1
|
Yasuda K, Shimodan S, Maehara N, Hirota A, Iijima R, Nishijima A, Mori H, Toyama R, Ito A, Yoshikawa Y, Arai S, Miyazaki T. AIM/CD5L ameliorates autoimmune arthritis by promoting removal of inflammatory DAMPs at the lesions. J Autoimmun 2024; 142:103149. [PMID: 38006711 DOI: 10.1016/j.jaut.2023.103149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
The hallmark of autoimmune arthritis is the preceding autoantibody production and the following synovial inflammation with hyperplasia and tissue destruction of the joints. The joint inflammation is mediated not only by effector lymphocytes and auto-antibodies but also chronic activation of innate immunity, particularly promoted by the danger-associated molecular patterns (DAMPs). Here we show that apoptosis inhibitor of macrophage (AIM, also called CD5L) protein regulates arthritis by promoting removal of lesional DAMPs both physiologically and therapeutically. When the autoimmune arthritis was promoted by injecting a cocktail of anti-collagen antibodies without type-II collagen immunization, AIM-deficient (AIM-/-) mice exhibited more exacerbated and sustained swelling at multiple joints with greater synovial hyperplasia and bone erosion than wild-type mice. Administration of recombinant AIM (rAIM) reduced S100A8/9, a major DAMP known to be involved in arthritis progression, and decreased various inflammatory cytokines at the lesions in antibody-injected AIM-/- mice, leading to marked prevention of arthritis symptoms. In human rheumatoid arthritis (RA) patients, AIM was more activated via dissociating from IgM-pentamer in response to DAMPs-mediated inflammation both in serum and synovial fluid than in healthy individuals or non-autoimmune osteoarthritis patients, suggesting a disease-regulatory potency of AIM also in human RA patients. Thus, our study implied a therapeutic availability of rAIM to prevent arthritis symptoms targeting DAMPs.
Collapse
Affiliation(s)
- Keisuke Yasuda
- The Institute for AIM Medicine, Tokyo, 162-8666, Japan; Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Shieri Shimodan
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | | | - Aika Hirota
- The Institute for AIM Medicine, Tokyo, 162-8666, Japan
| | - Ruka Iijima
- The Institute for AIM Medicine, Tokyo, 162-8666, Japan
| | | | - Haruka Mori
- The Institute for AIM Medicine, Tokyo, 162-8666, Japan
| | - Ran Toyama
- The Institute for AIM Medicine, Tokyo, 162-8666, Japan
| | - Atsumi Ito
- The Institute for AIM Medicine, Tokyo, 162-8666, Japan
| | | | - Satoko Arai
- The Institute for AIM Medicine, Tokyo, 162-8666, Japan; Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Toru Miyazaki
- The Institute for AIM Medicine, Tokyo, 162-8666, Japan; Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France; LEAP, Japan Agency for Medical Research and Development, Tokyo, 113-0033, Japan.
| |
Collapse
|
2
|
Ding DF, Xue Y, Zhang JP, Zhang ZQ, Li WY, Cao YL, Xu JG. Similarities and differences between rat and mouse chondrocyte gene expression induced by IL-1β. J Orthop Surg Res 2022; 17:70. [PMID: 35120538 PMCID: PMC8815127 DOI: 10.1186/s13018-021-02889-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/14/2021] [Indexed: 11/15/2022] Open
Abstract
Background Osteoarthritis (OA) is the most prevalent degenerative joint disease. In vitro experiments are an intuitive method used to investigate its early pathogenesis. Chondrocyte inflammation models in rats and mice are often used as in vitro models of OA. However, similarities and differences between them in the early stages of inflammation have not been reported. Objective This paper seeks to compare the chondrocyte phenotype of rats and mice in the early inflammatory state and identify chondrocytes suitable for the study of early OA. Methods Under similar conditions, chondrocytes from rats and mice were stimulated using the same IL-1β concentration for a short period of time. The phenotypic changes of chondrocytes were observed under a microscope. The treated chondrocytes were subjected to RNA-seq to identify similarities and differences in gene expression. Chondrocytes were labelled with EdU for proliferation analysis. Cell proliferation-associated proteins, including minichromosome maintenance 2 (MCM2), minichromosome maintenance 5 (MCM5), Lamin B1, proliferating cell nuclear antigen (PCNA), and Cyclin D1, were analysed by immunocytochemical staining, cell immunofluorescence, and Western blots to verify the RNA-seq results. Results RNA-seq revealed that the expression patterns of cytokines, chemokines, matrix metalloproteinases, and collagen were similar between the rat and mouse chondrocyte inflammation models. Nonetheless, the expression of proliferation-related genes showed the opposite pattern. The RNA-seq results were further verified by subsequent experiments. The expression levels of MCM2, MCM5, Lamin B1, PCNA, and Cyclin D1 were significantly upregulated in rat chondrocytes (P < 0.05) and mouse chondrocytes (P < 0.05). Conclusions Based on the findings, the rat chondrocyte inflammation model may help in the study of the early pathological mechanism of OA. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-021-02889-2.
Collapse
Affiliation(s)
- Dao-Fang Ding
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yan Xue
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), Tongji University School of Medicine, Shanghai, 201613, China
| | - Jun-Peng Zhang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Zeng-Qiao Zhang
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Wen-Yao Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yue-Long Cao
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
3
|
Cuffaro D, Nuti E, D’Andrea F, Rossello A. Developments in Carbohydrate-Based Metzincin Inhibitors. Pharmaceuticals (Basel) 2020; 13:ph13110376. [PMID: 33182755 PMCID: PMC7696829 DOI: 10.3390/ph13110376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 01/03/2023] Open
Abstract
Matrix metalloproteinases (MMPs) and A disintegrin and Metalloproteinase (ADAMs) are zinc-dependent endopeptidases belonging to the metzincin superfamily. Upregulation of metzincin activity is a major feature in many serious pathologies such as cancer, inflammations, and infections. In the last decades, many classes of small molecules have been developed directed to inhibit these enzymes. The principal shortcomings that have hindered clinical development of metzincin inhibitors are low selectivity for the target enzyme, poor water solubility, and long-term toxicity. Over the last 15 years, a novel approach to improve solubility and bioavailability of metzincin inhibitors has been the synthesis of carbohydrate-based compounds. This strategy consists of linking a hydrophilic sugar moiety to an aromatic lipophilic scaffold. This review aims to describe the development of sugar-based and azasugar-based derivatives as metzincin inhibitors and their activity in several pathological models.
Collapse
|
4
|
Wu Y, Li M, Zeng J, Feng Z, Yang J, Shen B, Zeng Y. Differential Expression of Renin-Angiotensin System-related Components in Patients with Rheumatoid Arthritis and Osteoarthritis. Am J Med Sci 2019; 359:17-26. [PMID: 31785770 DOI: 10.1016/j.amjms.2019.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND The purpose of this study was to demonstrate the role of renin-angiotensin system (RAS)-related components, vascular endothelial growth factor (VEGF) and atrial metalloproteinase-13 (MMP-13) in synovial tissue and synovial fluid from patients with rheumatoid arthritis (RA) and osteoarthritis (OA). MATERIALS AND METHODS Thirty-four patients with RA and 41 patients with OA were included in the study. Renin, angiotensin-converting enzyme (ACE), VEGF and MMP-13 protein levels in the synovial fluid were measured by enzyme-linked immunosorbent assay. Quantitative real-time polymerase chain reaction analysis, western blot analysis and immunohistochemistry were used to quantify renin, ACE, angiotensin type 1 and type 2 receptors, VEGF and MMP-13 in OA and RA. Additionally, the correlation was determined by Pearson's coefficient. RESULTS In synovial fluid, expression levels of renin, ACE, VEGF and MMP-13 in patients with RA were significantly higher than those in patients with OA. In synovial tissue, the RAS components VEGF and MMP-13 were also elevated in patients with RA. The results of immunohistochemistry in synovial tissue also showed that the RAS components VEGF and MMP-13 were significantly increased in patients with RA. Notably, the Pearson coefficient demonstrated that the levels of the RAS components were positively correlated with the expression of VEGF and MMP-13 in OA and RA. CONCLUSIONS The present results suggest that RAS-related components in RA and OA, including renin, ACE, angiotensin type 1 and type 2 receptors, are associated with increased expression of VEGF and play an important role in angiogenesis. Furthermore, there was a significant positive correlation between the expression of VEGF and MMP-13.
Collapse
Affiliation(s)
- Yuangang Wu
- Department of Orthopaedic Surgery, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China.
| | - Mingyang Li
- Department of Orthopaedic Surgery, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Jun Zeng
- Lab of Medicinal Chemistry, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan Province, China
| | - Zhanzhan Feng
- Lab of Medicinal Chemistry, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan Province, China
| | - Jing Yang
- Department of Orthopaedic Surgery, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Bin Shen
- Department of Orthopaedic Surgery, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yi Zeng
- Department of Orthopaedic Surgery, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
5
|
Huang L, Jin P, Lin X, Lin C, Zheng L, Zhao J. Beneficial effects of sulfonamide‑based gallates on osteoblasts in vitro. Mol Med Rep 2017; 15:1149-1156. [PMID: 28138702 PMCID: PMC5367358 DOI: 10.3892/mmr.2017.6142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 12/08/2016] [Indexed: 11/05/2022] Open
Abstract
Effective treatments for osteoporosis remain fairly elusive; however, studies have reported that antioxidants may aid in the maintenance of reactive oxygen species at a favorable level, in order to prevent osteoporosis. Gallic acid (GA) and its derivatives are potent antioxidative and anti-inflammatory agents that affect several biochemical and pharmacological pathways; however, GA is slightly cytotoxic and suppresses cell proliferation. The present study modified GA by the introduction of sulfonamide, in order to obtain a novel compound known as JEZ-C, and investigated its effects on osteoblasts by measuring cell proliferation, viability, morphology, alkaline phosphatase (ALP) activity, and the expression of relevant osteoblast markers. Results indicated that JEZ-C may effectively promote osteoblast growth. JEZ-C increased ALP activity, upregulated the expression of osteogenic-related genes, including runt-related transcription factor 2, bone sialoprotein, osteocalcin and alpha-1 type I collagen, thus indicating that JEZ-C enhances bone matrix production and mineralization. The recommended range of JEZ-C concentration is between 6.25×10−3 and 6.25×10−1 µg/ml, within which cell growth was promoted compared with the control. Specifically, treatment with 6.25×10−2 µg/ml JEZ-C is ideal. These findings may represent a novel approach to cell-based therapy for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Li Huang
- Guangxi Engineering Center for Biomaterials for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Pan Jin
- Guangxi Engineering Center for Biomaterials for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiao Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Cuiwu Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Li Zheng
- Guangxi Engineering Center for Biomaterials for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jinmin Zhao
- Guangxi Engineering Center for Biomaterials for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
6
|
Wen H, Qin Y, Zhong W, Li C, Liu X, Shen Y. Trivalent metal ions based on inorganic compounds with in vitro inhibitory activity of matrix metalloproteinase 13. Enzyme Microb Technol 2016; 92:9-17. [PMID: 27542739 DOI: 10.1016/j.enzmictec.2016.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/07/2016] [Accepted: 06/10/2016] [Indexed: 02/02/2023]
Abstract
Collagenase-3 (MMP-13) inhibitors have attracted considerable attention in recent years and have been developed as a therapeutic target for a variety of diseases, including cancer. Matrix metalloproteinases (MMPs) can be inhibited by a multitude of compounds, including hydroxamic acids. Studies have shown that materials and compounds containing trivalent metal ions, particularly potassium hexacyanoferrate (III) (K3[Fe(CN)6]), exhibit cdMMP-13 inhibitory potential with a half maximal inhibitory concentration (IC50) of 1.3μM. The target protein was obtained by refolding the recombinant histidine-tagged cdMMP-13 using size exclusion chromatography (SEC). The secondary structures of the refolded cdMMP-13 with or without metal ions were further analyzed via circular dichroism and the results indicate that upon binding with metal ions, an altered structure with increased domain stability was obtained. Furthermore, isothermal titration calorimetry (ITC) experiments demonstrated that K3[Fe(CN)6]is able to bind to MMP-13 and endothelial cell tube formation tests provide further evidence for this interaction to exhibit anti-angiogenesis potential. To the best of our knowledge, no previous report of an inorganic compound featuring a MMP-13 inhibitory activity has ever been reported in the literature. Our results demonstrate that K3[Fe(CN)6] is useful as a new effective and specific inhibitor for cdMMP-13 which may be of great potential for future drug screening applications.
Collapse
Affiliation(s)
- Hanyu Wen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Shaanxi Alcohol Ether and Biomass Energy Engineering Research Center, Key laboratory of Yulin Desert Plants Resources, 229 Taibai North Road, Xi'an 710069, PR China
| | - Yuan Qin
- College of Pharmacy, Nankai University, PR China
| | | | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Shaanxi Alcohol Ether and Biomass Energy Engineering Research Center, Key laboratory of Yulin Desert Plants Resources, 229 Taibai North Road, Xi'an 710069, PR China
| | - Xiang Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Shaanxi Alcohol Ether and Biomass Energy Engineering Research Center, Key laboratory of Yulin Desert Plants Resources, 229 Taibai North Road, Xi'an 710069, PR China; College of Pharmacy, Nankai University, PR China.
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Shaanxi Alcohol Ether and Biomass Energy Engineering Research Center, Key laboratory of Yulin Desert Plants Resources, 229 Taibai North Road, Xi'an 710069, PR China; College of Pharmacy, Nankai University, PR China.
| |
Collapse
|
7
|
Nuti E, Cuffaro D, D'Andrea F, Rosalia L, Tepshi L, Fabbi M, Carbotti G, Ferrini S, Santamaria S, Camodeca C, Ciccone L, Orlandini E, Nencetti S, Stura EA, Dive V, Rossello A. Sugar-Based Arylsulfonamide Carboxylates as Selective and Water-Soluble Matrix Metalloproteinase-12 Inhibitors. ChemMedChem 2016; 11:1626-37. [DOI: 10.1002/cmdc.201600235] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/13/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Elisa Nuti
- Department of Pharmacy; University of Pisa; via Bonanno 6 56126 Pisa Italy
| | - Doretta Cuffaro
- Department of Pharmacy; University of Pisa; via Bonanno 6 56126 Pisa Italy
| | - Felicia D'Andrea
- Department of Pharmacy; University of Pisa; via Bonanno 6 56126 Pisa Italy
| | - Lea Rosalia
- Department of Pharmacy; University of Pisa; via Bonanno 6 56126 Pisa Italy
| | - Livia Tepshi
- CEA-Saclay; Service d'Ingenierie Moleculaire des Proteines; CEA, iBiTec-S; 91191 Gif sur Yvette France
| | - Marina Fabbi
- Biotherapy Unit; IRCCS AOU San Martino-IST; Largo R. Benzi 10 16132 Genoa Italy
| | - Grazia Carbotti
- Biotherapy Unit; IRCCS AOU San Martino-IST; Largo R. Benzi 10 16132 Genoa Italy
| | - Silvano Ferrini
- Biotherapy Unit; IRCCS AOU San Martino-IST; Largo R. Benzi 10 16132 Genoa Italy
| | - Salvatore Santamaria
- Kennedy Institute of Rheumatology; University of Oxford; Roosevelt Drive OX3 7FY Oxford UK
| | - Caterina Camodeca
- Division of Immunology, Transplants and Infectious Diseases; San Raffaele Scientific Institute; Via Olgettina 20132 Milan Italy
| | - Lidia Ciccone
- Department of Pharmacy; University of Pisa; via Bonanno 6 56126 Pisa Italy
| | | | - Susanna Nencetti
- Department of Pharmacy; University of Pisa; via Bonanno 6 56126 Pisa Italy
| | - Enrico A. Stura
- CEA-Saclay; Service d'Ingenierie Moleculaire des Proteines; CEA, iBiTec-S; 91191 Gif sur Yvette France
| | - Vincent Dive
- CEA-Saclay; Service d'Ingenierie Moleculaire des Proteines; CEA, iBiTec-S; 91191 Gif sur Yvette France
| | - Armando Rossello
- Department of Pharmacy; University of Pisa; via Bonanno 6 56126 Pisa Italy
| |
Collapse
|
8
|
Amin M, Pushpakumar S, Muradashvili N, Kundu S, Tyagi SC, Sen U. Regulation and involvement of matrix metalloproteinases in vascular diseases. FRONT BIOSCI-LANDMRK 2016; 21:89-118. [PMID: 26709763 PMCID: PMC5462461 DOI: 10.2741/4378] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc dependent endopeptidases whose main function is to degrade and deposit structural proteins within the extracellular matrix (ECM). A dysregulation of MMPs is linked to vascular diseases. MMPs are classified into collagenases, gelatinases, membrane-type, metalloelastase, stromelysins, matrilysins, enamelysins, and unclassified subgroups. The production of MMPs is stimulated by factors such as oxidative stress, growth factors and inflammation which lead to its up- or down-regulation with subsequent ECM remodeling. Normally, excess activation of MMPs is controlled by their endogenous inhibitors, tissue inhibitors of metalloproteinases (TIMPs). An imbalance of MMPs and TIMPs has been implicated in hypertension, atherosclerotic plaque formation and instability, aortic aneurysms and varicose vein wall remodeling. Also, recent evidence suggests epigenetic regulation of some MMPs in angiogenesis and atherosclerosis. Over the years, pharmacological inhibitors of MMPs have been used to modify or prevent the development of the disease with some success. In this review, we discuss recent advances in MMP biology, and their involvement in the manifestation of vascular disease.
Collapse
Affiliation(s)
- Matthew Amin
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Sathnur Pushpakumar
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Nino Muradashvili
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Sourav Kundu
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Utpal Sen
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202,
| |
Collapse
|
9
|
Li C, Zhang R, Chen B, Li Q, Fang X, Shen Y. PURIFICATION OF RECOMBINANT HISTIDINE-TAGGED CATALYTIC DOMAIN OF MMP-13 IN ONE-STEP USING AFFINITY COLUMN AND RENATURATION OF IT WITH HISTIDINE-TAG. J LIQ CHROMATOGR R T 2014. [DOI: 10.1080/10826076.2013.825866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Cong Li
- a Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science , Northwest University , Xi'an , P. R. China
| | - Ruiying Zhang
- a Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science , Northwest University , Xi'an , P. R. China
| | - Bang Chen
- a Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science , Northwest University , Xi'an , P. R. China
| | - Qing Li
- a Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science , Northwest University , Xi'an , P. R. China
| | - Xuexun Fang
- b Key Laboratory for Molecular Enzymology & Engineering of Ministry of Education , Jilin University , Chang Chun , P. R. China
| | - Yehua Shen
- a Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science , Northwest University , Xi'an , P. R. China
| |
Collapse
|
10
|
Nuti E, Santamaria S, Casalini F, Yamamoto K, Marinelli L, La Pietra V, Novellino E, Orlandini E, Nencetti S, Marini AM, Salerno S, Taliani S, Da Settimo F, Nagase H, Rossello A. Arylsulfonamide inhibitors of aggrecanases as potential therapeutic agents for osteoarthritis: synthesis and biological evaluation. Eur J Med Chem 2013; 62:379-94. [PMID: 23376997 DOI: 10.1016/j.ejmech.2012.12.058] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 11/20/2012] [Accepted: 12/23/2012] [Indexed: 01/23/2023]
Abstract
Aggrecanases, in particular aggrecanase-2 (ADAMTS-5), are considered the principal proteases responsible for aggrecan degradation in osteoarthritis. For this reason, considerable effort has been put on the discovery and development of aggrecanase inhibitors able to slow down or halt the progression of osteoarthritis. We report herein the synthesis and biological evaluation of a series of arylsulfonamido-based hydroxamates as aggrecanase inhibitors. Compound 18 was found to have a nanomolar activity for ADAMTS-5, ADAMTS-4 and MMP-13 and high selectivity over MMP-1 and MMP-14. Furthermore, this compound proved to be effective in blocking ex vivo cartilage degradation without having effect on cell cytotoxicity.
Collapse
Affiliation(s)
- Elisa Nuti
- Dipartimento di Farmacia, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|