1
|
Ji Y, Ren J, Qian Y, Li J, Liu H, Yao Y, Sun J, Khanna R, Sun L. Aβ25-35-induced autophagy and apoptosis are prevented by the CRMP2-derived peptide ST2-104 (R9-CBD3) via a CaMKKβ/AMPK/mTOR signaling hub. PLoS One 2024; 19:e0309794. [PMID: 39325788 PMCID: PMC11426444 DOI: 10.1371/journal.pone.0309794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/19/2024] [Indexed: 09/28/2024] Open
Abstract
We previously reported that the peptide ST2-104 (CBD3, for Ca2+ channel-binding domain 3), derived from the collapsin response mediator protein 2 (CRMP2)-a cytosolic phosphoprotein, protects neuroblastoma cells against β-amyloid (Aβ) peptide-mediated toxicity through engagement of a phosphorylated CRMP2/NMDAR pathway. Abnormal aggregation of Aβ peptides (e.g., Aβ25-35) leads to programmed cell death (apoptosis) as well autophagy-both of which contribute to Alzheimer's disease (AD) progression. Here, we asked if ST2-104 affects apoptosis and autophagy in SH-SY5Y neuroblastoma challenged with the toxic Aβ25-35 peptide and subsequently mapped the downstream signaling pathways involved. ST2-104 protected SH-SY5Y cells from death following Aβ25-35 peptide challenge by reducing apoptosis and autophagy as well as limiting excessive calcium entry. Cytotoxicity of SHY-SY5Y cells challenged with Aβ25-35 peptide was blunted by ST2-104. The autophagy activator Rapamycin blunted the anti-apoptotic activity of ST2-104. ST2-104 reversed Aβ25-35-induced apoptosis via inhibiting Ca2+/CaM-dependent protein kinase kinase β (CaMKKβ)-mediated autophagy, which was partly enhanced by STO-609 (an inhibitor of CaMKKβ). ST2-104 attenuated neuronal apoptosis by inhibiting autophagy through a CaMKKβ/AMPK/mTOR signaling hub. These findings identify a mechanism whereby, in the face of Aβ25-35, the concerted actions of ST2-104 leads to a reduction in intracellular calcium overload and inhibition of the CaMKKβ/AMPK/mTOR pathway resulting in attenuation of autophagy and cellular apoptosis. These findings define a mechanistic framework for how ST2-104 transduces "outside" (calcium channels) to "inside" signaling (CaMKKβ/AMPK/mTOR) to confer neuroprotection in AD.
Collapse
Affiliation(s)
- Yingshi Ji
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, PR China
| | - Jinghong Ren
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, PR China
| | - Yuan Qian
- Beijing Jishuitan Hospital, Peking University Fourth School of Clinical Medicine, Beijing, PR China
| | - Jiaxin Li
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, PR China
| | - Huanyu Liu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, PR China
| | - Yuan Yao
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, PR China
| | - Jianfeng Sun
- Department of Physiology, Jilin University, Changchun, Jilin, PR China
| | - Rajesh Khanna
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- Pain and Addiction Therapeutics (PATH) Collaboratory, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital, Jilin University, Changchun, Jilin, PR China
| |
Collapse
|
2
|
Haridas V, Dutta S, Munjal A, Singh S. Inhibitors to degraders: Changing paradigm in drug discovery. iScience 2024; 27:109574. [PMID: 38646175 PMCID: PMC11031827 DOI: 10.1016/j.isci.2024.109574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024] Open
Abstract
The chemical understanding of biological processes provides not only a deeper insight but also a solution to abnormal biological functioning. Protein degradation, a natural biological process for debris removal in the cell, has been studied for years. The recent finding that natural degradation pathways can be utilized for therapeutic purposes is a paradigm shift in the drug discovery approach. Methods such as Proteolysis Targeting Chimera (PROTAC), lysosomal targeting chimera, hydrophobic tagging, AUtophagy TArgeting Chimera, AUTOphagy TArgeting Chimera and several other variants of these methods have made a considerable impact on the way of drug design. Few selected examples testify that a huge wave of change is on the way. The drug design based on the targeted protein degradation is a powerful tool in our arsenal. More molecules will be invented that will uncover the hidden secrets of biological functioning and provide enduring solutions to several unmet medical needs.
Collapse
Affiliation(s)
- V. Haridas
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678623, India
| | - Souvik Dutta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Akshay Munjal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, New Delhi 110067, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, New Delhi 110067, India
| |
Collapse
|
3
|
Liu QQ, Tian CJ, Li N, Chen ZC, Guo YL, Cheng DJ, Tang XY, Zhang XY. Brain-derived neurotrophic factor promotes airway smooth muscle cell proliferation in asthma through regulation of transient receptor potential channel-mediated autophagy. Mol Immunol 2023; 158:22-34. [PMID: 37094390 DOI: 10.1016/j.molimm.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/15/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023]
Abstract
OBJECTIVE Increased proliferation of airway smooth muscle cells (ASMCs) is a key feature of airway remodeling in asthma. This study aims to determine whether brain-derived neurotrophic factor (BDNF) regulates ASMC proliferation and airway remodeling via the transient receptor potential channels (TRPCs)/autophagy axis. METHODS Human ASMCs were isolated and passively sensitized with human asthmatic serum. Protein levels of BDNF and its receptor TrkB, TRPC1/3/6, autophagy markers, intracellular Ca2+ concentration ([Ca2+]i), LC3 immunofluorescence, cell proliferation, cell cycle population were examined. Wistar rats were sensitized with OVA to establish asthma models. RESULTS In asthmatic serum-sensitized human ASMCs, BDNF overexpression or recombinant BDNF (rhBDNF) increased TrkB/TRPC1/3/6 axis, [Ca2+]i, autophagy level, cell proliferation, cell number in the S+G2/M phase and decreased cell number in the G0/G1 phase, whereas BDNF knockdown exerted the opposite effects. Furthermore, TRPC channel blocker SKF96365 and TRPC1/3/6 knockdown reversed the effects of the rhBDNF-mediated induction of [Ca2+]i, autophagy level, cell proliferation and cell number in the S+G2/M phase. Moreover, the autophagy inhibitor (3-MA) rescued the rhBDNF-mediated induction of cell proliferation and cell number in the S+G2/M phase. Further in vivo assays revealed that BDNF altered the pathology of airway remodeling, promoted the infiltration of inflammatory cells, promoted the proliferation of ASMCs, and upregulated the protein levels of TrkB, TRPC1/3/6, and autophagy markers in asthma model rats. CONCLUSION We conclude that BDNF promotes ASMCs proliferation in asthma through TRPC-mediated autophagy induction.
Collapse
Affiliation(s)
- Qian-Qian Liu
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital, China; Department of Respiratory Disease and Intensive Care, People's Hospital of Henan University, China
| | - Cui-Jie Tian
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital, China; Department of Respiratory Disease and Intensive Care, People's Hospital of Zhengzhou University, China
| | - Nan Li
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital, China; Department of Respiratory Disease and Intensive Care, People's Hospital of Zhengzhou University, China
| | - Zhuo-Chang Chen
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital, China; Department of Respiratory Disease and Intensive Care, People's Hospital of Zhengzhou University, China
| | - Ya-Li Guo
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital, China; Department of Respiratory Disease and Intensive Care, People's Hospital of Zhengzhou University, China
| | - Dong-Jun Cheng
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital, China; Department of Respiratory Disease and Intensive Care, People's Hospital of Zhengzhou University, China
| | - Xue-Yi Tang
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital, China; Department of Respiratory Disease and Intensive Care, People's Hospital of Zhengzhou University, China
| | - Xiao-Yu Zhang
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital, China; Department of Respiratory Disease and Intensive Care, People's Hospital of Zhengzhou University, China.
| |
Collapse
|
4
|
Wu PJ, Hsin IL, Hung WL, Lee MS, Wang PH, Ko JL. Combination treatment with cyclosporin A and arsenic trioxide induce synergistic cell death via non-apoptotic pathway in uterine cervical cancer cells. Chem Biol Interact 2022; 368:110177. [PMID: 36100036 DOI: 10.1016/j.cbi.2022.110177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/27/2022]
Abstract
Cyclosporin A is an immunosuppressive drug with anti-cancer effect. Arsenic trioxide (As2O3), a well-known cancer-inhibiting drug, induced cytotoxicity via apoptosis and autophagy. The aim of this study is to evaluate the effect of combinational treatment with cyclosporin A and arsenic trioxide on cell viability inhibition in cervical cancer cells. Using MTT assay and combination index, combinational treatment with cyclosporin A and arsenic trioxide induced a synergistic cytotoxic effect in Caski and SiHa cells. Cyclosporin A and arsenic trioxide triggered cell death via non-apoptotic pathway by using annexin V/propidium iodide (PI) assay. Cyclosporin A and arsenic trioxide combined treatment decreased mitochondrial membrane potential and increase reactive oxygen species (ROS) generation. This co-treatment increased LC3B-II expression and autophagosome formation in cervical cancer cells. This study first demonstrated that combinational treatment with cyclosporin A and As2O3 trigger synergistic cytotoxic effect via autophagy in cervical cancer cells.
Collapse
Affiliation(s)
- Pei-Ju Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan; Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan.
| | - I-Lun Hsin
- Institute of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Wei-Li Hung
- Institute of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan; Neurosurgery Department, Everan Hospital, Taichung, Taiwan
| | - Maw-Sheng Lee
- Institute of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan; Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Po-Hui Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan; Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan; Division of Medical Oncology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
5
|
Zhao Y, Zhou H, Dong W. LncRNA RHPN1-AS1 promotes the progression of nasopharyngeal carcinoma by targeting CELF2 expression. Exp Mol Pathol 2021; 122:104671. [PMID: 34358519 DOI: 10.1016/j.yexmp.2021.104671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/23/2021] [Accepted: 08/01/2021] [Indexed: 11/16/2022]
Abstract
This study aims to investigate the role of lncRNA RHPN1-AS1 in NPC and its potential regulatory mechanism. The expression of RHPN1-AS1 in tissues and cells was measured by qRT-PCR. The effect of RHPN1-AS1 silencing on biological functions of NPC cells was detected by CCK-8, colony formation, flow cytometry, wound healing, and transwell assays. The protein expression was measured by western blot. The RBPs of RHPN1-AS1 were predicted by Starbase and LncTar, and verify by RIP assay. ESTIMATE was used to analyze the relationship between CELF2 expression and tumor purity. GSEA was used to analyze the downstream signaling pathway of CELF2. In our study, RHPN1-AS1 was up-regulated in NPC tissues and cells. RHPN1-AS1 silencing inhibited cell viability, capacity of proliferation, migration and invasion, promoted apoptosis, decreased protein expression of Bcl-2, MMP2/9, increased protein expression of Bax, caspase-3, and TIMP2 of NPC cells. CELF2 was a target of RHPN1-AS1 and was down-regulated in NPC tissues and cells. CELF2 level was associated with tumor purity negatively. Low expression of CELF2 activated mTORC1 signaling pathway and increased protein expression of p-mTORC1/mTORC1 and p-P70S6K/P70S6K. RHPN1-AS1 silencing eliminated the activating effect of CELF2 silencing on mTORC1 signaling pathway. Moreover, CELF2 silencing reversed the inhibitory effect of RHPN1-AS1 on NPC progression. In conclusion, our findings indicated that RHPN1-AS1 plays an important role in NPC via activating mTORC1 signaling which is modulated by CELF2. RHPN1-AS1 may serve as a potential therapeutic target for NPC treatment.
Collapse
Affiliation(s)
- Yanxiang Zhao
- Department of Otorhinolaryngology, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong 261041, PR China
| | - Haiyan Zhou
- Department of Infectious Diseases, Weifang people's Hospital, Weifang, Shandong 261041, PR China
| | - Wenhui Dong
- Department of Otorhinolaryngology, Weifang People's Hospital, Weifang, Shandong 261041, PR China.
| |
Collapse
|
6
|
Ferraro F, Patella F, Costa JR, Ketteler R, Kriston‐Vizi J, Cutler DF. Modulation of endothelial organelle size as an antithrombotic strategy. J Thromb Haemost 2020; 18:3296-3308. [PMID: 32881285 PMCID: PMC8436738 DOI: 10.1111/jth.15084] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/31/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND It is long established that von Willebrand factor (VWF) is central to hemostasis and thrombosis. Endothelial VWF is stored in cell-specific secretory granules, Weibel-Palade bodies (WPBs), organelles generated in a wide range of lengths (0.5-5.0 µm). WPB size responds to physiological cues and pharmacological treatment, and VWF secretion from shortened WPBs dramatically reduces platelet and plasma VWF adhesion to an endothelial surface. OBJECTIVE We hypothesized that WPB-shortening represented a novel target for antithrombotic therapy. Our objective was to determine whether compounds exhibiting this activity do exist. METHODS Using a microscopy approach coupled to automated image analysis, we measured the size of WPB bodies in primary human endothelial cells treated with licensed compounds for 24 hours. RESULTS AND CONCLUSIONS A novel approach to identification of antithrombotic compounds generated a significant number of candidates with the ability to shorten WPBs. In vitro assays of two selected compounds confirm that they inhibit the pro-hemostatic activity of secreted VWF. This set of compounds acting at a very early stage of the hemostatic process could well prove to be a useful adjunct to current antithrombotic therapeutics. Further, in the current SARS-CoV-2 pandemic, with a considerable fraction of critically ill COVID-19 patients affected by hypercoagulability, these WPB size-reducing drugs might also provide welcome therapeutic leads for frontline clinicians and researchers.
Collapse
Affiliation(s)
- Francesco Ferraro
- Endothelial Cell Biology Group, MRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
- Present address:
Department of Biology and Evolution of Marine Organisms (BEOM)Stazione Zoologica Anton DohrnVilla ComunaleNaplesItaly
| | - Francesca Patella
- Endothelial Cell Biology Group, MRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
| | - Joana R. Costa
- Cell Signalling and Autophagy GroupMRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
- Present address:
Leukaemia Biology Research GroupDepartment of Haematology, Cancer InstituteUniversity College LondonLondonUK
| | - Robin Ketteler
- Cell Signalling and Autophagy GroupMRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
| | - Janos Kriston‐Vizi
- Bioinformatics Image Core (BIONIC)MRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
| | - Daniel F. Cutler
- Endothelial Cell Biology Group, MRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
| |
Collapse
|
7
|
Two Birds with One Stone: NFAT1-MDM2 Dual Inhibitors for Cancer Therapy. Cells 2020; 9:cells9051176. [PMID: 32397368 PMCID: PMC7291050 DOI: 10.3390/cells9051176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022] Open
Abstract
The tumor suppressor p53 is believed to be the mostly studied molecule in modern biomedical research. Although p53 interacts with hundreds of molecules to exert its biological functions, there are only a few modulators regulating its expression and function, with murine double minute 2 (MDM2) playing a key role in this regard. MDM2 also contributes to malignant transformation and cancer development through p53-dependent and -independent mechanisms. There is an increasing interest in developing MDM2 inhibitors for cancer prevention and therapy. We recently demonstrated that the nuclear factor of activated T cells 1 (NFAT1) activates MDM2 expression. NFAT1 regulates several cellular functions in cancer cells, such as cell proliferation, migration, invasion, angiogenesis, and drug resistance. Both NFAT isoforms and MDM2 are activated and overexpressed in several cancer subtypes. In addition, a positive correlation exists between NFAT1 and MDM2 in tumor tissues. Our recent clinical study has demonstrated that high expression levels of NFAT1 and MDM2 are independent predictors of a poor prognosis in patients with hepatocellular carcinoma. Thus, inhibition of the NFAT1-MDM2 pathway appears to be a novel potential therapeutic strategy for cancer. In this review, we summarize the potential oncogenic roles of MDM2 and NFAT1 in cancer cells and discuss the efforts of discovery and the development of several newly identified MDM2 and NFAT1 inhibitors, focusing on their potent in vitro and in vivo anticancer activities. This review also highlights strategies and future directions, including the need to focus on the development of more specific and effective NFAT1-MDM2 dual inhibitors for cancer therapy.
Collapse
|
8
|
HSF1 phosphorylation by cyclosporin A confers hyperthermia sensitivity through suppression of HSP expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:846-857. [DOI: 10.1016/j.bbagrm.2019.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/21/2019] [Accepted: 04/30/2019] [Indexed: 12/31/2022]
|
9
|
Cyclosporine A as a Cardioprotective Agent During Donor Heart Retrieval, Storage, or Transportation: Benefits and Limitations. Transplantation 2019; 103:1140-1151. [DOI: 10.1097/tp.0000000000002629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Cyclosporine-A induces apoptosis in human prostate cancer cells PC3 and DU145 via downregulation of COX-2 and upregulation of TGFβ. ACTA ACUST UNITED AC 2019. [DOI: 10.1515/tjb-2017-0355] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Background
Potential targets for prostate cancer therapy are urgently needed for curative of patients. Cyclosporine-A (CsA), an immunosuppressive and a selective cyclooxygenase-2 (COX-2) inhibitor, exerts antitumor activity. However, the molecular effects of CsA is not fully understood in prostate cancer. In this research, we sought to determine role and mechanism of CsA in prostate cancer.
Materials and methods
PC3 and DU145 cells were treated with CsA time (12, 24, 48 h) and dose dependent (2.5, 10, 25 μM) and cell survival, migration, colony formation, expression of apoptosis related proteins/genes using MTT assay, scratch assay, Western blotting/qPCR. At the same time, cells treated with CsA to test on the effects of COX-2 promoter activity using luciferase reporter plasmid. Lastly, functional role in the CsA treatment prostate cancer cells were interrogated for relationship of TGFβ, Akt, caspases and COX-2.
Results
These study findings provided direct evidences that the CsA induced apoptosis and downregulated migration.
Conclusions
CsA downregulated Akt as well as COX-2 and upregulated TGFβ, resulting in the suppression of cell migration which was augmented a potential therapeutic of CsA in prostate cancer cells.
Collapse
|
11
|
Sun B, Ou H, Ren F, Huan Y, Zhong T, Gao M, Cai H. Propofol inhibited autophagy through Ca 2+/CaMKKβ/AMPK/mTOR pathway in OGD/R-induced neuron injury. Mol Med 2018; 24:58. [PMID: 30470173 PMCID: PMC6251140 DOI: 10.1186/s10020-018-0054-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/24/2018] [Indexed: 11/22/2022] Open
Abstract
Background The neuroprotective role of propofol (PPF) in cerebral ischemia-reperfusion (I/R) has recently been highlighted. This study aimed to explore whether the neuroprotective mechanisms of PPF were linked to its regulation of Ca2+/CaMKKβ (calmodulin-dependent protein kinase kinase β)/AMPK (AMP-activated protein kinase)/mTOR (mammalian target of rapamycin)/autophagy pathway. Methods Cultured primary rat cerebral cortical neurons were treated with oxygen-glucose deprivation and re-oxygenation (OGD/R) to mimic cerebral I/R injury in vitro. Results Compared with the control neurons, OGD/R exposure successfully induced neuronal I/R injury. Furthermore, OGD/R exposure notably caused autophagy induction, reflected by augmented LC3-II/LC3-I ratio and Beclin 1 expression, decreased p62 expression, and increased LC3 puncta formation. Moreover, OGD/R exposure induced elevation of intracellular Ca2+ concentration ([Ca2+]i). However, PPF treatment significantly antagonized OGD/R-triggered cell injury, autophagy induction, and [Ca2+]i elevation. Further investigation revealed that both autophagy induction by rapamycin and [Ca2+]i elevation by the Ca2+ ionophore ionomycin significantly reversed the PPF-mediated amelioration of OGD/R-triggered cell injury. Importantly, ionomycin also significantly abrogated the PPF-mediated suppression of autophagy and CaMKKβ/AMPK/mTOR signaling in OGD/R-exposed neurons. Additionally, activation of CaMKKβ/AMPK/mTOR signaling abrogated the PPF-mediated autophagy suppression. Conclusion Our findings demonstrate that PPF antagonized OGD/R-triggered neuronal injury, which might be mediated, at least in part, via inhibition of autophagy through Ca2+/CaMKKβ/AMPK/mTOR pathway. Electronic supplementary material The online version of this article (10.1186/s10020-018-0054-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bei Sun
- Department of Anesthesiology, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, People's Republic of China
| | - Hao Ou
- Department of Emergency and Critical Care Medicine, The Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, People's Republic of China.,Translational Medicine Center of Sepsis, Department of Pathophysiology, The Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, People's Republic of China
| | - Fei Ren
- Department of Anesthesiology, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, People's Republic of China
| | - Ye Huan
- Department of Anesthesiology, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, People's Republic of China
| | - Tao Zhong
- Department of Anesthesiology, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, People's Republic of China
| | - Min Gao
- Department of Emergency and Critical Care Medicine, The Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, People's Republic of China.,Translational Medicine Center of Sepsis, Department of Pathophysiology, The Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, People's Republic of China
| | - Hongwei Cai
- Department of Anesthesiology, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
12
|
Ma J, Wei K, Zhang H, Tang K, Li F, Zhang T, Liu J, Xu P, Yu Y, Sun W, Zhu L, Chen J, Zhou L, Liang X, Lv J, Fiskesund R, Liu Y, Huang B. Mechanisms by Which Dendritic Cells Present Tumor Microparticle Antigens to CD8 + T Cells. Cancer Immunol Res 2018; 6:1057-1068. [PMID: 30018046 DOI: 10.1158/2326-6066.cir-17-0716] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/17/2018] [Accepted: 07/11/2018] [Indexed: 11/16/2022]
Abstract
Tumor cell-derived microparticles (T-MP) contain tumor antigen profiles as well as innate signals, endowing them with vaccine potential; however, the precise mechanism by which DCs present T-MP antigens to T cells remains unclear. Here, we show that T-MPs activate a lysosomal pathway that is required for DCs presenting tumor antigens of T-MPs. DCs endocytose T-MPs to lysosomes, where T-MPs increase lysosomal pH from 5.0 to a peak of 8.5 via NOX2-catalyzed reactive oxygen species (ROS) production. This increased pH, coupled with T-MP-driven lysosomal centripetal migration, promotes the formation of MHC class I-tumor antigen peptide complexes. Concurrently, endocytosis of T-MPs results in the upregulation of CD80 and CD86. T-MP-increased ROS activate lysosomal Ca2+ channel Mcoln2, leading to Ca2+ release. Released Ca2+ activates transcription factor EB (TFEB), a lysosomal master regulator that directly binds to CD80 and CD86 promoters, promoting gene expression. These findings elucidate a pathway through which DCs efficiently present tumor antigen from T-MPs to CD8+ T cells, potentiating T-MPs as a novel tumor cell-free vaccine with clinical applications. Cancer Immunol Res; 6(9); 1057-68. ©2018 AACR.
Collapse
Affiliation(s)
- Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Keke Wei
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huafeng Zhang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Tang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Li
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianzhen Zhang
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Junwei Liu
- Cardiovascular Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Pingwei Xu
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuandong Yu
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiwei Sun
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - LiYan Zhu
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Chen
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhou
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Liang
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiadi Lv
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Roland Fiskesund
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuying Liu
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Bo Huang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Inhibition of the AnxA1/FPR1 autocrine axis reduces MDA-MB-231 breast cancer cell growth and aggressiveness in vitro and in vivo. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1368-1382. [PMID: 29932988 DOI: 10.1016/j.bbamcr.2018.06.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 06/14/2018] [Accepted: 06/17/2018] [Indexed: 12/18/2022]
Abstract
Breast Cancer (BC) is a highly heterogeneous disease whose most aggressive behavior is displayed by triple-negative breast cancer (TNBC), which lacks an efficient targeted therapy. Despite its controversial role, one of the proteins that having been linked with BC is Annexin A1 (AnxA1), which is a Ca+2 binding protein that acts modulating the immune system, cell membrane organization and vesicular trafficking. In this work we analyzed tissue microarrays of BC samples and observed a higher expression of AnxA1 in TNBCs and in lymph node metastasis. We also observed a positive correlation in primary tumors between expression levels of AnxA1 and its receptor, FPR1. Despite displaying a lesser strength, this correlation also exists in BC lymph node metastasis. In agreement, we have found that AnxA1 was highly expressed and secreted in the TNBC cell line MDA-MB-231 that also expressed high levels of FPR1. Furthermore, we demonstrated, by using the specific FPR1 inhibitor Cyclosporin H (CsH) and the immunosuppressive drug Cyclosporin A (CsA), the existence of an autocrine signaling of AnxA1 through the FPR1. Such signaling, elicited by AnxA1 upon its secretion, increased the aggressiveness and survival of MDA-MB-231 cells. In this manner, we demonstrated that CsA works very efficiently as an FPR1 inhibitor. Finally, by using CsA, we demonstrated that FPR1 inhibition decreased MDA-MB-231 tumor growth and metastasis formation in nude mice. These results indicate that FPR1 inhibition could be a potential intervention strategy to manage TNBCs displaying the characteristics of MDA-MB-231 cells. FPR1 inhibition can be efficiently achieved by CsA.
Collapse
|
14
|
Qin JJ, Wang W, Zhang R. Experimental Therapy of Advanced Breast Cancer: Targeting NFAT1-MDM2-p53 Pathway. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 151:195-216. [PMID: 29096894 PMCID: PMC6663080 DOI: 10.1016/bs.pmbts.2017.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Advanced breast cancer, especially advanced triple-negative breast cancer, is typically more aggressive and more difficult to treat than other breast cancer phenotypes. There is currently no curable option for breast cancer patients with advanced diseases, highlighting the urgent need for novel treatment strategies. We have recently discovered that the nuclear factor of activated T cells 1 (NFAT1) activates the murine double minute 2 (MDM2) oncogene. Both MDM2 and NFAT1 are overexpressed and constitutively activated in breast cancer, particularly in advanced breast cancer, and contribute to its initiation, progression, and metastasis. MDM2 regulates cancer cell proliferation, cell cycle progression, apoptosis, migration, and invasion through both p53-dependent and -independent mechanisms. We have proposed to target the NFAT1-MDM2-p53 pathway for the treatment of human cancers, especially breast cancer. We have recently identified NFAT1 and MDM2 dual inhibitors that have shown excellent in vitro and in vivo activities against breast cancer, including triple-negative breast cancer. Herein, we summarize recent advances made in the understanding of the oncogenic functions of MDM2 and NFAT1 in breast cancer, as well as current targeting strategies and representative inhibitors. We also propose several strategies for inhibiting the NFAT1-MDM2-p53 pathway, which could be useful for developing more specific and effective inhibitors for breast cancer therapy.
Collapse
Affiliation(s)
- Jiang-Jiang Qin
- University of Houston, Houston, TX, United States; Texas Tech University Health Sciences Center, Amarillo, TX, United States
| | - Wei Wang
- University of Houston, Houston, TX, United States; Texas Tech University Health Sciences Center, Amarillo, TX, United States
| | - Ruiwen Zhang
- University of Houston, Houston, TX, United States; Texas Tech University Health Sciences Center, Amarillo, TX, United States.
| |
Collapse
|
15
|
Wu X, Wang K, Hua W, Li S, Liu X, Liu W, Song Y, Zhang Y, Shao Z, Yang C. Down-regulation of islet amyloid polypeptide expression induces death of human annulus fibrosus cells via mitochondrial and death receptor pathways. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1479-1491. [PMID: 28433710 DOI: 10.1016/j.bbadis.2017.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/10/2017] [Accepted: 04/17/2017] [Indexed: 01/07/2023]
Abstract
Islet amyloid polypeptide (IAPP) exerts its biological effects by participating in the regulation of glucose metabolism and cell apoptosis. The main goal of the present study was to investigate the expression of IAPP in degenerated intervertebral disc tissue and IAPP's modulation of extracellular matrix (ECM) catabolic and anabolic genes in human AF cells. We found that the expression of IAPP, the calcitonin receptor, and receptor activity modifying protein decreased considerably in AF cells during the progression of intervertebral disc degeneration (IDD). Meanwhile, transfection with pLV-siIAPP decreased the expression of IAPP and its receptors and reduced glucose uptake and the expression of aggrecan, Col2A1, and BG. Down-regulation of IAPP also induced a significant increase in reactive oxygen species generation in AF cells, along with a decrease in matrix metalloproteinases and an increase in the concentration of cellular Ca2+, ultimately leading to death. Further analysis revealed that siIAPP intervention promoted the release of cytochrome c from mitochondria, resulting in the activation of Caspase-3 and Caspase-9. In contrast, significantly decreased expression of Caspase-3 and Caspase-9 was observed in AF cells transfected with pLV-IAPP. The concentrations of Fas and FasL proteins were significantly decreased in AF cells transfected with PLV-IAPP, while activation of the Fas/FasL system and cell death were induced by siIAPP intervention. Mechanistically, AMPK/Akt-mTOR signaling pathways were involved. In conclusion, down-regulation of IAPP expression induces the death of human AF cells via mitochondrial and death receptor pathways, potentially offering a novel therapeutic target for the treatment of IDD.
Collapse
Affiliation(s)
- Xinghuo Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenbin Hua
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xianzhe Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
16
|
Qin JJ, Wang W, Voruganti S, Wang H, Zhang WD, Zhang R. Inhibiting NFAT1 for breast cancer therapy: New insights into the mechanism of action of MDM2 inhibitor JapA. Oncotarget 2016; 6:33106-19. [PMID: 26461225 PMCID: PMC4741752 DOI: 10.18632/oncotarget.5851] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/28/2015] [Indexed: 01/22/2023] Open
Abstract
Transcription factor NFAT1 has been recently identified as a new regulator of the MDM2 oncogene. Targeting the NFAT1-MDM2 pathway represents a novel approach to cancer therapy. We have recently identified a natural product MDM2 inhibitor, termed JapA. As a specific and potent MDM2 inhibitor, JapA inhibits MDM2 at transcriptional and post-translational levels. However, the molecular mechanism remains to be fully elucidated for its inhibitory effects on MDM2 transcription. Herein, we reported that JapA inhibited NFAT1 and NFAT1-mediated MDM2 transcription, which contributed to the anticancer activity of JapA. Its effects on the expression and activity of NFAT1 were examined in various breast cancer cell lines in vitro and in MCF-7 and MDA-MB-231 xenograft tumors in vivo. The specificity of JapA in targeting NFAT1 and NFAT1-MDM2 pathway and the importance of NFAT1 inhibition in JapA's anticancer activity were demonstrated using NFAT1 overexpression and knockdown cell lines and the pharmacological activators and inhibitors of NFAT1 signaling. Our results indicated that JapA inhibited NFAT1 signaling in breast cancer cells in vitro and in vivo, which plays a pivotal role in its anticancer activity. JapA inhibited the nuclear localization of NFAT1, disrupted the NFAT1-MDM2 P2 promoter complex, and induced NFAT1 proteasomal degradation, resulting in the repression of MDM2 transcription. In conclusion, JapA is a novel NFAT1 inhibitor and the NFAT1 inhibition is responsible for the JapA-induced repression of MDM2 transcription, contributing to its anticancer activity. The results may pave an avenue for validating the NFAT1-MDM2 pathway as a novel molecular target for cancer therapy.
Collapse
Affiliation(s)
- Jiang-Jiang Qin
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.,Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.,Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Sukesh Voruganti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Hui Wang
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Wei-Dong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Ruiwen Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.,Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| |
Collapse
|
17
|
Repurposing of nitroxoline as a potential anticancer agent against human prostate cancer: a crucial role on AMPK/mTOR signaling pathway and the interplay with Chk2 activation. Oncotarget 2016; 6:39806-20. [PMID: 26447757 PMCID: PMC4741862 DOI: 10.18632/oncotarget.5655] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/21/2015] [Indexed: 12/20/2022] Open
Abstract
Nitroxoline is an antibiotic by chelating Zn2+ and Fe2+ from biofilm matrix. In this study, nitroxoline induced G1 arrest of cell cycle and subsequent apoptosis in prostate cancer cells through ion chelating-independent pathway. It decreased protein levels of cyclin D1, Cdc25A and phosphorylated Rb, but activated AMP-activated protein kinase (AMPK), a cellular energy sensor and signal transducer, leading to inhibition of downstream mTOR-p70S6K signaling. Knockdown of AMPKα significantly rescued nitroxoline-induced inhibition of cyclin D1-Rb-Cdc25A axis indicating AMPK-dependent mechanism. However, cytoprotective autophagy was simultaneously evoked by nitroxoline. Comet assay and Western blot analysis demonstrated DNA damaging effect and activation of Chk2 other than Chk1 to nitroxoline action. Instead of serving as a DNA repair transducer, nitroxoline-mediated Chk2 activation was identified to function as a pro-apoptotic inducer. In conclusion, the data suggest that nitroxoline induces anticancer activity through AMPK-dependent inhibition of mTOR-p70S6K signaling pathway and cyclin D1-Rb-Cdc25A axis, leading to G1 arrest of cell cycle and apoptosis. AMPK-dependent activation of Chk2, at least partly, contributes to apoptosis. The data suggest the potential role of nitroxoline for therapeutic development against prostate cancers.
Collapse
|
18
|
Yung MMH, Ross FA, Hardie DG, Leung THY, Zhan J, Ngan HYS, Chan DW. Bitter Melon (Momordica charantia) Extract Inhibits Tumorigenicity and Overcomes Cisplatin-Resistance in Ovarian Cancer Cells Through Targeting AMPK Signaling Cascade. Integr Cancer Ther 2016; 15:376-89. [PMID: 26487740 PMCID: PMC5689379 DOI: 10.1177/1534735415611747] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Objective Acquired chemoresistance is a major obstacle in the clinical management of ovarian cancer. Therefore, searching for alternative therapeutic modalities is urgently needed. Bitter melon (Momordica charantia) is a traditional dietary fruit, but its extract also shows potential medicinal values in human diabetes and cancers. Here, we sought to investigate the extract of bitter melon (BME) in antitumorigenic and cisplatin-induced cytotoxicity in ovarian cancer cells. METHODS Three varieties of bitter melon were used to prepare the BME. Ovarian cancer cell lines, human immortalized epithelial ovarian cells (HOSEs), and nude mice were used to evaluate the cell cytotoxicity, cisplatin resistance, and tumor inhibitory effect of BME. The molecular mechanism of BME was examined by Western blotting. RESULTS Cotreatment with BME and cisplatin markedly attenuated tumor growth in vitro and in vivo in a mouse xenograft model, whereas there was no observable toxicity in HOSEs or in nude mice in vivo Interestingly, the antitumorigenic effects of BME varied with different varieties of bitter melon, suggesting that the amount of antitumorigenic substances may vary. Studies of the molecular mechanism demonstrated that BME activates AMP-activated protein kinase (AMPK) in an AMP-independent but CaMKK (Ca(2+)/calmodulin-dependent protein kinase)-dependent manner, exerting anticancer effects through activation of AMPK and suppression of the mTOR/p70S6K and/or the AKT/ERK/FOXM1 (Forkhead Box M1) signaling cascade. CONCLUSION BME functions as a natural AMPK activator in the inhibition of ovarian cancer cell growth and might be useful as a supplement to improve the efficacy of cisplatin-based chemotherapy in ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - David W Chan
- The University of Hong Kong, Hong Kong SAR, P R China
| |
Collapse
|
19
|
Shou J, You L, Yao J, Xie J, Jing J, Jing Z, Jiang L, Sui X, Pan H, Han W. Cyclosporine A sensitizes human non-small cell lung cancer cells to gefitinib through inhibition of STAT3. Cancer Lett 2016; 379:124-33. [DOI: 10.1016/j.canlet.2016.06.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 01/21/2023]
|
20
|
Jurmeister S, Ramos-Montoya A, Neal DE, Fryer LGD. Transcriptomic analysis reveals inhibition of androgen receptor activity by AMPK in prostate cancer cells. Oncotarget 2015; 5:3785-99. [PMID: 25003216 PMCID: PMC4116520 DOI: 10.18632/oncotarget.1997] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Metabolic alterations contribute to prostate cancer development and progression; however, the role of the central metabolic regulator AMP-activated protein kinase (AMPK) remains controversial. The androgen receptor (AR), a key driver of prostate cancer, regulates prostate cancer cell metabolism by driving the expression of a network of metabolic genes and activates AMPK through increasing the expression of one of its upstream kinases. To more clearly define the role of AMPK in prostate cancer, we performed expression profiling following pharmacologic activation of this kinase. We found that genes down-regulated upon AMPK activation were over-expressed in prostate cancer, consistent with a tumour suppressive function of AMPK. Strikingly, we identified the AR as one of the most significantly enriched transcription factors mediating gene expression changes downstream of AMPK signalling in prostate cancer cells. Activation of AMPK inhibited AR transcriptional activity and reduced androgen-dependent expression of known AR target genes. Conversely, knock-down of AMPK increased AR activity. Modulation of AR expression could not explain these effects. Instead, we observed that activation of AMPK reduced nuclear localisation of the AR. We thus propose the presence of a negative feedback loop in prostate cancer cells whereby AR activates AMPK and AMPK feeds back to limit AR-driven transcription.
Collapse
Affiliation(s)
- Sarah Jurmeister
- Uro-Oncology Research Group, Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, UK
| | | | | | - Lee G D Fryer
- Uro-Oncology Research Group, Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, UK
| |
Collapse
|
21
|
Yu CC, Pan SL, Chao SW, Liu SP, Hsu JL, Yang YC, Li TK, Huang WJ, Guh JH. A novel small molecule hybrid of vorinostat and DACA displays anticancer activity against human hormone-refractory metastatic prostate cancer through dual inhibition of histone deacetylase and topoisomerase I. Biochem Pharmacol 2014; 90:320-30. [DOI: 10.1016/j.bcp.2014.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 05/31/2014] [Accepted: 06/02/2014] [Indexed: 11/15/2022]
|
22
|
Qin JJ, Nag S, Wang W, Zhou J, Zhang WD, Wang H, Zhang R. NFAT as cancer target: mission possible? Biochim Biophys Acta Rev Cancer 2014; 1846:297-311. [PMID: 25072963 DOI: 10.1016/j.bbcan.2014.07.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 07/17/2014] [Accepted: 07/22/2014] [Indexed: 12/30/2022]
Abstract
The NFAT signaling pathway regulates various aspects of cellular functions; NFAT acts as a calcium sensor, integrating calcium signaling with other pathways involved in development and growth, immune response, and inflammatory response. The NFAT family of transcription factors regulates diverse cellular functions such as cell survival, proliferation, migration, invasion, and angiogenesis. The NFAT isoforms are constitutively activated and overexpressed in several cancer types wherein they transactivate downstream targets that play important roles in cancer development and progression. Though the NFAT family has been conclusively proved to be pivotal in cancer progression, the different isoforms play distinct roles in different cellular contexts. In this review, our discussion is focused on the mechanisms that drive the activation of various NFAT isoforms in cancer. Additionally, we analyze the potential of NFAT as a valid target for cancer prevention and therapy.
Collapse
Affiliation(s)
- Jiang-Jiang Qin
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Subhasree Nag
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Wei-Dong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hui Wang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, PR China
| | - Ruiwen Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|
23
|
Otterstrom C, Soltermann A, Opitz I, Felley-Bosco E, Weder W, Stahel RA, Triponez F, Robert JH, Serre-Beinier V. CD74: a new prognostic factor for patients with malignant pleural mesothelioma. Br J Cancer 2014; 110:2040-6. [PMID: 24594996 PMCID: PMC3992494 DOI: 10.1038/bjc.2014.117] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/28/2013] [Accepted: 02/10/2014] [Indexed: 12/29/2022] Open
Abstract
Background: The pro-inflammatory cytokine migration inhibitory factor (MIF) and its receptor CD74 have been proposed as possible therapeutic targets in several cancers. We studied the expression of MIF and CD74 together with calretinin in specimens of malignant pleural mesothelioma (MPM), correlating their expression levels with clinico-pathologic parameters, in particular overall survival (OS). Methods: Migration inhibitory factor, CD74, and calretinin immunoreactivity were investigated in a tissue microarray of 352 patients diagnosed with MPM. Protein expression intensities were semiquantitatively scored in the tumour cells and in the peritumoral stroma. Markers were matched with OS, age, gender, and histological subtype. Results: Clinical data from 135 patients were available. Tumour cell expressions of MIF and CD74 were observed in 95% and 98% of MPM specimens, respectively, with a homogenous distribution between the different histotypes. CD74 (P<0.001) but not MIF overexpression (P=0.231) emerged as an independent prognostic factor for prolonged OS. High expression of tumour cell calretinin correlated with the epithelioid histotype and was also predictive of longer OS (P<0.001). When compared with previously characterised putative epithelial-to-mesenchymal transition markers, CD74 correlated positively with tumoral PTEN and podoplanin expressions, but was inversely related with periostin expression. Conclusions: High expression of CD74 is an independent prognostic factor for prolonged OS in mesothelioma patients.
Collapse
Affiliation(s)
- C Otterstrom
- Division of Thoracic Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - A Soltermann
- Institute of Surgical Pathology, University Hospital Zürich, Zürich, Switzerland
| | - I Opitz
- Division of Thoracic Surgery, University Hospital Zürich, Zürich, Switzerland
| | - E Felley-Bosco
- Laboratory of Molecular Oncology, Clinic for Oncology, University Hospital Zürich, Zürich, Switzerland
| | - W Weder
- Division of Thoracic Surgery, University Hospital Zürich, Zürich, Switzerland
| | - R A Stahel
- Laboratory of Molecular Oncology, Clinic for Oncology, University Hospital Zürich, Zürich, Switzerland
| | - F Triponez
- Division of Thoracic Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - J H Robert
- Division of Thoracic Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - V Serre-Beinier
- Division of Thoracic Surgery, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
24
|
Icilin inhibits E2F1-mediated cell cycle regulatory programs in prostate cancer. Biochem Biophys Res Commun 2013; 441:1005-10. [DOI: 10.1016/j.bbrc.2013.11.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 11/03/2013] [Indexed: 11/21/2022]
|
25
|
Park SH, Ho WK, Jeon JH. AMPK regulates K(ATP) channel trafficking via PTEN inhibition in leptin-treated pancreatic β-cells. Biochem Biophys Res Commun 2013; 440:539-44. [PMID: 24103758 DOI: 10.1016/j.bbrc.2013.09.099] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 09/19/2013] [Indexed: 02/08/2023]
Abstract
Leptin regulates pancreatic β-cell excitability through AMP-activated protein kinase (AMPK)-mediated ATP-sensitive potassium (KATP) channel trafficking. However, the signaling components connecting AMPK to KATP channel trafficking are not identified. In this study, we discovered that AMPK inhibits phosphatase and tensin homologue (PTEN) via glycogen synthase kinase 3β (GSK3β) and this signaling pathway is crucial for KATP channel trafficking in leptin-treated pancreatic β-cells. Pharmacologic or genetic inhibition of AMPK or GSK3β, but not casein kinase 2 (CK2), impaired leptin-induced PTEN inactivation and thereby KATP channel trafficking. The PTEN mutant lacking both protein and lipid phosphatase activity is sufficient to induce KATP channel trafficking without leptin. These results present a novel signaling mechanism that underlies leptin regulation of KATP channel trafficking in pancreatic β-cells. Our findings assist in gaining a broader perspective on the peripheral action of leptin on pancreatic β-cell physiology and glucose homeostasis.
Collapse
Affiliation(s)
- Sun-Hyun Park
- Cell Physiology Laboratory and Biomembrane Plasticity Research Center, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799, Republic of Korea; Department of Physiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799, Republic of Korea
| | | | | |
Collapse
|