1
|
Cao D, Strainic MG, Counihan D, Sridar S, An F, Hussain W, Schmaier AH, Nieman M, Medof ME. Vascular Endothelial Cells Produce Coagulation Factors That Control Their Growth via Joint Protease-Activated Receptor and C5a Receptor 1 (CD88) Signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:361-378. [PMID: 35144762 PMCID: PMC8908053 DOI: 10.1016/j.ajpath.2021.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 02/03/2023]
Abstract
As per the classical view of the coagulation system, it functions solely in plasma to maintain hemostasis. An experimental approach modeling vascular reconstitution was used to show that vascular endothelial cells (ECs) endogenously synthesize coagulation factors during angiogenesis. Intracellular thrombin generated from this synthesis promotes the mitotic function of vascular endothelial cell growth factor A (VEGF-A). The thrombin concurrently cleaves C5a from EC-synthesized complement component C5 and unmasks the tethered ligand for EC-expressed protease-activated receptor 4 (PAR4). The two ligands jointly trigger EC C5a receptor-1 (C5ar1) and PAR4 signaling, which together promote VEGF receptor 2 growth signaling. C5ar1 is functionally associated with PAR4, enabling C5a or thrombin to elicit Gαi and/or Gαq signaling. EC coagulation factor and EC complement component synthesis concurrently down-regulate with contact inhibition. The connection of these processes with VEGF receptor 2 signaling provides new insights into mechanisms underlying angiogenesis. Knowledge of endogenous coagulation factor/complement component synthesis and joint PAR4/C5ar1 signaling could be applied to other cell types.
Collapse
Affiliation(s)
- Devin Cao
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio
| | | | - Daniel Counihan
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Shiva Sridar
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Fengqi An
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Wasim Hussain
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Alvin H. Schmaier
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Marvin Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - M. Edward Medof
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio,Address correspondence to M. Edward Medof, M.D., Ph.D., Institute of Pathology, 2085 Adelbert, Room 301, Cleveland, OH 44106.
| |
Collapse
|
2
|
Varied functions of immune checkpoints during cancer metastasis. Cancer Immunol Immunother 2020; 70:569-588. [PMID: 32902664 PMCID: PMC7907026 DOI: 10.1007/s00262-020-02717-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
Immune checkpoints comprise diverse receptors and ligands including costimulatory and inhibitory molecules, which play monumental roles in regulating the immune system. Immune checkpoints retain key potentials in maintaining the immune system homeostasis and hindering the malignancy development and autoimmunity. The expression of inhibitory immune checkpoints delineates an increase in a plethora of metastatic tumors and the inhibition of these immune checkpoints can be followed by promising results. On the other hand, the stimulation of costimulatory immune checkpoints can restrain the metastasis originating from diverse tumors. From the review above, key findings emerged regarding potential functions of inhibitory and costimulatory immune checkpoints targeting the metastatic cascade and point towards novel potential Achilles’ heels of cancer that might be exploited therapeutically in the future.
Collapse
|
3
|
Caggia S, Tapadar S, Wu B, Venugopal SV, Garrett AS, Kumar A, Stiffend JS, Davis JS, Oyelere AK, Khan SA. Small Molecule Inhibitors Targeting Gα i2 Protein Attenuate Migration of Cancer Cells. Cancers (Basel) 2020; 12:E1631. [PMID: 32575572 PMCID: PMC7353059 DOI: 10.3390/cancers12061631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Heterotrimeric G-proteins are ubiquitously expressed in several cancers, and they transduce signals from activated G-protein coupled receptors. These proteins have numerous biological functions, and they are becoming interesting target molecules in cancer therapy. Previously, we have shown that heterotrimeric G-protein subunit alphai2 (Gαi2) has an essential role in the migration and invasion of prostate cancer cells. Using a structure-based approach, we have synthesized optimized small molecule inhibitors that are able to prevent specifically the activation of the Gαi2 subunit, keeping the protein in its inactive GDP-bound state. We observed that two of the compounds (13 and 14) at 10 μΜ significantly inhibited the migratory behavior of the PC3 and DU145 prostate cancer cell lines. Additionally, compound 14 at 10 μΜ blocked the activation of Gαi2 in oxytocin-stimulated prostate cancer PC3 cells, and inhibited the migratory capability of DU145 cells overexpressing the constitutively active form of Gαi2, under basal and EGF-stimulated conditions. We also observed that the knockdown or inhibition of Gαi2 negatively regulated migration of renal and ovarian cancer cell lines. Our results suggest that small molecule inhibitors of Gαi2 have potential as leads for discovering novel anti-metastatic agents for attenuating the capability of cancer cells to spread and invade to distant sites.
Collapse
Affiliation(s)
- Silvia Caggia
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA; (S.C.); (S.V.V.); (A.S.G.); (A.K.); (J.S.S.)
| | - Subhasish Tapadar
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30318, USA; (S.T.); (B.W.)
| | - Bocheng Wu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30318, USA; (S.T.); (B.W.)
| | - Smrruthi V. Venugopal
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA; (S.C.); (S.V.V.); (A.S.G.); (A.K.); (J.S.S.)
| | - Autumn S. Garrett
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA; (S.C.); (S.V.V.); (A.S.G.); (A.K.); (J.S.S.)
| | - Aditi Kumar
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA; (S.C.); (S.V.V.); (A.S.G.); (A.K.); (J.S.S.)
| | - Janae S. Stiffend
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA; (S.C.); (S.V.V.); (A.S.G.); (A.K.); (J.S.S.)
| | - John S. Davis
- Department of Obstetrics and Gynecology, College of Medicine, University of Nebraska Medical Center and VA Medical Center, Omaha, NE 68198, USA;
| | - Adegboyega K. Oyelere
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30318, USA; (S.T.); (B.W.)
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30318, USA
| | - Shafiq A. Khan
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA; (S.C.); (S.V.V.); (A.S.G.); (A.K.); (J.S.S.)
| |
Collapse
|
4
|
Chang J, Hong L, Liu Y, Pan Y, Yang H, Ye W, Xu K, Li Z, Zhang S. Targeting PIK3CG in Combination with Paclitaxel as a Potential Therapeutic Regimen in Claudin-Low Breast Cancer. Cancer Manag Res 2020; 12:2641-2651. [PMID: 32368142 PMCID: PMC7182462 DOI: 10.2147/cmar.s250171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/28/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose Molecular targeting is a powerful approach for aggressive claudin-low breast cancer (CLBC). Overexpression of PI3K catalytic subunit gamma (PIK3CG) in human CLBC is offering a promising opportunity for targeted therapies. We utilized a specific inhibitor of PIK3CG combined with paclitaxel (PTX) to treat CLBC cells in vitro and in vivo. Patients and Methods The tumor cells growth and apoptosis in vitro were analyzed by CCK8, plate clone formation assay, tumorsphere assay, Hoechst staining and flow cytometry. The invasion and metastasis ability of tumor cells in vitro were investigated by wound healing and transwell experiments. Critical gene expression levels were checked by qRT-PCR and Western blot. Xenograft models with CLBC cell lines in SCID mice were established to investigate the effect of combined drugs in vivo. Results We identified that PIK3CG was a potential therapeutic target for CLBC patients. Targeting PIK3CG potentiated CLBC cells growth inhibition in 2D and 3D cultures by PTX. Inhibition of PIK3CG activation could enhance CLBC cells apoptosis and migration suppression induced by PTX. Manipulating autophagy was a validated approach for the use of PIK3CG inhibitor. Using CLBC xenograft mice model, we found that CLBC tumors in vivo could be well treated by combined drugs of PIK3CG inhibitor and PTX. Conclusion We demonstrated that PIK3CG was a potential target for the therapy of CLBC and inhibition of PIK3CG activation could reinforce the therapeutic effect of this aggressive disease by PTX. The combined use of PIK3CG inhibitor and PTX might be a potential regimen for treating this subtype of breast cancer.
Collapse
Affiliation(s)
- Jun Chang
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, People's Republic of China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Ling Hong
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Yaozhong Liu
- Xiangya Medical School, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Yiwen Pan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Hao Yang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Wenrui Ye
- Xiangya Medical School, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Keli Xu
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Zhijian Li
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Shubing Zhang
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, People's Republic of China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan 410013, People's Republic of China.,Breast Cancer Research Center, School of Life Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
| |
Collapse
|
5
|
Batchu SN, Thieme K, Zadeh FH, Alghamdi TA, Yerra VG, Hadden MJ, Majumder S, Kabir MG, Bowskill BB, Ladha D, Gramolini AO, Connelly KA, Advani A. The Dipeptidyl Peptidase 4 Substrate CXCL12 Has Opposing Cardiac Effects in Young Mice and Aged Diabetic Mice Mediated by Ca 2+ Flux and Phosphoinositide 3-Kinase γ. Diabetes 2018; 67:2443-2455. [PMID: 30150305 DOI: 10.2337/db18-0410] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/14/2018] [Indexed: 11/13/2022]
Abstract
Blood glucose-lowering therapies can positively or negatively affect heart function in type 2 diabetes, or they can have neutral effects. Dipeptidyl peptidase 4 (DPP-4) inhibitors lower blood glucose by preventing the proteolytic inactivation of glucagon-like peptide 1 (GLP-1). However, GLP-1 is not the only peptide substrate of DPP-4. Here, we investigated the GLP-1-independent cardiac effects of DPP-4 substrates. Pointing to GLP-1 receptor (GLP-1R)-independent actions, DPP-4 inhibition prevented systolic dysfunction equally in pressure-overloaded wild-type and GLP-1R knockout mice. Likewise, DPP-4 inhibition or the DPP-4 substrates substance P or C-X-C motif chemokine ligand 12 (CXCL12) improved contractile recovery after no-flow ischemia in the hearts of otherwise healthy young adult mice. Either DPP-4 inhibition or CXCL12 increased phosphorylation of the Ca2+ regulatory protein phospholamban (PLN), and CXCL12 directly enhanced cardiomyocyte Ca2+ flux. In contrast, hearts of aged obese diabetic mice (which may better mimic the comorbid patient population) had diminished levels of PLN phosphorylation. In this setting, CXCL12 paradoxically impaired cardiac contractility in a phosphoinositide 3-kinase γ-dependent manner. These findings indicate that the cardiac effects of DPP-4 inhibition primarily occur through GLP-1R-independent processes and that ostensibly beneficial DPP-4 substrates can paradoxically worsen heart function in the presence of comorbid diabetes.
Collapse
Affiliation(s)
- Sri N Batchu
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Karina Thieme
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Farigol H Zadeh
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada
| | - Tamadher A Alghamdi
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Veera Ganesh Yerra
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Mitchell J Hadden
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Syamantak Majumder
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - M Golam Kabir
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Bridgit B Bowskill
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Danyal Ladha
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Anthony O Gramolini
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada
| | - Kim A Connelly
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Caggia S, Chunduri H, Millena AC, Perkins JN, Venugopal SV, Vo BT, Li C, Tu Y, Khan SA. Novel role of Giα2 in cell migration: Downstream of PI3-kinase-AKT and Rac1 in prostate cancer cells. J Cell Physiol 2018; 234:802-815. [PMID: 30078221 DOI: 10.1002/jcp.26894] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/13/2018] [Indexed: 12/20/2022]
Abstract
Tumor cell motility is the essential step in cancer metastasis. Previously, we showed that oxytocin and epidermal growth factor (EGF) effects on cell migration in prostate cancer cells require Giα2 protein. In the current study, we investigated the interactions among G-protein coupled receptor (GPCR), Giα2, PI3-kinase, and Rac1 activation in the induction of migratory and invasive behavior by diverse stimuli. Knockdown and knockout of endogenous Giα2 in PC3 cells resulted in attenuation of transforming growth factor β1 (TGFβ1), oxytocin, SDF-1α, and EGF effects on cell migration and invasion. In addition, knockdown of Giα2 in E006AA cells attenuated cell migration and overexpression of Giα2 in LNCaP cells caused significant increase in basal and EGF-stimulated cell migration. Pretreatment of PC3 cells with Pertussis toxin resulted in attenuation of TGFβ1- and oxytocin-induced migratory behavior and PI3-kinase activation without affecting EGF-induced PI3-kinase activation and cell migration. Basal- and EGF-induced activation of Rac1 in PC3 and DU145 cells were not affected in cells after Giα2 knockdown. On the other hand, Giα2 knockdown abolished the migratory capability of PC3 cells overexpressing constitutively active Rac1. The knockdown or knockout of Giα2 resulted in impaired formation of lamellipodia at the leading edge of the migrating cells. We conclude that Giα2 protein acts at two different levels which are both dependent and independent of GPCR signaling to induce cell migration and invasion in prostate cancer cells and its action is downstream of PI3-kinase-AKT-Rac1 axis.
Collapse
Affiliation(s)
- Silvia Caggia
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia
| | - HimaBindu Chunduri
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia
| | - Ana C Millena
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia
| | - Jonathan N Perkins
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia
| | - Smrruthi V Venugopal
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia
| | - BaoHan T Vo
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yaping Tu
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska
| | - Shafiq A Khan
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia
| |
Collapse
|
7
|
Tiong KH, Tan BS, Choo HL, Chung FFL, Hii LW, Tan SH, Khor NTW, Wong SF, See SJ, Tan YF, Rosli R, Cheong SK, Leong CO. Fibroblast growth factor receptor 4 (FGFR4) and fibroblast growth factor 19 (FGF19) autocrine enhance breast cancer cells survival. Oncotarget 2018; 7:57633-57650. [PMID: 27192118 PMCID: PMC5295378 DOI: 10.18632/oncotarget.9328] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/26/2016] [Indexed: 12/27/2022] Open
Abstract
Basal-like breast cancer is an aggressive tumor subtype with poor prognosis. The discovery of underlying mechanisms mediating tumor cell survival, and the development of novel agents to target these pathways, is a priority for patients with basal-like breast cancer. From a functional screen to identify key drivers of basal-like breast cancer cell growth, we identified fibroblast growth factor receptor 4 (FGFR4) as a potential mediator of cell survival. We found that FGFR4 mediates cancer cell survival predominantly via activation of PI3K/AKT. Importantly, a subset of basal-like breast cancer cells also secrete fibroblast growth factor 19 (FGF19), a canonical ligand specific for FGFR4. siRNA-mediated silencing of FGF19 or neutralization of extracellular FGF19 by anti-FGF19 antibody (1A6) decreases AKT phosphorylation, suppresses cancer cell growth and enhances doxorubicin sensitivity only in the FGFR4+/FGF19+ breast cancer cells. Consistently, FGFR4/FGF19 co-expression was also observed in 82 out of 287 (28.6%) primary breast tumors, and their expression is strongly associated with AKT phosphorylation, Ki-67 staining, higher tumor stage and basal-like phenotype. In summary, our results demonstrated the presence of an FGFR4/FGF19 autocrine signaling that mediates the survival of a subset of basal-like breast cancer cells and suggest that inactivation of this autocrine loop may potentially serve as a novel therapeutic intervention for future treatment of breast cancers.
Collapse
Affiliation(s)
- Kai Hung Tiong
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia.,Oral Cancer Research and Coordinating Center (OCRCC), Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.,Cancer Research Initiatives Foundation, Sime Darby Medical Centre, Subang Jaya, Malaysia
| | - Boon Shing Tan
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Heng Lungh Choo
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia.,Center for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Felicia Fei-Lei Chung
- Center for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Ling-Wei Hii
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia.,Center for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Si Hoey Tan
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia.,Center for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Nelson Tze Woei Khor
- School of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | - Shew Fung Wong
- School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Sze-Jia See
- Center for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Yuen-Fen Tan
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia.,Center for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Rozita Rosli
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Soon-Keng Cheong
- Faculty of Medicine and Health Sciences, University Tunku Abdul Rahman, Bandar Sungai Long, Selangor, Malaysia
| | - Chee-Onn Leong
- Center for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia.,School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Mohan ML, Chatterjee A, Ganapathy S, Mukherjee S, Srikanthan S, Jolly GP, Anand RS, Naga Prasad SV. Noncanonical regulation of insulin-mediated ERK activation by phosphoinositide 3-kinase γ. Mol Biol Cell 2017; 28:3112-3122. [PMID: 28877982 PMCID: PMC5662266 DOI: 10.1091/mbc.e16-12-0864] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 08/23/2017] [Accepted: 08/31/2017] [Indexed: 12/17/2022] Open
Abstract
Classically, Class IB phosphoinositide 3-kinase (PI3Kγ) plays a role in ERK activation following G-protein–coupled receptor (GPCR) activation. Here we show that PI3Kγ noncanonically regulates ERK phosphorylation in a kinase-independent mechanism, irrespective of the upstream signals. PI3Kγ sequesters PP2A, allowing sustained ERK function. Classically Class IB phosphoinositide 3-kinase (PI3Kγ) plays a role in extracellular signal–regulated kinase (ERK) activation following G-protein coupled receptor (GPCR) activation. Knock-down of PI3Kγ unexpectedly resulted in loss of ERK activation to receptor tyrosine kinase agonists such as epidermal growth factor or insulin. Mouse embryonic fibroblasts (MEFs) or primary adult cardiac fibroblasts isolated from PI3Kγ knock-out mice (PI3KγKO) showed decreased insulin-stimulated ERK activation. However, expression of kinase-dead PI3Kγ resulted in rescue of insulin-stimulated ERK activation. Mechanistically, PI3Kγ sequesters protein phosphatase 2A (PP2A), disrupting ERK–PP2A interaction, as evidenced by increased ERK–PP2A interaction and associated PP2A activity in PI3KγKO MEFs, resulting in decreased ERK activation. Furthermore, β-blocker carvedilol-mediated β-arrestin-dependent ERK activation is significantly reduced in PI3KγKO MEF, suggesting accelerated dephosphorylation. Thus, instead of classically mediating the kinase arm, PI3Kγ inhibits PP2A by scaffolding and sequestering, playing a key parallel synergistic step in sustaining the function of ERK, a nodal enzyme in multiple cellular processes.
Collapse
Affiliation(s)
- Maradumane L Mohan
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Arunachal Chatterjee
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Swetha Ganapathy
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Sromona Mukherjee
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Sowmya Srikanthan
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - George P Jolly
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Rohit S Anand
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Sathyamangla V Naga Prasad
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| |
Collapse
|
9
|
Zhao HF, Wang J, Shao W, Wu CP, Chen ZP, To SST, Li WP. Recent advances in the use of PI3K inhibitors for glioblastoma multiforme: current preclinical and clinical development. Mol Cancer 2017; 16:100. [PMID: 28592260 PMCID: PMC5463420 DOI: 10.1186/s12943-017-0670-3] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/26/2017] [Indexed: 02/08/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive malignant primary tumor in the central nervous system. One of the most widely used chemotherapeutic drugs for GBM is temozolomide, which is a DNA-alkylating agent and its efficacy is dependent on MGMT methylation status. Little progress in improving the prognosis of GBM patients has been made in the past ten years, urging the development of more effective molecular targeted therapies. Hyper-activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway is frequently found in a variety of cancers including GBM, and it plays a central role in the regulation of tumor cell survival, growth, motility, angiogenesis and metabolism. Numerous PI3K inhibitors including pan-PI3K, isoform-selective and dual PI3K/mammalian target of rapamycin (mTOR) inhibitors have exhibited favorable preclinical results and entered clinical trials in a range of hematologic malignancies and solid tumors. Furthermore, combination of inhibitors targeting PI3K and other related pathways may exert synergism on suppressing tumor growth and improving patients' prognosis. Currently, only a handful of PI3K inhibitors are in phase I/II clinical trials for GBM treatment. In this review, we focus on the importance of PI3K/Akt pathway in GBM, and summarize the current development of PI3K inhibitors alone or in combination with other inhibitors for GBM treatment from preclinical to clinical studies.
Collapse
Affiliation(s)
- Hua-fu Zhao
- Department of Neurosurgery & Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035 China
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 China
| | - Jing Wang
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 China
| | - Wei Shao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Chang-peng Wu
- Department of Neurosurgery & Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035 China
- College of Clinical Medicine, Anhui Medical University, Hefei, 230032 China
| | - Zhong-ping Chen
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 China
| | - Shing-shun Tony To
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wei-ping Li
- Department of Neurosurgery & Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035 China
| |
Collapse
|
10
|
Bai H, Li H, Li W, Gui T, Yang J, Cao D, Shen K. The PI3K/AKT/mTOR pathway is a potential predictor of distinct invasive and migratory capacities in human ovarian cancer cell lines. Oncotarget 2016; 6:25520-32. [PMID: 26267321 PMCID: PMC4694849 DOI: 10.18632/oncotarget.4550] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/04/2015] [Indexed: 12/21/2022] Open
Abstract
Objectives To explore the genetic and molecular events that control subclones exhibiting distinct invasive/migratory capacities derived from human epithelial ovarian cancer (EOC) cell line A2780 and SKOV3. Methods Single-cell subclones were isolated and established that were derived from the SKOV3 and A2780 cell lines through limiting dilution methodology. Transwell insert assays and MTT assays were performed to screen and identify the subclones exhibiting the highest and the lowest invasive/migratory capacities, and the selected subclones were renamed as A-H (A2780 high), A-L (A2780 low), S-H (SKOV3 high), and S-L (SKOV3 low). Their biological characteristics were evaluated. RNA-Seq was conducted on the targeted subclones. Results Compared with their corresponding counterparts, A-H/S-H cells exhibited significantly higher invasive/migratory capacities (P < 0.001 and = 0.001, respectively). A-H/S-H cells displayed a clear reduction in doubling time (P = 0.004 and 0.001, respectively), and a significant increase in the percentage of cells in S phase (P = 0.004 and 0.022, respectively). Additionally, the apoptotic rates of A-H/S-H cells were significantly lower than those of A-L/S-L cells (P = 0.002 and 0.026, respectively). At both mRNA and protein levels, caspase-3 and caspase-7 expression were reduced but Bcl-2 expression was increased in A-H/S-H cells. The TrkB (anoikis-related) and Beclin1 (autophagy-related) levels were consistently high and low, respectively, in both A-H/S-H cells. Resistance to chemotherapy in vitro and higher capacities on tumor formation in vivo was presented in both A-H/S-H cells. PI3K/AKT/mTOR pathway components, PIK3CA, PIK3CD, AKT3, ECM1, GPCR, mTOR and PRKCB were increased but that the Nur77 and PTEN were decreased in A-H/S-H cells, identified by RNA-Seq and consistently confirmed by RT-PCR and Western blot analyses. Conclusions Heterogeneous cell subpopulations exhibiting distinct invasive and migratory capacities co-exist within the SKOV3 and A2780 cell lines. PI3K/AKT/mTOR pathway activation is associated with higher invasive and migratory capacities in subpopulations of human ovarian cancer cell lines. Inhibiting this pathway may be useful for the chemoprevention or treatment of EOC.
Collapse
Affiliation(s)
- Huimin Bai
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing China.,Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, China Capital Medical University, Beijing China
| | - Haixia Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing China
| | - Weihua Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing China
| | - Ting Gui
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing China
| | - Jiaxin Yang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing China
| | - Dongyan Cao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing China
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing China
| |
Collapse
|
11
|
Diao HY, Shao JG, Bian ZL, Chen L, Ju LL, Zhang Y. Role of phosphoinositide-3 kinase signaling pathways in pathogenesis of acute pancreatitis. Shijie Huaren Xiaohua Zazhi 2016; 24:3002-3008. [DOI: 10.11569/wcjd.v24.i19.3002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute pancreatitis (AP) as a common acute disease poses a great threat to people's health. According to statistics, about one-fifth of cases develop acute respiratory distress syndrome and multiple organ dysfunction, which result in high mortality. The early understanding of the pathogenesis of this disease is limited to an inflammatory response resulting in autodigestion, edema, hemorrhage and necrosis of pancreatic tissue after the abnormal activation of trypsin. In recent years, researchers have focused their research on the role of immune inflammatory response in the pathogenesis of AP. Here we discuss the relationship between the immune inflammation and PI3K signaling pathways in AP.
Collapse
|
12
|
Affiliation(s)
- Keli Xu
- Cancer Institute and Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
13
|
Stat1 stimulates cap-independent mRNA translation to inhibit cell proliferation and promote survival in response to antitumor drugs. Proc Natl Acad Sci U S A 2015; 112:E2149-55. [PMID: 25870277 DOI: 10.1073/pnas.1420671112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The signal transducer and activator of transcription 1 (Stat1) functions as a tumor suppressor via immune regulatory and cell-autonomous pathways. Herein, we report a previously unidentified cell-autonomous Stat1 function, which is its ability to exhibit both antiproliferative and prosurvival properties by facilitating translation of mRNAs encoding for the cyclin-dependent kinase inhibitor p27(Kip1) and antiapoptotic proteins X-linked inhibitor of apoptosis and B-cell lymphoma xl. Translation of the select mRNAs requires the transcriptional function of Stat1, resulting in the up-regulation of the p110γ subunit of phosphoinositide 3-kinase (PI3K) class IB and increased expression of the translational repressor translation initiation factor 4E (eIF4E)-binding protein 1 (4EBP1). Increased PI3Kγ signaling promotes the degradation of the eIF4A inhibitor programmed cell death protein 4, which favors the cap-independent translation of the select mRNAs under conditions of general inhibition of protein synthesis by up-regulated eIF4E-binding protein 1. As such, Stat1 inhibits cell proliferation but also renders cells increasingly resistant to antiproliferative effects of pharmacological inhibitors of PI3K and/or mammalian target of rapamycin. Stat1 also protects Ras-transformed cells from the genotoxic effects of doxorubicin in culture and immune-deficient mice. Our findings demonstrate an important role of mRNA translation in the cell-autonomous Stat1 functions, with implications in tumor growth and treatment with chemotherapeutic drugs.
Collapse
|
14
|
Zhang S, Chung WC, Wu G, Egan SE, Miele L, Xu K. Manic fringe promotes a claudin-low breast cancer phenotype through notch-mediated PIK3CG induction. Cancer Res 2015; 75:1936-43. [PMID: 25808869 DOI: 10.1158/0008-5472.can-14-3303] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/25/2015] [Indexed: 12/13/2022]
Abstract
Claudin-low breast cancer (CLBC) is a poor prognosis disease biologically characterized by stemness and mesenchymal features. These tumors disproportionately affect younger patients and women with African ancestry, causing significant morbidity and mortality, and no effective targeted therapy exists at present. CLBC is thought to originate from mammary stem cells, but little is known on how or why these tumors express a stable epithelial-to-mesenchymal transition phenotype, or what are the driving forces of this disease. Here, we report that Manic Fringe (Mfng), which encodes an O-fucosylpeptide 3-β-N-acetylglucosaminyltransferase known to modify EGF repeats in the Notch extracellular domain, is highly expressed in CLBC and functions as an oncogene in this context. We show that Mfng modulates Notch activation in human and mouse CLBC cell lines, as well as in mouse mammary gland. Mfng silencing in CLBC cell lines reduced cell migration, tumorsphere formation, and in vivo tumorigenicity associated with a decrease in the stem-like cell population. Mfng deletion in the Lfng(flox/flox);MMTV-Cre mouse model, in which one-third of mammary tumors resemble human CLBC, caused a tumor subtype shift away from CLBC. We identified the phosphoinositide kinase Pik3cg as a direct transcriptional target of Mfng-facilitated RBPJκ-dependent Notch signaling. Indeed, pharmacologic inhibition of PI3Kγ in CLBC cell lines blocked migration and tumorsphere formation. Taken together, our results define Mfng as an oncogene acting through Notch-mediated induction of Pik3cg. Furthermore, they suggest that targeting PI3Kγ may prove beneficial for the treatment of CLBC subtype.
Collapse
Affiliation(s)
- Shubing Zhang
- Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi. State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Wen-Cheng Chung
- Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi
| | - Guanming Wu
- Department of Medical Informatics and Clinical Epidemiology and Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, Oregon
| | - Sean E Egan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children and Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Lucio Miele
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Center, New Orleans, Louisiana
| | - Keli Xu
- Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi. Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi.
| |
Collapse
|
15
|
Lecointre C, Desrues L, Joubert JE, Perzo N, Guichet PO, Le Joncour V, Brulé C, Chabbert M, Leduc R, Prézeau L, Laquerrière A, Proust F, Gandolfo P, Morin F, Castel H. Signaling switch of the urotensin II vasosactive peptide GPCR: prototypic chemotaxic mechanism in glioma. Oncogene 2015; 34:5080-94. [PMID: 25597409 DOI: 10.1038/onc.2014.433] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 11/25/2014] [Accepted: 11/25/2014] [Indexed: 12/12/2022]
Abstract
Multiform glioblastomas (GBM) are the most frequent and aggressive primary brain tumors in adults. The poor prognosis is due to neo-angiogenesis and cellular invasion, processes that require complex chemotaxic mechanisms involving motility, migration and adhesion. Understanding these different cellular events implies identifying receptors and transduction pathways that lead to and promote either migration or adhesion. Here we establish that glioma express the vasoactive peptide urotensin II (UII) and its receptor UT and that UT-mediated signaling cascades are involved in glioma cell migration and adhesion. Components of the urotensinergic systems, UII and UT, are widely expressed in patient-derived GBM tissue sections, glioma cell lines and fresh biopsy explants. Interestingly, gradient concentrations of UII produced chemoattracting migratory/motility effects in glioma as well as HEK293 cells expressing human UT. These effects mainly involved the G13/Rho/rho kinase pathway while partially requiring Gi/o/PI3K components. In contrast, we observed that homogeneous concentrations of UII drastically blocked cell motility and stimulated cell-matrix adhesions through a UT/Gi/o signaling cascade, partially involving phosphatidylinositol-3 kinase. Finally, we provide evidence that, in glioma cells, homogeneous concentration of UII allowed translocation of Gα13 to the UT receptor at the plasma membrane and increased actin stress fibers, lamellipodia formation and vinculin-stained focal adhesions. UII also provoked a re-localization of UT precoupled to Gαi in filipodia and initiated integrin-stained focal points. Altogether, these findings suggest that UT behaves as a chemotaxic receptor, relaying a signaling switch between directional migration and cell adhesion under gradient or homogeneous concentrations, thereby redefining sequential mechanisms affecting tumor cells during glioma invasion. Taken together, our results allow us to propose a model in order to improve the design of compounds that demonstrate signaling bias for therapies that target specifically the Gi/o signaling pathway.
Collapse
Affiliation(s)
- C Lecointre
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France
| | - L Desrues
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France
| | - J E Joubert
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France
| | - N Perzo
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France.,Department of Pharmacology, Institut of Pharmacology, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - P-O Guichet
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France
| | - V Le Joncour
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France
| | - C Brulé
- Department of Pharmacology, Institut of Pharmacology, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada.,IGF, Institut of Functional Genomic, CNRS UMR 5203, Inserm U661, University of Montpellier 1 and 2, Montpellier, France
| | - M Chabbert
- UMR CNRS 6214, Inserm 1083, Faculté de Médecine 3, Angers, France
| | - R Leduc
- Department of Pharmacology, Institut of Pharmacology, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - L Prézeau
- IGF, Institut of Functional Genomic, CNRS UMR 5203, Inserm U661, University of Montpellier 1 and 2, Montpellier, France
| | - A Laquerrière
- Service of Anatomocytopathology, CHU of Rouen, ERI28 Inserm, IRIB, Rouen, France
| | - F Proust
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France.,Service of Neurosurgery, CHU of Rouen, Rouen, France
| | - P Gandolfo
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France
| | - F Morin
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France
| | - H Castel
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France
| |
Collapse
|
16
|
Falasca M, Maffucci T. Targeting p110gamma in gastrointestinal cancers: attack on multiple fronts. Front Physiol 2014; 5:391. [PMID: 25360116 PMCID: PMC4197894 DOI: 10.3389/fphys.2014.00391] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/21/2014] [Indexed: 12/12/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) regulate several cellular functions that are critical for cancer progression and development, including cell survival, proliferation and migration. Three classes of PI3Ks exist with the class I PI3K encompassing four isoforms of the catalytic subunit known as p110α, p110β, p110γ, and p110δ. Although for many years attention has been mainly focused on p110α recent evidence supports the conclusion that p110β, p110γ, and p110δ can also have a role in cancer. Amongst these, accumulating evidence now indicates that p110γ is involved in several cellular processes associated with cancer and indeed this specific isoform has emerged as a novel important player in cancer progression. Studies from our laboratory have identified a specific overexpression of p110γ in human pancreatic ductal adenocarcinoma (PDAC) and in hepatocellular carcinoma (HCC) tissues compared to their normal counterparts. Our data have further established that selective inhibition of p110γ is able to block PDAC and HCC cell proliferation, strongly suggesting that pharmacological inhibition of this enzyme can directly affect growth of these tumors. Furthermore, increasing evidence suggests that p110γ plays also a key role in the interactions between cancer cells and tumor microenvironment and in particular in tumor-associated immune response. It has also been reported that p110γ can regulate invasion of myeloid cells into tumors and tumor angiogenesis. Finally p110γ has also been directly involved in regulation of cancer cell migration. Taken together these data indicate that p110γ plays multiple roles in regulation of several processes that are critical for tumor progression and metastasis. This review will discuss the role of p110γ in gastrointestinal tumor development and progression and how targeting this enzyme might represent a way to target very aggressive tumors such as pancreatic and liver cancer on multiple fronts.
Collapse
Affiliation(s)
- Marco Falasca
- Inositide Signalling Group, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London London, UK
| | - Tania Maffucci
- Inositide Signalling Group, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London London, UK
| |
Collapse
|
17
|
Epidermal growth factor-like module containing mucin-like hormone receptor 2 expression in gliomas. J Neurooncol 2014; 121:53-61. [PMID: 25200831 DOI: 10.1007/s11060-014-1606-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/25/2014] [Indexed: 12/11/2022]
Abstract
Epidermal growth factor (EGF) module-containing mucin-like receptor 2 (EMR2) is a member of the seven span transmembrane adhesion G-protein coupled receptor subclass. This protein is expressed in a subset of glioblastoma (GBM) cells and associated with an invasive phenotype. The expression pattern and functional significance of EMR2 in low grade or anaplastic astrocytomas is unknown and our goal was to expand and further define EMR2's role in gliomas with an aggressive invasive phenotype. Using the TCGA survival data we describe EMR2 expression patterns across histologic grades of gliomas and demonstrate an association between increased EMR2 expression and poor survival (p < 0.05). This data supports prior functional data depicting that EMR2-positive neoplasms possess a greater capacity for infiltrative and metastatic spread. Genomic analysis suggests that EMR2 overexpression is associated with the mesenchymal GBM subtype (p < 0.0001). We also demonstrate that immunohistorchemistry is a feasible method for screening GBM patients for EMR2 expression. Protein and mRNA analysis demonstrated variable expression of all isoforms of EMR2 in all glioma grades, however GBM displayed the most diverse isoforms expression pattern as well as the highest expression of the EGF1-5 isoform of EMR2. Finally, a correlation of an increased EMR2 expression after bevacizumab treatment in glioma cells lines is identified. This observation should serve as the impetus for future studies to determine if this up-regulation of EMR2 plays a role in the observation of the diffuse and increasingly invasive recurrence patterns witnessed in a subset of GBM patients after bevacizumab treatment.
Collapse
|
18
|
Martini M, De Santis MC, Braccini L, Gulluni F, Hirsch E. PI3K/AKT signaling pathway and cancer: an updated review. Ann Med 2014; 46:372-83. [PMID: 24897931 DOI: 10.3109/07853890.2014.912836] [Citation(s) in RCA: 823] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite development of novel agents targeting oncogenic pathways, matching targeted therapies to the genetic status of individual tumors is proving to be a daunting task for clinicians. To improve the clinical efficacy and to reduce the toxic side effects of treatments, a deep characterization of genetic alterations in different tumors is required. The mutational profile often evidences a gain of function or hyperactivity of phosphoinositide 3-kinases (PI3Ks) in tumors. These enzymes are activated downstream tyrosine kinase receptors (RTKs) and/or G proteins coupled receptors (GPCRs) and, via AKT, are able to induce mammalian target of rapamycin (mTOR) stimulation. Here, we elucidate the impact of class I (p110α, β, γ, and δ) catalytic subunit mutations on AKT-mediated cellular processes that control crucial mechanisms in tumor development. Moreover, the interrelation of PI3K signaling with mTOR, ERK, and RAS pathways will be discussed, exploiting the potential benefits of PI3K signaling inhibitors in clinical use.
Collapse
Affiliation(s)
- Miriam Martini
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin , Italy
| | | | | | | | | |
Collapse
|
19
|
Taha MO, Al-Sha'er MA, Khanfar MA, Al-Nadaf AH. Discovery of nanomolar phosphoinositide 3-kinase gamma (PI3Kγ) inhibitors using ligand-based modeling and virtual screening followed by in vitro analysis. Eur J Med Chem 2014; 84:454-65. [PMID: 25050878 DOI: 10.1016/j.ejmech.2014.07.056] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 07/03/2014] [Accepted: 07/17/2014] [Indexed: 11/30/2022]
Abstract
Phosphoinositide 3-kinase gamma (PI3Kγ) is member of a family of enzymes involved in cancer pathogenesis. Accordingly, considerable efforts have been carried out to develop new PI3Kγ inhibitors. Towards this end we explored the pharmacophoric space of PI3Kγ using three diverse sets of inhibitors. Subsequently, we employed genetic algorithm-based QSAR analysis to select optimal combination of pharmacophoric models and physicochemical descriptors that can explain bioactivity variation within training inhibitors. Interestingly, two successful pharmacophores were selected within two statistically consistent QSAR models. The close similarity among the two binding models prompted us to merge them in a hybrid pharmacophore. The resulting model showed superior receiver operator characteristic curve (ROC) and closely resembled binding interactions seen in crystallographic ligand-PI3Kγ complexes. The resulting model was employed to screen the national cancer institute (NCI) list of compounds to search for new PI3Kγ ligands. After testing captured hits in vitro, 19 compounds showed nanomolar IC50 values against PI3Kγ. The chemical structures and purities of most potent hits were validated using NMR and MS experiments.
Collapse
Affiliation(s)
- Mutasem O Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman, Jordan.
| | | | - Mohammad A Khanfar
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman, Jordan
| | - Afaf H Al-Nadaf
- Department of Pharmaceutical Chemistry, Applied Science University, Amman, Jordan
| |
Collapse
|
20
|
Cacan E, Ali MW, Boyd NH, Hooks SB, Greer SF. Inhibition of HDAC1 and DNMT1 modulate RGS10 expression and decrease ovarian cancer chemoresistance. PLoS One 2014; 9:e87455. [PMID: 24475290 PMCID: PMC3903677 DOI: 10.1371/journal.pone.0087455] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/25/2013] [Indexed: 11/28/2022] Open
Abstract
RGS10 is an important regulator of cell survival and chemoresistance in ovarian cancer. We recently showed that RGS10 transcript expression is suppressed during acquired chemoresistance in ovarian cancer. The suppression of RGS10 is due to DNA hypermethylation and histone deacetylation, two important mechanisms that contribute to silencing of tumor suppressor genes during cancer progression. Here, we fully investigate the molecular mechanisms of epigenetic silencing of RGS10 expression in chemoresistant A2780-AD ovarian cancer cells. We identify two important epigenetic regulators, HDAC1 and DNMT1, that exhibit aberrant association with RGS10 promoters in chemoresistant ovarian cancer cells. Knockdown of HDAC1 or DNMT1 expression, and pharmacological inhibition of DNMT or HDAC enzymatic activity, significantly increases RGS10 expression and cisplatin-mediated cell death. Finally, DNMT1 knock down also decreases HDAC1 binding to the RGS10 promoter in chemoresistant cells, suggesting HDAC1 recruitment to RGS10 promoters requires DNMT1 activity. Our results suggest that HDAC1 and DNMT1 contribute to the suppression of RGS10 during acquired chemoresistance and support inhibition of HDAC1 and DNMT1 as an adjuvant therapeutic approach to overcome ovarian cancer chemoresistance.
Collapse
Affiliation(s)
- Ercan Cacan
- Division of Cellular Biology and Immunology, Center for Inflammation, Immunity and Infection, Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Mourad W. Ali
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Nathaniel H. Boyd
- Division of Cellular Biology and Immunology, Center for Inflammation, Immunity and Infection, Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Shelley B. Hooks
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Susanna F. Greer
- Division of Cellular Biology and Immunology, Center for Inflammation, Immunity and Infection, Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
21
|
Molecular determinants of PI3Kγ-mediated activation downstream of G-protein-coupled receptors (GPCRs). Proc Natl Acad Sci U S A 2013; 110:18862-7. [PMID: 24190998 DOI: 10.1073/pnas.1304801110] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Phosphoinositide 3-kinase gamma (PI3Kγ) has profound roles downstream of G-protein-coupled receptors in inflammation, cardiac function, and tumor progression. To gain insight into how the enzyme's activity is shaped by association with its p101 adaptor subunit, lipid membranes, and Gβγ heterodimers, we mapped these regulatory interactions using hydrogen-deuterium exchange mass spectrometry. We identify residues in both the p110γ and p101 subunits that contribute critical interactions with Gβγ heterodimers, leading to PI3Kγ activation. Mutating Gβγ-interaction sites of either p110γ or p101 ablates G-protein-coupled receptor-mediated signaling to p110γ/p101 in cells and severely affects chemotaxis and cell transformation induced by PI3Kγ overexpression. Hydrogen-deuterium exchange mass spectrometry shows that association with the p101 regulatory subunit causes substantial protection of the RBD-C2 linker as well as the helical domain of p110γ. Lipid interaction massively exposes that same helical site, which is then stabilized by Gβγ. Membrane-elicited conformational change of the helical domain could help prepare the enzyme for Gβγ binding. Our studies and others identify the helical domain of the class I PI3Ks as a hub for diverse regulatory interactions that include the p101, p87 (also known as p84), and p85 adaptor subunits; Rab5 and Gβγ heterodimers; and the β-adrenergic receptor kinase.
Collapse
|
22
|
Fyffe C, Falasca M. 3-Phosphoinositide-dependent protein kinase-1 as an emerging target in the management of breast cancer. Cancer Manag Res 2013; 5:271-80. [PMID: 24039447 PMCID: PMC3771848 DOI: 10.2147/cmar.s35026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It should be noted that 3-phosphoinositide-dependent protein kinase-1 (PDK1) is a protein encoded by the PDPK1 gene, which plays a key role in the signaling pathways activated by several growth factors and hormones. PDK1 is a crucial kinase that functions downstream of phosphoinositide 3-kinase activation and activates members of the AGC family of protein kinases, such as protein kinase B (Akt), protein kinase C (PKC), p70 ribosomal protein S6 kinases, and serum glucocorticoid-dependent kinase, by phosphorylating serine/threonine residues in the activation loop. AGC kinases are known to play crucial roles in regulating physiological processes relevant to metabolism, growth, proliferation, and survival. Changes in the expression and activity of PDK1 and several AGC kinases have been linked to human diseases including cancer. Recent data have revealed that the alteration of PDK1 is a critical component of oncogenic phosphoinositide 3-kinase signaling in breast cancer, suggesting that inhibition of PDK1 can inhibit breast cancer progression. Indeed, PDK1 is highly expressed in a majority of human breast cancer cell lines and both PDK1 protein and messenger ribonucleic acid are overexpressed in a majority of human breast cancers. Furthermore, overexpression of PDK1 is sufficient to transform mammary epithelial cells. PDK1 plays an essential role in regulating cell migration, especially in the context of phosphatase and tensin homologue deficiency. More importantly, downregulation of PDK1 levels inhibits migration and experimental metastasis of human breast cancer cells. Thus, targeting PDK1 may be a valuable anticancer strategy that may improve the efficacy of chemotherapeutic strategies in breast cancer patients. In this review, we summarize the evidence that has been reported to support the idea that PDK1 may be a key target in breast cancer management.
Collapse
Affiliation(s)
- Chanse Fyffe
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Inositide Signallling Group, London, UK
| | | |
Collapse
|