1
|
Thirunavukkarasu C, Sharma Y, Tchaikovskaya T, Maslov AY, Gupta S. Transcriptional profiling reveals ataxia telangiectasia mutated pathways regulate joint copper and arsenic toxicity for hepatic metalloplasia and anti-cancer therapies. Life Sci 2022; 305:120787. [PMID: 35809665 DOI: 10.1016/j.lfs.2022.120787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/27/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022]
Abstract
AIMS Exposures to toxic metals, including arsenic (As), pose health risks but joint effects of physiologically needed metals, e.g., copper (Cu), are ill-defined for regulated metal-dependent cell proliferation (or metalloplasia). This study elucidated hepatic toxicities of As and Cu. MAIN METHODS Human HuH-7 cells were exposed to As and Cu and mRNA profiling obtained for molecular networks, regulators and signaling pathways. This followed biological testing of ATM signaling-related DNA damage response, mitochondrial dysfunction and lysosome activity using HuH-7 cells and primary hepatocytes. Free Cu ions were bound to 3-indole propionic acid for finding their contribution in toxicity. KEY FINDINGS The As or As plus Cu toxicities in HuH-7 cells produced dimorphic down- or up-regulation patterns in mRNA profiles. Significant differences extended for ontologies in protein synthesis, intermediary metabolism, mitochondrial function, autophagy, or cell survival and growth. Bioassays revealed ATM signaling regulated As and Cu toxicity for oxidative phosphorylation, mitochondrial membrane potential, lysosomal activity, DNA damage response, and cell growth-arrest. Removal of reactive Cu ions decreased As and Cu toxicity. Primary hepatocytes withstood Cu and As toxicity better. SIGNIFICANCE This joint As and Cu toxicity offers further mechanisms for metalloplasia, carcinogenesis and tissue damage in other settings, e.g., during excess Cu accumulation in Wilson disease. Moreover, joint As and Cu toxicities are relevant for anti-cancer therapies, potentially including manipulations to increase intracellular Cu through altered uptake or efflux processes and incorporating ATM-related checkpoint inhibitors. Superior tolerance of healthy hepatocytes to Cu and As toxicity should improve safety margins for anti-cancer therapies.
Collapse
Affiliation(s)
- Chinnasamy Thirunavukkarasu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605 014, India
| | - Yogeshwar Sharma
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tatyana Tchaikovskaya
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Alexander Y Maslov
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Laboratory of Applied Genomic Technologies, Voronezh State University of Engineering Technology, Voronezh, Russia
| | - Sanjeev Gupta
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605 014, India; Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Diabetes Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
2
|
Ameer SS, Engström K, Hossain MB, Concha G, Vahter M, Broberg K. Arsenic exposure from drinking water is associated with decreased gene expression and increased DNA methylation in peripheral blood. Toxicol Appl Pharmacol 2017; 321:57-66. [PMID: 28242323 DOI: 10.1016/j.taap.2017.02.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/03/2017] [Accepted: 02/22/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Exposure to inorganic arsenic increases the risk of cancer and non-malignant diseases. Inefficient arsenic metabolism is a marker for susceptibility to arsenic toxicity. Arsenic may alter gene expression, possibly by altering DNA methylation. OBJECTIVES To elucidate the associations between arsenic exposure, gene expression, and DNA methylation in peripheral blood, and the modifying effects of arsenic metabolism. METHODS The study participants, women from the Andes, Argentina, were exposed to arsenic via drinking water. Arsenic exposure was assessed as the sum of arsenic metabolites in urine (U-As), using high performance liquid-chromatography hydride-generation inductively-coupled-plasma-mass-spectrometry, and arsenic metabolism efficiency was assessed by the urinary fractions (%) of the individual metabolites. Genome-wide gene expression (N=80 women) and DNA methylation (N=93; 80 overlapping with gene expression) in peripheral blood were measured using Illumina DirectHyb HumanHT-12 v4.0 and Infinium Human-Methylation 450K BeadChip, respectively. RESULTS U-As concentrations, ranging 10-1251μg/L, was associated with decreased gene expression: 64% of the top 1000 differentially expressed genes were down-regulated with increasing U-As. U-As was also associated with hypermethylation: 87% of the top 1000CpGs were hypermethylated with increasing U-As. The expression of six genes and six individual CpG sites were significantly associated with increased U-As concentration. Pathway analyses revealed enrichment of genes related to cell death and cancer. The pathways differed somewhat depending on arsenic metabolism efficiency. We found no overlap between arsenic-related gene expression and DNA methylation for individual genes. CONCLUSIONS Increased arsenic exposure was associated with lower gene expression and hypermethylation in peripheral blood, but with no evident overlap.
Collapse
Affiliation(s)
- Syeda Shegufta Ameer
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Karin Engström
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden; Institute of Environmental Medicine, Unit of Metals & Health, Karolinska Institutet, Stockholm, Sweden
| | - Mohammad Bakhtiar Hossain
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Gabriela Concha
- Science Department, Risk Benefit Assessment Unit, National Food Agency, Uppsala, Sweden
| | - Marie Vahter
- Institute of Environmental Medicine, Unit of Metals & Health, Karolinska Institutet, Stockholm, Sweden
| | - Karin Broberg
- Institute of Environmental Medicine, Unit of Metals & Health, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Osteoblasts activate the Nrf2 signalling pathway in response to arsenic trioxide treatment. Int J Biochem Cell Biol 2016; 79:327-336. [PMID: 27592447 DOI: 10.1016/j.biocel.2016.08.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 07/27/2016] [Accepted: 08/29/2016] [Indexed: 01/22/2023]
Abstract
Arsenic trioxide is used to treat a variety of leukaemia types and causes tumour cell death. However, it is not well known whether arsenic trioxide is toxic to bone osteoblast cells, the precursor cells from which leukaemia cells originate. The aim of this study was to examine the response of osteosarcoma cell line MG63 and primary cultured osteoblasts to arsenic trioxide treatment. After 24h of treatment, arsenic trioxide was more effective at inhibiting cell growth and increasing oxidative stress and DNA damage in MG63 cells than in osteoblasts. In addition, arsenic trioxide arrested cell cycle progression in the G2/M phase, and induced apoptosis in MG63 cells, but not in primary cultured osteoblasts. The results further showed that the expression of transcription factor Nrf2 and its downstream antioxidant effectors, including hemeoxygenase-1, glutathione, and superoxide dismutase, was increased in primary cultured osteoblasts. Additionally, expression of heat shock proteins was also increased. Experiments using inhibitors of antioxidant enzymes in the presence of arsenic trioxide-treated osteoblasts demonstrated that glutathione and superoxide dismutase were responsible for reducing oxidative stress, caspase-3 activity, and apoptosis and that heat shock proteins helped reduce caspase-3 activity. Unexpectedly, there was no apparent effect of the markedly increased hemeoxygenase-1, suggesting that other functions might exist for hemeoxygenase-1. These findings demonstrate that osteosarcoma cells are more sensitive to arsenic trioxide treatment than primary cultured osteoblasts and that primary cultured osteoblasts activate the Nrf2 signalling pathway in response to arsenic trioxide exposure to escape from oxidative damage and apoptosis.
Collapse
|
4
|
Miyata S, Fukuda Y, Tojima H, Matsuzaki K, Kitanaka S, Sawada H. Mechanism of the inhibition of leukemia cell growth and induction of apoptosis through the activation of ATR and PTEN by the topoisomerase inhibitor 3EZ, 20Ac-ingenol. Leuk Res 2015. [DOI: 10.1016/j.leukres.2015.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
5
|
Biology of the cell cycle inhibitor p21CDKN1A: molecular mechanisms and relevance in chemical toxicology. Arch Toxicol 2014; 89:155-78. [DOI: 10.1007/s00204-014-1430-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/03/2014] [Indexed: 02/07/2023]
|
6
|
Chen X, Guo J, Xi RX, Chang YW, Pan FY, Zhang XZ. MiR-210 expression reverses radioresistance of stem-like cells of oesophageal squamous cell carcinoma. World J Clin Oncol 2014; 5:1068-1077. [PMID: 25493243 PMCID: PMC4259934 DOI: 10.5306/wjco.v5.i5.1068] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/03/2014] [Accepted: 08/31/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of miR-210 and the role it plays in the cell cycle to regulate radioresistance in oesophageal squamous cell carcinoma (ESCC).
METHODS: MiR-210 expression was evaluated in 37 pairs of ESCC tissues and matched para-tumorous normal oesophageal tissues from surgical patients who had not received neoadjuvant therapy, and in the cells of two novel radioresistant cell lines, TE-1R and Eca-109R, using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The transient up-regulation of miR-210 expression in TE-1R and Eca-109R cells was studied using liposomes and was confirmed using qRT-PCR. The rate of cell survival after a series of radio-treatment doses was evaluated using the clone formation assay. Flow cytometry was used to detect the changes to the cell cycle patterns due to radiation treatment. RT-PCR and Western blot were used to detect the expression of ataxia telangiectasia mutated (ATM) and DNA dependent protein kinase (DNA-PKcs) after irradiation, and the cell sphere formation assay was used to evaluate the proliferative ability of the cancer stem-like cells.
RESULTS: The level of miR-210 expression was significantly decreased, by 21.3% to 97.2%, with the average being 39.2% ± 16.1%, in the ESCC tissues of most patients (81.1%, 30 of 37 vs patients with high miR-210 expression, P < 0.05). A low level of expression of miR-210 was correlated with a poorly differentiated pathological type (P < 0.01) but was not correlated with the T-stage or lymph node infiltration (both P > 0.05). Early local recurrences (< 18 mo, n = 19) after radiotherapy were significantly related with low miR-210 expression (n = 13, P < 0.05). The level of miR-210 was decreased by approximately 73% (vs TE-1, 0.27 ± 0.10, P < 0.01) in the established radioresistant TE-IR cell line and by 52% (vs Eca-109, 0.48 ± 0.17, P < 0.05) in the corresponding Eca-109R line. Transient transfection with a miR-210 precursor increased the level of miR-210 expression, leading to a significant increase in cell survival after radiotherapy (P < 0.05). Twenty-four hours after radiation, the proportion of pmiR-210 cells in S phase was increased (vs control cells, 30.4% ± 0.4%, and vs untreated TE-1R cells, 23.3% ± 0.7%, P < 0.05 for both). The levels of DNA-PKcs (0.21 ± 0.07) and ATM (0.12 ± 0.03, P < 0.05) proteins were significantly lower in the PmiR-210 cells than in control cells, but no differences were found in the levels of the corresponding mRNAs in the two cell types (P > 0.05 for all). Exogenous miR-210 expression decreased the diameter of pmiR-210 cell spheres (vs control cells, 0.60 ± 0.14, P < 0.05).
CONCLUSION: MiR-210 expression is negatively correlated with the pathological type and the local survival rate after radiotherapy, and high expression of miR-210 may reverse the radioresistance of ESCC stem-like cells.
Collapse
|
7
|
Xu WX, Liu Y, Liu SZ, Zhang Y, Qiao GF, Yan J. Arsenic trioxide exerts a double effect on osteoblast growth in vitro. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:412-9. [PMID: 25128771 DOI: 10.1016/j.etap.2014.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 05/25/2023]
Abstract
Arsenic trioxide (ATO) is a promising antitumor agent used to treat acute promyelocytic leukemia (APL) and, recently solid tumor. The present study was designed to evaluate the effect of ATO proliferation of osteoblast that plays very important roles in maintaining the structure integrity and function of bone. Cell survives, apoptosis, collagen, and molecular targets were identified by multiple detecting techniques, including MTT assay, electron microscopy, collagen detecting kit, TUNEL kit, and western blot in hFOB1.19 human osteoblasts cell line. The results showed that low dose of ATO (0.25, 0.5, and 1μM) remarkably enhanced the viability of cultured osteoblasts in a concentration- and time-dependent manner. Intriguingly, a dual effect of high dose of ATO (5, 10, and 20μM) was also observed showing significant reduction in viability of culture osteoblasts at concentration- and time-dependent fashion. Moreover, low dose of ATO promoted secretion and synthesis of collagen, whereas high dose of ATO induced typical morphological characteristics of apoptosis in osteoblasts. Mechanically, western blot results demonstrated that low dose of ATO dramatically up-regulated TGF-β1 protein and activated p-AKT proliferative signaling. And, high dose of ATO increased Bax/Bcl-2 ratio in a time-dependent fashion and activated caspase-3 apoptotic signaling. These results demonstrate at the first time that ATO exerts a double effect on osteoblast function depending upon the concentration and provide a clue to rationally use ATO for clinicians to pay more attention to protect bone from the adverse effects of therapeutic dose of ATO during tumor therapy.
Collapse
Affiliation(s)
- Wen-Xiao Xu
- Department of Orthopedics, The Second Affiliated Hospital, Harbin Medical University, Harbin, China; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Yang Liu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Sheng-Zhi Liu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Yu Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Guo-Fen Qiao
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Jinglong Yan
- Department of Orthopedics, The Second Affiliated Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|