucknow, India
| | - Sumera Banu Malik
- CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, India
| | - Misbah Tabassum
- CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, India
| | - Suaib Luqman
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) P.O. CIMAP, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Dnyaneshwar U Bawankule
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) P.O. CIMAP, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Debabrata Chanda
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) P.O. CIMAP, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Feroz Khan
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) P.O. CIMAP, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Dilip M Mondhe
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, India
| | - Arvind S Negi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) P.O. CIMAP, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Rashid A, Naaz A, Rai A, Chatterji BP, Panda D. Inhibition of polo-like kinase 1 suppresses microtubule dynamics in MCF-7 cells. Mol Cell Biochem 2020; 465:27-36. [PMID: 31782084 DOI: 10.1007/s11010-019-03664-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/22/2019] [Indexed: 10/25/2022]
Abstract
Polo-like kinase 1 (Plk1) is a mitotic serine/threonine kinase implicated in spindle formation and cytokinesis in mammalian cells. Here, purified Plk1 was found to bind to reconstituted microtubules in vitro. Further, Plk1 was found to co-localize with interphase microtubules in MCF-7 cells and to co-immunoprecipitate with polymerized tubulin. The binding of Plk1 to interphase microtubules appeared to increase with an increase in the level of tubulin acetylation in MCF-7 cells. Interestingly, Plk1 inhibitor III, an inhibitor of Plk1 kinase activity, treatment increased the association of Plk1 with the interphase microtubules in MCF-7 cells. Therefore, the effect of inhibition of Plk1 kinase activity on the dynamic instability of microtubules was determined by time-lapse imaging in MCF-7 cells. Plk1 inhibitor III dampened the dynamic instability of microtubules. For example, Plk1 inhibitor III (3 μM) reduced the rate and extent of the growing phase by 28 and 48%, respectively, and inhibited the dynamicity of microtubules by 53% as compared to the microtubules in control MCF-7 cells. Plk1 inhibitor III treatment also increased the level of acetylated microtubules, indicating that it stabilizes microtubules. The findings indicated that Plk1 interacts with microtubules and Plk1 may have a role in the regulation of microtubule dynamics.
Collapse
Affiliation(s)
- Aijaz Rashid
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Afsana Naaz
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Ankit Rai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Biswa Prasun Chatterji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
7
|
Potashnikova DM, Saidova AA, Tvorogova AV, Sheval EV, Vorobjev IA. Non-linear Dose Response of Lymphocyte Cell Lines to Microtubule Inhibitors. Front Pharmacol 2019; 10:436. [PMID: 31068822 PMCID: PMC6491834 DOI: 10.3389/fphar.2019.00436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/05/2019] [Indexed: 12/13/2022] Open
Abstract
Microtubule (MT) inhibitors show anti-cancer activity in a wide range of tumors in vitro and demonstrate high clinical efficacy. To date they are routinely included into many chemotherapeutic regimens. While the mechanisms of MT inhibitors’ interactions with tubulin have been well-established, the relationship between their concentration and effect on neoplastic cells is not completely understood. The common notion is that tumor cells are most vulnerable during division and all MT inhibitors block them in mitosis and induce mitotic checkpoint-associated cell death. At the same time multiple evidence of more subtle effects of lower doses of MT inhibitors on cell physiology exist. The extent of efficacy of the low-dose MT inhibitor treatment and the mechanisms of resulting cell death currently present a critical issue in oncology. The prospect of MT inhibitor dose reduction is promising as protocols at higher concentration have multiple side effects. We assessed cell cycle changes and cell death induced by MT inhibitors (paclitaxel, nocodazole, and vinorelbine) on human lymphoid B-cell lines in a broad concentration range. All inhibitors had similar accumulation effects and demonstrated “trigger” concentrations that induce cell accumulation in G2/M phase. Concentrations slightly below the “trigger” promoted cell accumulation in sub-G1 phase. Multi-label analysis of live cells showed that the sub-G1 population is heterogeneous and may include cells that are still viable after 24 h of treatment. Effects observed were similar for cells expressing Tat-protein. Thus cell cycle progression and cell death are differentially affected by high and low MT inhibitor concentrations.
Collapse
Affiliation(s)
- Daria M Potashnikova
- Department of Cell Biology and Histology, School of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.,Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Aleena A Saidova
- Department of Cell Biology and Histology, School of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.,Department of Cell Biotechnology, Center of Experimental Embryology and Reproductive Biotechnology, Moscow, Russia
| | - Anna V Tvorogova
- Department of Cell Biotechnology, Center of Experimental Embryology and Reproductive Biotechnology, Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Eugene V Sheval
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Ivan A Vorobjev
- Department of Cell Biology and Histology, School of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.,Department of Biology, School of Science and Technology, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
8
|
Sawant AV, Srivastava S, Prassanawar SS, Bhattacharyya B, Panda D. Crocin, a carotenoid, suppresses spindle microtubule dynamics and activates the mitotic checkpoint by binding to tubulin. Biochem Pharmacol 2019; 163:32-45. [PMID: 30710515 DOI: 10.1016/j.bcp.2019.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/29/2019] [Indexed: 02/06/2023]
Abstract
Crocin, a constituent of the saffron spice, exhibits promising antitumor activity in animal models and also inhibits the proliferation of several types of cancer cells in culture. Recently, we have shown that crocin binds to purified tubulin at the vinblastine site, depolymerizes microtubules and induces a mitotic block in cultured cells. Here, we extend our previous suggestion and explore the cellular effects of crocin to further understand its mechanism of action. In a kinetic study, we observed that the crocin-induced depolymerization of microtubules preceded both DNA damage and reactive oxygen species generation indicating that depolymerizing microtubules is the primary action of crocin. Crocin also inhibited the growth of cold-depolymerized microtubules in HeLa cells indicating that it can inhibit microtubule dynamics. Using fluorescence recovery after photobleaching, crocin was found to suppress the spindle microtubule dynamics in live HeLa cells. Further, crocin treatment resulted in activation of spindle assembly checkpoint proteins, BubR1 and Mad2. Similar to other microtubule-targeting agents, crocin also perturbed the localization of end-binding protein EB1 from the growing microtubule ends and enhanced the acetylation of remaining microtubules. Further, crocin was found to bind to purified tubulin with a dissociation constant of 12 ± 1.5 μM. The results suggested that crocin exerted its antiproliferative effect primarily by inhibiting the assembly and dynamics of microtubules. Importantly, the combination of crocin with known anticancer agents like combretastatin A-4, cisplatin, doxorubicin or sorafenib, exerted a strong synergistic cytotoxic effect in HeLa cells indicating that crocin may enhance the effectiveness of other anticancer agents.
Collapse
Affiliation(s)
- Avishkar V Sawant
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shalini Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shweta S Prassanawar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
9
|
Serikbaeva A, Tvorogova A, Kauanova S, Vorobjev IA. Analysis of Microtubule Dynamics Heterogeneity in Cell Culture. Methods Mol Biol 2019; 1745:181-204. [PMID: 29476470 DOI: 10.1007/978-1-4939-7680-5_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Microtubules (MTs) are dynamic components of the cytoskeleton playing an important role in a large number of cell functions. Individual MTs in living cells undergo stochastic switching between alternate states of growth, shortening and attenuated phase, a phenomenon known as tempered dynamic instability. Dynamic instability of MTs is usually analyzed by labeling MTs with +TIPs, namely, EB proteins. Tracking of +TIP trajectories allows analyzing MT growth in cells with a different density of MTs. Numerous labs now use +TIP to track growing MTs in a variety of cell cultures. However, heterogeneity of MT dynamics is usually underestimated, and rather small sampling for the description of dynamic instability parameters is often used. The strategy described in this chapter is the method for repetitive quantitative analysis of MT growth rate within the same cell that allows minimization of the variation in MT dynamics measurement. We show that variability in MT dynamics within a cell when using repeated measurements is significantly less than between different cells in the same chamber. This approach allows better estimation of the heterogeneity of cells' responses to different treatments. To compare the effects of different MT inhibitors, the protocol using normalized values for MT dynamics and repetitive measurements for each cell is employed. This chapter provides detailed methods for analysis of MT dynamics in tissue cultures. We describe protocols for imaging MT dynamics by fluorescent microscopy, contrast enhancement technique, and MT dynamics analysis using triple color-coded display based on sequential subtraction analysis.
Collapse
Affiliation(s)
- Anara Serikbaeva
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana, Kazakhstan
- Department of Biology, School of Sciences and Technology, Nazarbayev University, Astana, Kazakhstan
| | - Anna Tvorogova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Sholpan Kauanova
- School of Engineering, Nazarbayev University, Astana, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Ivan A Vorobjev
- Department of Biology, School of Sciences and Technology, Nazarbayev University, Astana, Kazakhstan.
| |
Collapse
|
10
|
Naaz A, Ahad S, Rai A, Surolia A, Panda D. BubR1 depletion delays apoptosis in the microtubule-depolymerized cells. Biochem Pharmacol 2018; 162:177-190. [PMID: 30468712 DOI: 10.1016/j.bcp.2018.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022]
Abstract
We investigated the role of a spindle assembly checkpoint protein, BubR1, in determining the mechanism of cell killing of an anti-microtubule agent CXI-benzo-84. CXI-benzo-84 dampened microtubule dynamics in live MCF-7 cells. The compound arrested MCF-7 cells in mitosis and induced apoptosis in these cells. Though CXI-benzo-84 efficiently depolymerized microtubules in the BubR1-depleted MCF-7 cells, it did not arrest the BubR1-depleted cells at mitosis. Interestingly, apoptosis occurred in the BubR1-depleted MCF-7 cells in the absence of a mitotic block suggesting that the mitotic block is not a prerequisite for the induction of apoptosis by anti-microtubule agents. In the presence of CXI-Benzo-84, the level of apoptosis was initially found to be lesser in the BubR1-depleted MCF-7 cells than the control cells; however, the BubR1-depleted cells displayed a similar level of apoptosis as the control cells at 72 h of drug treatment. The depletion of BubR1 enhanced DNA damage in MCF-7 cells upon microtubule depolymerization. In addition, CXI-benzo-84 in combination with cisplatin induced more cell death in BubR1-depleted cells than the BubR1-expressing MCF-7 cells. The results indicated a possibility that the BubR1-compromised cancer patients can be treated with combination therapy.
Collapse
Affiliation(s)
- Afsana Naaz
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shazia Ahad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Ankit Rai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
11
|
Hura N, Sawant AV, Kumari A, Guchhait SK, Panda D. Combretastatin-Inspired Heterocycles as Antitubulin Anticancer Agents. ACS OMEGA 2018; 3:9754-9769. [PMID: 31459105 PMCID: PMC6644768 DOI: 10.1021/acsomega.8b00996] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/09/2018] [Indexed: 06/10/2023]
Abstract
Combretastatin (CA-4) and its analogues are undergoing several clinical trials for treating different types of tumors. In this work, the antiproliferative activity of a series of 2-aminoimidazole-carbonyl analogs of clinically relevant combretastatins A-4 (CA-4) and A-1 was evaluated using a cell-based assay. Among the compounds tested, C-13 and C-21 displayed strong antiproliferative activities against HeLa cells. C-13 inhibited the proliferation of lung carcinoma (A549) cells more potently than combretastatin A-4. C-13 also retarded the migration of A549 cells. Interestingly, C-13 displayed much stronger antiproliferative effects against breast carcinoma and skin melanoma cells compared to noncancerous breast epithelial and skin fibroblast cells. C-13 strongly disassembled cellular microtubules, perturbed the localization of EB1 protein, inhibited mitosis in cultured cells, and bound to tubulin at the colchicine site and inhibited the polymerization of reconstituted microtubules in vitro. C-13 treatment increased the level of reactive oxygen species and induced apoptosis via poly(ADP-ribose) polymerase-cleavage in HeLa cells. The results revealed the importance of the 2-aminoimidazole-carbonyl motif as a double bond replacement in combretastatin and indicated a pharmacodynamically interesting pattern of H-bond acceptors/donors and requisite syn-templated aryls.
Collapse
Affiliation(s)
- Neha Hura
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar, Mohali, Punjab 160062, India
| | - Avishkar V. Sawant
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Bombay, Mumbai 400076, India
| | - Anuradha Kumari
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Bombay, Mumbai 400076, India
| | - Sankar K. Guchhait
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar, Mohali, Punjab 160062, India
| | - Dulal Panda
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
12
|
Indibulin dampens microtubule dynamics and produces synergistic antiproliferative effect with vinblastine in MCF-7 cells: Implications in cancer chemotherapy. Sci Rep 2018; 8:12363. [PMID: 30120268 PMCID: PMC6098095 DOI: 10.1038/s41598-018-30376-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/26/2018] [Indexed: 01/05/2023] Open
Abstract
Indibulin, a synthetic inhibitor of tubulin assembly, has shown promising anticancer activity with a minimal neurotoxicity in preclinical animal studies and in Phase I clinical trials for cancer chemotherapy. Using time-lapse confocal microscopy, we show that indibulin dampens the dynamic instability of individual microtubules in live breast cancer cells. Indibulin treatment also perturbed the localization of end-binding proteins at the growing microtubule ends in MCF-7 cells. Indibulin reduced inter-kinetochoric tension, produced aberrant spindles, activated mitotic checkpoint proteins Mad2 and BubR1, and induced mitotic arrest in MCF-7 cells. Indibulin-treated MCF-7 cells underwent apoptosis-mediated cell death. Further, the combination of indibulin with an anticancer drug vinblastine was found to exert synergistic cytotoxic effects on MCF-7 cells. Interestingly, indibulin displayed a stronger effect on the undifferentiated neuroblastoma (SH-SY5Y) cells than the differentiated neuronal cells. Unlike indibulin, vinblastine and colchicine produced similar depolymerizing effects on microtubules in both differentiated and undifferentiated SH-SY5Y cells. The data indicated a possibility that indibulin may reduce chemotherapy-induced peripheral neuropathy in cancer patients.
Collapse
|
13
|
Kumbhar BV, Panda D, Kunwar A. Interaction of microtubule depolymerizing agent indanocine with different human αβ tubulin isotypes. PLoS One 2018; 13:e0194934. [PMID: 29584771 PMCID: PMC5870988 DOI: 10.1371/journal.pone.0194934] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/13/2018] [Indexed: 12/02/2022] Open
Abstract
Tubulin isotypes are known to regulate the stability and dynamics of microtubules, and are also involved in the development of resistance against microtubule-targeted cancer drugs. Indanocine, a potent microtubule depolymerizing agent, is highly active against multidrug-resistant (MDR) cancer cells without affecting normal cells. It is known to disrupt microtubule dynamics in cells and induce apoptotic cell death. Indanocine is reported to bind to tubulin at the colchicine site i.e. at the interface of αβ tubulin heterodimer. However, it’s precise binding mode, involved molecular interactions and the binding affinities with different αβ-tubulin isotypes present in MDR cells are not well understood. Here, the binding affinities of human αβ-tubulin isotypes with indanocine were examined, employing the molecular modeling approach i.e. docking, molecular dynamics simulation and binding energy calculations. Multiple sequence analysis suggests that the amino acid sequences are different in the indanocine binding pockets of βI, βIIa, βIII and βVI isotypes. However, such differences are not observed in the amino acid sequences of βIVa, βIVb, and βV tubulin isotypes at indanocine binding pockets. Docking and molecular dynamics simulation results show that indanocine prefers the interface binding pocket of αβIIa, αβIII, αβIVb, αβV, and αβVI tubulin isotypes; whereas it is expelled from the interface binding pocket of αβIVa and αβI-tubulin isotypes. Further, binding free energy calculations show that αβVI has the highest binding affinity and αβI has the lowest binding affinity for indanocine among all β-tubulin isotypes. The binding free energy decreases in the order of αβVI > αβIVb > αβIIa > αβIII > αβV > αβIVa > αβI. Thus, our study provides a significant understanding of involved molecular interactions of indanocine with tubulin isotypes, which may help to design potent indanocine analogues for specific tubulin isotypes in MDR cells in future.
Collapse
Affiliation(s)
- Bajarang Vasant Kumbhar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
- * E-mail:
| |
Collapse
|
14
|
A centrosomal protein FOR20 regulates microtubule assembly dynamics and plays a role in cell migration. Biochem J 2017; 474:2841-2859. [DOI: 10.1042/bcj20170303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/03/2017] [Accepted: 07/10/2017] [Indexed: 11/17/2022]
Abstract
Here, we report that a centrosomal protein FOR20 [FOP (FGFR1 (fibroblast growth factor receptor 1) oncogene protein)-like protein of molecular mass of 20 kDa; also named as C16orf63, FLJ31153 or PHSECRG2] can regulate the assembly and stability of microtubules. Both FOR20 IgG antibody and GST (glutathione S-transferase)-tagged FOR20 could precipitate tubulin from the HeLa cell extract, indicating a possible interaction between FOR20 and tubulin. FOR20 was also detected in goat brain tissue extract and it cycled with microtubule-associated proteins. Furthermore, FOR20 bound to purified tubulin and inhibited the assembly of tubulin in vitro. The overexpression of FOR20 depolymerized interphase microtubules and the depletion of FOR20 prevented nocodazole-induced depolymerization of microtubules in HeLa cells. In addition, the depletion of FOR20 suppressed the dynamics of individual microtubules in live HeLa cells. FOR20-depleted MDA-MB-231 cells displayed zigzag motion and migrated at a slower rate than the control cells, indicating that FOR20 plays a role in directed cell migration. The results suggested that the centrosomal protein FOR20 is a new member of the microtubule-associated protein family and that it regulates the assembly and dynamics of microtubules.
Collapse
|
15
|
Castle BT, McCubbin S, Prahl LS, Bernens JN, Sept D, Odde DJ. Mechanisms of kinetic stabilization by the drugs paclitaxel and vinblastine. Mol Biol Cell 2017; 28:1238-1257. [PMID: 28298489 PMCID: PMC5415019 DOI: 10.1091/mbc.e16-08-0567] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 02/21/2017] [Accepted: 02/28/2017] [Indexed: 12/20/2022] Open
Abstract
Chemotherapeutic agents that target microtubule dynamics promote a universal phenotype of kinetic stabilization. Integrated computational modeling and fluorescence microscopy identify the fundamental kinetic and thermodynamic mechanisms that result in kinetic stabilization, specifically by the drugs paclitaxel and vinblastine. Microtubule-targeting agents (MTAs), widely used as biological probes and chemotherapeutic drugs, bind directly to tubulin subunits and “kinetically stabilize” microtubules, suppressing the characteristic self-assembly process of dynamic instability. However, the molecular-level mechanisms of kinetic stabilization are unclear, and the fundamental thermodynamic and kinetic requirements for dynamic instability and its elimination by MTAs have yet to be defined. Here we integrate a computational model for microtubule assembly with nanometer-scale fluorescence microscopy measurements to identify the kinetic and thermodynamic basis of kinetic stabilization by the MTAs paclitaxel, an assembly promoter, and vinblastine, a disassembly promoter. We identify two distinct modes of kinetic stabilization in live cells, one that truly suppresses on-off kinetics, characteristic of vinblastine, and the other a “pseudo” kinetic stabilization, characteristic of paclitaxel, that nearly eliminates the energy difference between the GTP- and GDP-tubulin thermodynamic states. By either mechanism, the main effect of both MTAs is to effectively stabilize the microtubule against disassembly in the absence of a robust GTP cap.
Collapse
Affiliation(s)
- Brian T Castle
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
| | - Seth McCubbin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Louis S Prahl
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
| | - Jordan N Bernens
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - David J Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
16
|
Menezes JCJMDS. Arylidene indanone scaffold: medicinal chemistry and structure–activity relationship view. RSC Adv 2017. [DOI: 10.1039/c6ra28613e] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Arylidene indanone (AI) scaffolds are considered as the rigid cousins of chalcones, incorporating the α,β-unsaturated ketone system of chalcones forming a cyclic 5 membered ring.
Collapse
|
17
|
Chanez B, Gonçalves A, Badache A, Verdier-Pinard P. Eribulin targets a ch-TOG-dependent directed migration of cancer cells. Oncotarget 2016; 6:41667-78. [PMID: 26497677 PMCID: PMC4747180 DOI: 10.18632/oncotarget.6147] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/30/2015] [Indexed: 11/25/2022] Open
Abstract
Non-cytotoxic concentrations of microtubule targeting agents (MTAs) interfere with the dynamics of interphase microtubules and affect cell migration, which could impair tumor angiogenesis and metastasis. The underlying mechanisms however are still ill-defined. We previously established that directed cell migration is dependent on stabilization of microtubules at the cell leading edge, which is controlled by microtubule +end interacting proteins (+TIPs). In the present study, we found that eribulin, a recently approved MTA interacting with a new class of binding site on β-tubulin, decreased microtubule growth speed, impaired their cortical stabilization and prevented directed migration of cancer cells. These effects were reminiscent of those observed when +TIP expression or cortical localization was altered. Actually, eribulin induced a dose-dependent depletion of EB1, CLIP-170 and the tubulin polymerase ch-TOG from microtubule +ends. Interestingly, eribulin doses that disturbed ch-TOG localization without significant effect on EB1 and CLIP-170 comets, had an impact on microtubule dynamics and directed migration. Moreover, knockdown of ch-TOG led to a similar inhibition of microtubule growth speed, microtubule capture and chemotaxis. Our data suggest that eribulin binding to the tip of microtubules and subsequent loss of ch-TOG is a priming event leading to alterations in microtubule dynamics and cancer cell migration.
Collapse
Affiliation(s)
- Brice Chanez
- Centre de Recherche en Cancérologie de Marseille, Inserm, Marseille, France.,Institut Paoli-Calmettes, Marseille, France.,Aix-Marseille Université, Marseille, France.,CNRS, UMR7258, F-13009, Marseille, France
| | - Anthony Gonçalves
- Centre de Recherche en Cancérologie de Marseille, Inserm, Marseille, France.,Institut Paoli-Calmettes, Marseille, France.,Aix-Marseille Université, Marseille, France.,CNRS, UMR7258, F-13009, Marseille, France
| | - Ali Badache
- Centre de Recherche en Cancérologie de Marseille, Inserm, Marseille, France.,Institut Paoli-Calmettes, Marseille, France.,Aix-Marseille Université, Marseille, France.,CNRS, UMR7258, F-13009, Marseille, France
| | - Pascal Verdier-Pinard
- Centre de Recherche en Cancérologie de Marseille, Inserm, Marseille, France.,Institut Paoli-Calmettes, Marseille, France.,Aix-Marseille Université, Marseille, France.,CNRS, UMR7258, F-13009, Marseille, France
| |
Collapse
|
18
|
C1, a highly potent novel curcumin derivative, binds to tubulin, disrupts microtubule network and induces apoptosis. Biosci Rep 2016; 36:BSR20160039. [PMID: 26980197 PMCID: PMC4847174 DOI: 10.1042/bsr20160039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/15/2016] [Indexed: 12/15/2022] Open
Abstract
C1 is one of the most potent curcumin analogues identified till date which inhibits proliferation of various cancer cell lines. C1 binds to tubulin and depolymerized microtubules of MCF-7 cells. C1 altered the expression of apoptotic proteins and induces p53-dependent apoptosis. We have synthesized a curcumin derivative, 4-{5-(4-hydroxy-3-methoxy-phenyl)-2-[3-(4-hydroxy-3-methoxy-phenyl)-acryloyl]-3-oxo-penta-1,4-dienyl}-piperidine-1-carboxylic acid tert-butyl ester (C1) that displays much stronger antiproliferative activity against various types of cancer cells including multidrug resistance cells than curcumin. C1 depolymerized both interphase and mitotic microtubules in MCF-7 cells and also inhibited the reassembly of microtubules in these cells. C1 inhibited the polymerization of purified tubulin, disrupted the lattice structure of microtubules and suppressed their GTPase activity in vitro. The compound bound to tubulin with a dissociation constant of 2.8±1 μM and perturbed the secondary structures of tubulin. Further, C1 treatment reduced the expression of Bcl2, increased the expression of Bax and down regulated the level of a key regulator of p53, murine double minute 2 (Mdm2) (S166), in MCF-7 cells. C1 appeared to induce p53 mediated apoptosis in MCF-7 cells. Interestingly, C1 showed more stability in aqueous buffer than curcumin. The results together showed that C1 perturbed microtubule network and inhibited cancer cells proliferation more efficiently than curcumin. The strong antiproliferative activity and improved stability of C1 indicated that the compound may have a potential as an anticancer agent.
Collapse
|
19
|
Chaudhary V, Venghateri JB, Dhaked HPS, Bhoyar AS, Guchhait SK, Panda D. Novel Combretastatin-2-aminoimidazole Analogues as Potent Tubulin Assembly Inhibitors: Exploration of Unique Pharmacophoric Impact of Bridging Skeleton and Aryl Moiety. J Med Chem 2016; 59:3439-51. [DOI: 10.1021/acs.jmedchem.6b00101] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Vikas Chaudhary
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab 160062, India
| | - Jubina B. Venghateri
- IITB-Monash Research
Academy, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Hemendra P. S. Dhaked
- Department of Biosciences
and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anil S. Bhoyar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab 160062, India
| | - Sankar K. Guchhait
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab 160062, India
| | - Dulal Panda
- Department of Biosciences
and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
20
|
Lupo B, Vialard J, Sassi F, Angibaud P, Puliafito A, Pupo E, Lanzetti L, Comoglio PM, Bertotti A, Trusolino L. Tankyrase inhibition impairs directional migration and invasion of lung cancer cells by affecting microtubule dynamics and polarity signals. BMC Biol 2016; 14:5. [PMID: 26787475 PMCID: PMC4719581 DOI: 10.1186/s12915-016-0226-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 01/04/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Tankyrases are poly(adenosine diphosphate)-ribose polymerases that contribute to biological processes as diverse as modulation of Wnt signaling, telomere maintenance, vesicle trafficking, and microtubule-dependent spindle pole assembly during mitosis. At interphase, polarized reshaping of the microtubule network fosters oriented cell migration. This is attained by association of adenomatous polyposis coli with the plus end of microtubules at the cortex of cell membrane protrusions and microtubule-based centrosome reorientation towards the migrating front. RESULTS Here we report a new function for tankyrases, namely, regulation of directional cell locomotion. Using a panel of lung cancer cell lines as a model system, we found that abrogation of tankyrase activity by two different, structurally unrelated small-molecule inhibitors (one introduced and characterized here for the first time) or by RNA interference-based genetic silencing weakened cell migration, invasion, and directional movement induced by the motogenic cytokine hepatocyte growth factor. Mechanistically, the anti-invasive outcome of tankyrase inhibition could be ascribed to sequential deterioration of the distinct events that govern cell directional sensing. In particular, tankyrase blockade negatively impacted (1) microtubule dynamic instability; (2) adenomatous polyposis coli plasma membrane targeting; and (3) centrosome reorientation. CONCLUSIONS Collectively, these findings uncover an unanticipated role for tankyrases in influencing at multiple levels the interphase dynamics of the microtubule network and the subcellular distribution of related polarity signals. These results encourage the further exploration of tankyrase inhibitors as therapeutic tools to oppose dissemination and metastasis of cancer cells.
Collapse
Affiliation(s)
- Barbara Lupo
- Department of Oncology, University of Torino Medical School, 10060, Candiolo, Torino, Italy.,Laboratory of Translational Cancer Medicine, Candiolo Cancer Institute - FPO IRCCS, Strada Provinciale 142, km 3.95, 10060, Candiolo, Torino, Italy
| | - Jorge Vialard
- Janssen Research & Development, a Division of Janssen Pharmaceutica NV, 2340, Beerse, Belgium
| | - Francesco Sassi
- Laboratory of Translational Cancer Medicine, Candiolo Cancer Institute - FPO IRCCS, Strada Provinciale 142, km 3.95, 10060, Candiolo, Torino, Italy
| | - Patrick Angibaud
- Janssen Research & Development, a Division of Janssen-Cilag, 27106, Val-de-Reuil, Cedex, France
| | - Alberto Puliafito
- Laboratory of Cell Migration, Candiolo Cancer Institute - FPO IRCCS, 10060, Candiolo, Torino, Italy
| | - Emanuela Pupo
- Laboratory of Membrane Trafficking, Candiolo Cancer Institute - FPO IRCCS, 10060, Candiolo, Torino, Italy
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, 10060, Candiolo, Torino, Italy.,Laboratory of Membrane Trafficking, Candiolo Cancer Institute - FPO IRCCS, 10060, Candiolo, Torino, Italy
| | - Paolo M Comoglio
- Department of Oncology, University of Torino Medical School, 10060, Candiolo, Torino, Italy.,Experimental Clinical Molecular Oncology, Candiolo Cancer Institute - FPO IRCCS, 10060, Candiolo, Torino, Italy
| | - Andrea Bertotti
- Department of Oncology, University of Torino Medical School, 10060, Candiolo, Torino, Italy. .,Laboratory of Translational Cancer Medicine, Candiolo Cancer Institute - FPO IRCCS, Strada Provinciale 142, km 3.95, 10060, Candiolo, Torino, Italy. .,Istituto Nazionale di Biostrutture e Biosistemi, INBB, 00136, Rome, Italy.
| | - Livio Trusolino
- Department of Oncology, University of Torino Medical School, 10060, Candiolo, Torino, Italy. .,Laboratory of Translational Cancer Medicine, Candiolo Cancer Institute - FPO IRCCS, Strada Provinciale 142, km 3.95, 10060, Candiolo, Torino, Italy.
| |
Collapse
|
21
|
Poojari R, Kini S, Srivastava R, Panda D. A Chimeric Cetuximab-Functionalized Corona as a Potent Delivery System for Microtubule-Destabilizing Nanocomplexes to Hepatocellular Carcinoma Cells: A Focus on EGFR and Tubulin Intracellular Dynamics. Mol Pharm 2015; 12:3908-23. [PMID: 26426829 DOI: 10.1021/acs.molpharmaceut.5b00337] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Radhika Poojari
- Department of Biosciences
and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sudarshan Kini
- Department of Biosciences
and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Rohit Srivastava
- Department of Biosciences
and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Dulal Panda
- Department of Biosciences
and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
22
|
Peloruside A is a microtubule-stabilizing agent with exceptional anti-migratory properties in human endothelial cells. Oncoscience 2015; 2:585-95. [PMID: 26244166 PMCID: PMC4506362 DOI: 10.18632/oncoscience.169] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/08/2015] [Indexed: 11/25/2022] Open
Abstract
Peloruside A is a novel antimitotic drug originally isolated from the marine sponge Mycale hentschieli. Previous studies showed that peloruside A stabilizes microtubules by binding to a site on tubulin distinct from paclitaxel, another microtubule stabilizing drug. Peloruside A blocks mitosis, but little is known about the effects on other cellular activities. Here we report that peloruside A is the most potent microtubule inhibitor yet tested for its ability to block endothelial cell migration. Quantitative analysis indicated that it inhibits microtubule dynamics and endothelial cell migration at 1/200(th) of the concentration needed to inhibit cell division (the cytotoxic concentration), indicating that it could potentially have a large margin of safety when used to specifically target angiogenesis. By comparison, paclitaxel, a well-known cancer therapeutic drug, suppresses cell migration at 1/13(th) of its cytotoxic concentration; and vinblastine suppresses cell migration at just slightly below its cytotoxic antimitotic concentration. Thus, different microtubule targeted drugs have varying relative potencies for inhibition of cell migration versus cell division. The results suggest that peloruside A may be an especially useful agent for anti-angiogenesis therapy and point to the likelihood that other antimitotic drugs might be found with an even larger potential margin of safety.
Collapse
|
23
|
Rashid A, Kuppa A, Kunwar A, Panda D. Thalidomide (5HPP-33) suppresses microtubule dynamics and depolymerizes the microtubule network by binding at the vinblastine binding site on tubulin. Biochemistry 2015; 54:2149-59. [PMID: 25747795 DOI: 10.1021/bi501429j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Thalidomides were initially thought to be broad-range drugs specifically for curing insomnia and relieving morning sickness in pregnant women. However, its use was discontinued because of a major drawback of causing teratogenicity. In this study, we found that a thalidomide derivative, 5-hydroxy-2-(2,6-diisopropylphenyl)-1H-isoindole-1,3-dione (5HPP-33), inhibited the proliferation of MCF-7 with a half-maximal inhibitory concentration of 4.5 ± 0.4 μM. 5HPP-33 depolymerized microtubules and inhibited the reassembly of cold-depolymerized microtubules in MCF-7 cells. Using time-lapse imaging, the effect of 5HPP-33 on the dynamics of individual microtubules in live MCF-7 cells was analyzed. 5HPP-33 (5 μM) decreased the rates of growth and shortening excursions by 34 and 33%, respectively, and increased the time microtubules spent in the pause state by 92% as compared to that of the vehicle-treated MCF-7 cells. 5HPP-33 (5 μM) reduced the dynamicity of microtubules by 62% compared to the control. 5HPP-33 treatment reduced the distance between the two poles of a bipolar spindle, induced multipolarity in some of the treated cells, and blocked cells at mitosis. In vitro, 5HPP-33 bound to tubulin with a weak affinity. Vinblastine inhibited the binding of 5HPP-33 to tubulin, and 5HPP-33 inhibited the binding of BODIPY FL-vinblastine to tubulin. Further, a molecular docking analysis suggested that 5HPP-33 shares its binding site on tubulin with vinblastine. The results provided significant insight into the antimitotic mechanism of action of 5HPP-33 and also suggest a possible mechanism for the teratogenicity of thalidomides.
Collapse
Affiliation(s)
- Aijaz Rashid
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Annapurna Kuppa
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
24
|
Pollock JK, Verma NK, O'Boyle NM, Carr M, Meegan MJ, Zisterer DM. Combretastatin (CA)-4 and its novel analogue CA-432 impair T-cell migration through the Rho/ROCK signalling pathway. Biochem Pharmacol 2014; 92:544-57. [PMID: 25450669 DOI: 10.1016/j.bcp.2014.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/02/2014] [Accepted: 10/03/2014] [Indexed: 10/24/2022]
Abstract
The capacity of T-lymphocytes to migrate and localise in tissues is important in their protective function against infectious agents, however, the ability of these cells to infiltrate the tumour microenvironment is a major contributing factor in the development of cancer. T-cell migration requires ligand (ICAM-1)/integrin (LFA-1) interaction, activating intracellular signalling pathways which result in a distinct polarised morphology, with an actin-rich lamellipodium and microtubule (MT)-rich uropod. Combretastatin (CA)-4 is a MT-destabilising agent that possesses potent anti-tumour properties. In this study, the effect of CA-4 and its novel analogue CA-432 on human T-cell migration was assessed. Cellular pretreatment with either of CA compounds inhibited the migration and chemotaxis of the T-cell line HuT-78 and primary peripheral blood lymphocyte (PBL) T-cells. This migration-inhibitory effect of CA compounds was due to the disruption of the MT network of T-cells through tubulin depolymerisation, reduced tubulin acetylation and decreased MT stability. In addition, both CA compounds induced the RhoA/RhoA associated kinase (ROCK) signalling pathway, leading to the phosphorylation of myosin light chain (MLC). Furthermore, the siRNA-mediated depletion of GEF-H1, a MT-associated nucleotide exchange factor that activates RhoA upon release from MTs, in T-cells prevented CA-induced phosphorylation of MLC and attenuated the formation of actin-rich membrane protrusions and cell contractility. These results suggest an important role for a GEF-H1/RhoA/ROCK/MLC signalling axis in mediating CA-induced contractility of T-cells. Therapeutic agents that target cytoskeletal proteins and are effective in inhibiting cell migration may open new avenues in the treatment of cancer and metastasis.
Collapse
Affiliation(s)
- Jade K Pollock
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Navin K Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| | - Niamh M O'Boyle
- School of Pharmacy, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Miriam Carr
- School of Pharmacy, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Mary J Meegan
- School of Pharmacy, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Daniela M Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
25
|
Gold WA, Lacina TA, Cantrill LC, Christodoulou J. MeCP2 deficiency is associated with reduced levels of tubulin acetylation and can be restored using HDAC6 inhibitors. J Mol Med (Berl) 2014; 93:63-72. [DOI: 10.1007/s00109-014-1202-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 07/13/2014] [Accepted: 08/14/2014] [Indexed: 12/16/2022]
|
26
|
Tandon VK, Maurya HK, Kumar S, Rashid A, Panda D. Synthesis and evaluation of 2-heteroaryl and 2,3-diheteroaryl-1,4-naphthoquinones that potently induce apoptosis in cancer cells. RSC Adv 2014. [DOI: 10.1039/c3ra47720g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This article describes the preparation of 2-heteroaryl and 600 dpi in TIF format)??>2,3-diheteroaryl-1,4-naphthoquinones by an environmentally benign short synthetic route with the goal of finding 1,4-naphthoquinone derivatives that induce apoptosis in cancer cells.
Collapse
Affiliation(s)
- Vishnu K. Tandon
- Department of Applied Sciences
- Institute of Engineering and Technology
- Lucknow 226020, India
| | - Hardesh K. Maurya
- Medicinal Chemistry Department
- Central Institute of Medicinal and Aromatic Plants
- , India
| | - Sandeep Kumar
- Department of Chemistry
- Lucknow University
- Lucknow 226007, India
| | - Aijaz Rashid
- Department of Biosciences and Bioengineering
- Indian Institute of Technology
- Mumbai 400076, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering
- Indian Institute of Technology
- Mumbai 400076, India
| |
Collapse
|
27
|
CXI-benzo-84 reversibly binds to tubulin at colchicine site and induces apoptosis in cancer cells. Biochem Pharmacol 2013; 86:378-91. [PMID: 23747346 DOI: 10.1016/j.bcp.2013.05.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 01/02/2023]
|
28
|
Asthana J, Kapoor S, Mohan R, Panda D. Inhibition of HDAC6 deacetylase activity increases its binding with microtubules and suppresses microtubule dynamic instability in MCF-7 cells. J Biol Chem 2013; 288:22516-26. [PMID: 23798680 DOI: 10.1074/jbc.m113.489328] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The post-translational modification of tubulin appears to be a highly controlled mechanism that regulates microtubule functioning. Acetylation of the ε-amino group of Lys-40 of α-tubulin marks stable microtubules, although the causal relationship between tubulin acetylation and microtubule stability has remained poorly understood. HDAC6, the tubulin deacetylase, plays a key role in maintaining typical distribution of acetylated microtubules in cells. Here, by using tubastatin A, an HDAC6-specific inhibitor, and siRNA-mediated depletion of HDAC6, we have explored whether tubulin acetylation has a role in regulating microtubule stability. We found that whereas both pharmacological inhibition of HDAC6 as well as its depletion enhance microtubule acetylation, only pharmacological inhibition of HDAC6 activity leads to an increase in microtubule stability against cold and nocodazole-induced depolymerizing conditions. Tubastatin A treatment suppressed the dynamics of individual microtubules in MCF-7 cells and delayed the reassembly of depolymerized microtubules. Interestingly, both the localization of HDAC6 on microtubules and the amount of HDAC6 associated with polymeric fraction of tubulin were found to increase in the tubastatin A-treated cells compared with the control cells, suggesting that the pharmacological inhibition of HDAC6 enhances the binding of HDAC6 to microtubules. The evidence presented in this study indicated that the increased binding of HDAC6, rather than the acetylation per se, causes microtubule stability. The results are in support of a hypothesis that in addition to its deacetylase function, HDAC6 might function as a MAP that regulates microtubule dynamics under certain conditions.
Collapse
Affiliation(s)
- Jayant Asthana
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | | | | | |
Collapse
|
29
|
Choudhury D, Xavier PL, Chaudhari K, John R, Dasgupta AK, Pradeep T, Chakrabarti G. Unprecedented inhibition of tubulin polymerization directed by gold nanoparticles inducing cell cycle arrest and apoptosis. NANOSCALE 2013; 5:4476-4489. [PMID: 23584723 DOI: 10.1039/c3nr33891f] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The effect of gold nanoparticles (AuNPs) on the polymerization of tubulin has not been examined till now. We report that interaction of weakly protected AuNPs with microtubules (MTs) could cause inhibition of polymerization and aggregation in the cell free system. We estimate that single citrate capped AuNPs could cause aggregation of ∼10(5) tubulin heterodimers. Investigation of the nature of inhibition of polymerization and aggregation by Raman and Fourier transform-infrared (FTIR) spectroscopies indicated partial conformational changes of tubulin and microtubules, thus revealing that AuNP-induced conformational change is the driving force behind the observed phenomenon. Cell culture experiments were carried out to check whether this can happen inside a cell. Dark field microscopy (DFM) combined with hyperspectral imaging (HSI) along with flow cytometric (FC) and confocal laser scanning microscopic (CLSM) analyses suggested that AuNPs entered the cell, caused aggregation of the MTs of A549 cells, leading to cell cycle arrest at the G0/G1 phase and concomitant apoptosis. Further, Western blot analysis indicated the upregulation of mitochondrial apoptosis proteins such as Bax and p53, down regulation of Bcl-2 and cleavage of poly(ADP-ribose) polymerase (PARP) confirming mitochondrial apoptosis. Western blot run after cold-depolymerization revealed an increase in the aggregated insoluble intracellular tubulin while the control and actin did not aggregate, suggesting microtubule damage induced cell cycle arrest and apoptosis. The observed polymerization inhibition and cytotoxic effects were dependent on the size and concentration of the AuNPs used and also on the incubation time. As microtubules are important cellular structures and target for anti-cancer drugs, this first observation of nanoparticles-induced protein's conformational change-based aggregation of the tubulin-MT system is of high importance, and would be useful in the understanding of cancer therapeutics and safety of nanomaterials.
Collapse
Affiliation(s)
- Diptiman Choudhury
- Department of Biotechnology and Dr B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, India 700019
| | | | | | | | | | | | | |
Collapse
|
30
|
Kundu TK, Jaisankar P, Roy S. International symposium on challenges in chemical biology: toward the formation of Chemical Biology Society of India. ACS Chem Biol 2013; 8:658-61. [PMID: 23560637 DOI: 10.1021/cb4001876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.
| | | | | |
Collapse
|
31
|
Mak M, Reinhart-King CA, Erickson D. Elucidating mechanical transition effects of invading cancer cells with a subnucleus-scaled microfluidic serial dimensional modulation device. LAB ON A CHIP 2013; 13:340-8. [PMID: 23212313 PMCID: PMC3750734 DOI: 10.1039/c2lc41117b] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Mechanical boundaries that define and regulate biological processes, such as cell-cell junctions and dense extracellular matrix networks, exist throughout the physiological landscape. During metastasis, cancer cells are able to invade across these barriers and spread to distant tissues. While transgressing boundaries is a necessary step for distal colonies to form, little is known about interface effects on cell behavior during invasion. Here we introduce a device and metric to assess cell transition effects across mechanical barriers. Using MDA-MB-231 cells, a highly metastatic breast adenocarcinoma cell line, our results demonstrate that dimensional modulation in confined spaces with mechanical barriers smaller than the cell nucleus can induce distinct invasion phases and elongated morphological states. Further investigations on the impact of microtubule stabilization and drug resistance reveal that taxol-treated cells have reduced ability in invading across tight spaces and lose their super-diffusive migratory state and taxol-resistant cells exhibit asymmetric cell division at barrier interfaces. These results illustrate that subnucleus-scaled confinement modulation can play a distinctive role in inducing behavioral responses in invading cells and can help reveal the mechanical elements of non-proteolytic invasion.
Collapse
Affiliation(s)
- Michael Mak
- Biomedical Engineering Department, Cornell University, Ithaca, NY, United States
| | | | | |
Collapse
|
32
|
Tunbridge GA, Oram J, Caggiano L. Design, synthesis and antiproliferative activity of indole analogues of indanocine. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00200d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|