1
|
Maharati A, Rajabloo Y, Moghbeli M. Molecular mechanisms of mTOR-mediated cisplatin response in tumor cells. Heliyon 2025; 11:e41483. [PMID: 39834411 PMCID: PMC11743095 DOI: 10.1016/j.heliyon.2024.e41483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025] Open
Abstract
Cisplatin (CDDP) is one of the main chemotherapeutic drugs that is widely used in many cancers. However, CDDP resistance is a frequent therapeutic challenge that reduces prognosis in cancer patients. Since, CDDP has noticeable side effects in normal tissues and organs, it is necessary to assess the molecular mechanisms associated with CDDP resistance to improve the therapeutic methods in cancer patients. Drug efflux, detoxifying systems, DNA repair mechanisms, and drug-induced apoptosis are involved in multidrug resistance in CDDP-resistant tumor cells. Mammalian target of rapamycin (mTOR), as a serine/threonine kinase has a pivotal role in various cellular mechanisms such as autophagy, metabolism, drug efflux, and cell proliferation. Although, mTOR is mainly activated by PI3K/AKT pathway, it can also be regulated by many other signaling pathways. PI3K/Akt/mTOR axis functions as a key modulator of drug resistance and unfavorable prognosis in different cancers. Regarding, the pivotal role of mTOR in CDDP response, in the present review we discussed the molecular mechanisms that regulate mTOR mediated CDDP response in tumor cells.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasamin Rajabloo
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Liu Y, Qin J, Li X, Wu G. Oxysterols in tumor immune microenvironment (TIME). J Steroid Biochem Mol Biol 2025; 245:106634. [PMID: 39551164 DOI: 10.1016/j.jsbmb.2024.106634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/22/2024] [Accepted: 11/09/2024] [Indexed: 11/19/2024]
Abstract
Oxysterols are compounds generated through oxidative reactions involving cholesterol and other steroid molecules. They play a crucial role in the tumor immune microenvironment by interacting with molecules such as the cell membrane receptor EBI2 and nuclear receptors like LXR and PXR. This interaction regulates immune cell signaling pathways, affecting proliferation, apoptosis, migration, and invasion in tumor-related processes. Activating these receptors alters the function and behavior of immune cells-such as macrophages, T cells, and dendritic cells-within the tumor microenvironment, thus promoting or inhibiting tumor development. Certain oxidized steroids can increase both the number and activation of infiltrating T cells, synergizing with anti-PD-1 to enhance anti-tumor efficacy. An in-depth study of the biological mechanisms of oxidized sterols will not only enhance our understanding of the complexity of the tumor immune microenvironment but may also reveal new therapeutic targets, providing innovative strategies for tumor immunotherapy.
Collapse
Affiliation(s)
- Yuanxin Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Jie Qin
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Xiaorui Li
- Department of Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
3
|
Zhang C, Qin Y, Tang Y, Gu M, Li Z, Xu H. MEG3 in hematologic malignancies: from the role of disease biomarker to therapeutic target. Pharmacogenet Genomics 2024; 34:209-216. [PMID: 38743429 DOI: 10.1097/fpc.0000000000000534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Maternally expressed gene 3 ( MEG3 ) is a noncoding RNA that is known as a tumor suppressor in solid cancers. Recently, a line of studies has emphasized its potential role in hematological malignancies in terms of tumorigenesis, metastasis, and drug resistance. Similar to solid cancers, MEG3 can regulate various cancer hallmarks via sponging miRNA, transcriptional, or posttranslational regulation mechanisms, but may regulate different key elements. In contrast with solid cancers, in some subtypes of leukemia, MEG3 has been found to be upregulated and oncogenic. In this review, we systematically describe the role and underlying mechanisms of MEG3 in multiple types of hematological malignancies. Particularly, we highlight the role of MEG3 in drug resistance and as a novel therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | | | - Heng Xu
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Ksila M, Ghzaiel I, Sassi K, Zarrouk A, Leoni V, Poli G, Rezig L, Pires V, Meziane S, Atanasov AG, Hammami S, Hammami M, Masmoudi-Kouki O, Hamdi O, Jouanny P, Samadi M, Vejux A, Ghrairi T, Lizard G. Therapeutic Applications of Oxysterols and Derivatives in Age-Related Diseases, Infectious and Inflammatory Diseases, and Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:379-400. [PMID: 38036890 DOI: 10.1007/978-3-031-43883-7_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Oxysterols, resulting from the oxidation of cholesterol, are formed either by autoxidation, enzymatically, or by both processes. These molecules, which are provided in more or less important quantities depending on the type of diet, are also formed in the body and their presence is associated with a normal physiological activity. Their increase and decrease at the cellular level and in biological fluids can have significant consequences on health due or not to the interaction of some of these molecules with different types of receptors but also because oxysterols are involved in the regulation of RedOx balance, cytokinic and non-cytokinic inflammation, lipid metabolism, and induction of cell death. Currently, various pathologies such as age-related diseases, inflammatory and infectious diseases, and several cancers are associated with abnormal levels of oxysterols. Due to the important biological activities of oxysterols, their interaction with several receptors and their very likely implications in several diseases, this review focuses on these molecules and on oxysterol derivatives, which are often more efficient, in a therapeutic context. Currently, several oxysterol derivatives are developed and are attracting a lot of interest.
Collapse
Affiliation(s)
- Mohamed Ksila
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
| | - Imen Ghzaiel
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
| | - Khouloud Sassi
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
| | - Amira Zarrouk
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
- Faculty of Medicine, University of Sousse, Laboratory of Biochemistry, Sousse, Tunisia
| | - Valerio Leoni
- Department of Laboratory Medicine, University of Milano-Bicocca, Azienda Socio Sanitaria Territoriale Brianza ASST-Brianza, Desio Hospital, Desio, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Turin, Italy
| | - Leila Rezig
- University of Carthage, National Institute of Applied Sciences and Technology, LR11ES26, LIP-MB 'Laboratory of Protein Engineering and Bioactive Molecules', Tunis, Tunisia
- University of Carthage, High Institute of Food Industries, El Khadra City, Tunis, Tunisia
| | - Vivien Pires
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
| | - Smail Meziane
- Institut Européen des Antioxydants (IEA), Neuves-Maisons, France
| | - Atanas G Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Magdalenka, Poland
| | - Sonia Hammami
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
- University Hospital Fattouma Bourguiba, Monastir, Tunisia
| | - Mohamed Hammami
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
| | - Olfa Masmoudi-Kouki
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
| | - Oumaima Hamdi
- University Hospital Fattouma Bourguiba, Monastir, Tunisia
- Pôle Personnes Agées, CHU de Dijon, Centre de Champmaillot, Dijon Cedex, France
| | - Pierre Jouanny
- Pôle Personnes Agées, CHU de Dijon, Centre de Champmaillot, Dijon Cedex, France
| | - Mohammad Samadi
- Laboratory of Chemistry and Physics Multi-Scale Approach to Complex Environments, Department of Chemistry, University Lorraine, Metz, France
| | - Anne Vejux
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
| | - Taoufik Ghrairi
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
| | - Gérard Lizard
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France.
| |
Collapse
|
5
|
Qiu Y, Xu J, Liao W, Wen Y, Jiang S, Wen J, Zhao C. Suppression of hepatocellular carcinoma by Ulva lactuca ulvan via gut microbiota and metabolite interactions. J Adv Res 2023; 52:103-117. [PMID: 37075862 PMCID: PMC10555771 DOI: 10.1016/j.jare.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/17/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023] Open
Abstract
INTRODUCTION Ulva lactuca polysaccharide (ULP) is green algae extract with numerous biological activities, including anticoagulant, anti-inflammatory, and antiviral effects. However, the inhibitory ability of ULP in the development of hepatocellular carcinoma warrants further studies. OBJECTIVES To elucidate the anti-tumor mechanism of ULP action and evaluate its regulatory effect on gut microbiota and metabolism in H22 hepatocellular carcinoma tumor-bearing mice. METHODS An H22 tumor-bearing mouse model was established by subcutaneously injecting H22 hepatoma cells. The gut microbiota composition in cecal feces was assessed and subjected to untargeted metabolomic sequencing. The antitumor activity of ULP was verified further by western blot, RT-qPCR, and reactive oxygen species (ROS) assays. RESULTS Administration of ULP alleviated tumor growth by modulating the compositions of the gut microbial communities (Tenericutes, Agathobacter, Ruminiclostridium, Parabacteroides, Lactobacillus, and Holdemania) and metabolites (docosahexaenoic acid, uric acid, N-Oleoyl Dopamine, and L-Kynurenine). Mechanistically, ULP promoted ROS production by inhibiting the protein levels of JNK, c-JUN, PI3K, Akt, and Bcl-6, thereby delaying the growth of HepG2 cells. CONCLUSION ULP attenuates tumor growth in H22 tumor-bearing mice by modulating gut microbial composition and metabolism. ULP inhibits tumor growth mainly by promoting ROS generation.
Collapse
Affiliation(s)
- Yinghui Qiu
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingxiang Xu
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Wei Liao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuxi Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004 Ourense, Spain
| | - Shiyue Jiang
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Jiahui Wen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
6
|
Spalenkova A, Ehrlichova M, Wei S, Peter Guengerich F, Soucek P. Effects of 7-ketocholesterol on tamoxifen efficacy in breast carcinoma cell line models in vitro. J Steroid Biochem Mol Biol 2023; 232:106354. [PMID: 37343688 PMCID: PMC10529436 DOI: 10.1016/j.jsbmb.2023.106354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/06/2023] [Accepted: 06/18/2023] [Indexed: 06/23/2023]
Abstract
Oxysterols play significant roles in many physiological and pathological processes including cancer. They modulate some of the cancer hallmarks pathways, influence the efficacy of anti-cancer drugs, and associate with patient survival. In this study, we aimed to analyze the role of 7-ketocholesterol (7-KC) in breast carcinoma cells and its potential modulation of the tamoxifen effect. 7-KC effects were studied in two estrogen receptor (ER)-positive (MCF-7 and T47D) and one ER-negative (BT-20) breast cancer cell lines. First, we tested the viability of cells in the presence of 7-KC. Next, we co-incubated cells with tamoxifen and sublethal concentrations of 7-KC. We also tested changes in caspase 3/7 activity, deregulation of the cell cycle, and changes in expression of selected genes/proteins in the presence of tamoxifen, 7-KC, or their combination. Finally, we analyzed the effect of 7-KC on cellular migration and invasion. We found that the presence of 7-KC slightly decreases the efficacy of tamoxifen in MCF-7 cells, while an increased effect of tamoxifen and higher caspase 3/7 activity was observed in the BT-20 cell line. In the T47D cell line, we did not find any modulation of tamoxifen efficacy by the presence of 7-KC. Expression analysis showed the deregulation in CYP1A1 and CYP1B1 with the opposite trend in MCF-7 and BT-20 cells. Moreover, 7-KC increased cellular migration and invasion potential regardless of the ER status. This study shows that 7-KC can modulate tamoxifen efficacy as well as cellular migration and invasion, making 7-KC a promising candidate for future studies.
Collapse
Affiliation(s)
- Alzbeta Spalenkova
- Department of Toxicogenomics, National Institute of Public Health, Prague 100 42, Czech Republic; Third Faculty of Medicine, Charles University, Prague 100 00, Czech Republic
| | - Marie Ehrlichova
- Department of Toxicogenomics, National Institute of Public Health, Prague 100 42, Czech Republic
| | - Shouzou Wei
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Pavel Soucek
- Department of Toxicogenomics, National Institute of Public Health, Prague 100 42, Czech Republic.
| |
Collapse
|
7
|
Noon A, Galban S. Therapeutic avenues for targeting treatment challenges of diffuse midline gliomas. Neoplasia 2023; 40:100899. [PMID: 37030112 PMCID: PMC10119952 DOI: 10.1016/j.neo.2023.100899] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Diffuse midline glioma (DMG) is the leading cause of brain tumor-related deaths in children. DMG typically presents with variable neurologic symptoms between ages 3 and 10. Currently, radiation remains the standard therapy for DMG to halt progression and reduce tumor bulk to minimize symptoms. However, tumors recur in almost 100% of patients and thus, DMG is still considered an incurable cancer with a median survival of 9-12 months. Surgery is generally contraindicated due to the delicate organization of the brainstem, where DMG is located. Despite extensive research efforts, no chemotherapeutic agents, immune therapies, or molecularly targeted therapies have been approved to provide survival benefit. Furthermore, the efficacy of therapies is limited by poor blood-brain barrier penetration and inherent resistance mechanisms of the tumor. However, novel drug delivery approaches, along with recent advances in molecularly targeted therapies and immunotherapies, have advanced to clinical trials and may provide viable future treatment options for DMG patients. This review seeks to evaluate current therapeutics at the preclinical stage and those that have advanced to clinical trials and to discuss the challenges of drug delivery and inherent resistance to these therapies.
Collapse
Affiliation(s)
- Aleeha Noon
- College of Medicine, California Northstate University, 9700 W Taron Drive, Elk Grove, CA 95757, USA
| | - Stefanie Galban
- Center for Molecular Imaging, The University of Michigan Medical School, BSRB A502, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA; Department of Radiology, The University of Michigan Medical School, BSRB A502, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA; Rogel Cancer Center, The University of Michigan Medical School, 1500 E Medical Center Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
8
|
Duraisamy P, Ravi S, Krishnan M, Livya CM, Manikandan B, Raman T, Munusamy A, Ramar M. Scoparia dulcis and Indigofera tinctoria as potential herbal remedies against 7-ketocholesterol-induced pro-inflammatory mediators of macrophage polarization. J Herb Med 2023. [DOI: 10.1016/j.hermed.2023.100652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
9
|
Iciek M, Bilska-Wilkosz A, Kozdrowicki M, Górny M. Reactive Sulfur Compounds in the Fight against COVID-19. Antioxidants (Basel) 2022; 11:antiox11061053. [PMID: 35739949 PMCID: PMC9220020 DOI: 10.3390/antiox11061053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The SARS-CoV-2 coronavirus pandemic outbreak in 2019 resulted in the need to search for an effective and safe strategy for treating infected patients, relieving symptoms, and preventing severe disease. SARS-CoV-2 is an RNA virus that can cause acute respiratory failure and thrombosis, as well as impair circulatory system function. Permanent damage to the heart muscle or other cardiovascular disorders may occur during or after the infection. The severe course of the disease is associated with the release of large amounts of pro-inflammatory cytokines. Due to their documented anti-inflammatory, antioxidant, and antiviral effects, reactive sulfur compounds, including hydrogen sulfide (H2S), lipoic acid (LA), N-acetylcysteine (NAC), glutathione (GSH), and some other lesser-known sulfur compounds, have attracted the interest of scientists for the treatment and prevention of the adverse effects of diseases caused by SARS-CoV-2. This article reviews current knowledge about various endogenous or exogenous reactive sulfur compounds and discusses the possibility, or in some cases the results, of their use in the treatment or prophylaxis of COVID-19.
Collapse
|
10
|
Kanmalar M, Abdul Sani SF, Kamri NINB, Said NABM, Jamil AHBA, Kuppusamy S, Mun KS, Bradley DA. Raman spectroscopy biochemical characterisation of bladder cancer cisplatin resistance regulated by FDFT1: a review. Cell Mol Biol Lett 2022; 27:9. [PMID: 35093030 PMCID: PMC8903573 DOI: 10.1186/s11658-022-00307-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/05/2022] [Indexed: 12/17/2022] Open
Abstract
Bladder cancer is the fourth most common malignancy in males. It can present across the whole continuum of severity, from mild through well-differentiated disease to extremely malignant tumours with poor survival rates. As with other vital organ malignancies, proper clinical management involves accurate diagnosis and staging. Chemotherapy consisting of a cisplatin-based regimen is the mainstay in the management of muscle-invasive bladder cancers. Control via cisplatin-based chemotherapy is threatened by the development of chemoresistance. Intracellular cholesterol biosynthesis in bladder cancer cells is considered a contributory factor in determining the chemotherapy response. Farnesyl-diphosphate farnesyltransferase 1 (FDFT1), one of the main regulatory components in cholesterol biosynthesis, may play a role in determining sensitivity towards chemotherapy compounds in bladder cancer. FDFT1-associated molecular identification might serve as an alternative or appendage strategy for early prediction of potentially chemoresistant muscle-invasive bladder cancer tissues. This can be accomplished using Raman spectroscopy. Developments in the instrumentation have led to it becoming one of the most convenient forms of analysis, and there is a highly realistic chance that it will become an effective tool in the pathology lab. Chemosensitive bladder cancer tissues tend to have a higher lipid content, more protein genes and more cholesterol metabolites. These are believed to be associated with resistance towards bladder cancer chemotherapy. Herein, Raman peak assignments have been tabulated as an aid to indicating metabolic changes in bladder cancer tissues that are potentially correlated with FDFT1 expression.
Collapse
Affiliation(s)
- M Kanmalar
- Department of Physics, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Siti Fairus Abdul Sani
- Department of Physics, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | | | - Nur Akmarina B M Said
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Amirah Hajirah B A Jamil
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - S Kuppusamy
- Department of Surgery, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - K S Mun
- Department of Pathology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - D A Bradley
- Centre for Applied Physics and Radiation Technologies, Sunway University, Jalan University, 46150, Petaling Jaya, Malaysia
- Department of Physics, University of Surrey, Guildford, GU2 7XH, UK
| |
Collapse
|
11
|
Jiang L, Zhang Y, Guo L, Liu C, Wang P, Ren W. Exosomal microRNA-107 reverses chemotherapeutic drug resistance of gastric cancer cells through HMGA2/mTOR/P-gp pathway. BMC Cancer 2021; 21:1290. [PMID: 34856955 PMCID: PMC8638432 DOI: 10.1186/s12885-021-09020-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/15/2021] [Indexed: 01/17/2023] Open
Abstract
Background RNA cargo in exosomes, especially microRNAs (miRNAs), play an important role in the chemotherapy drug resistance of human cancers. However, the role and mechanism of exosomal miR-107 on multidrug resistance of gastric cancer cells was still not clear. In this study, we sought to explore whether exosomal miR-107 could reverse the resistance of gastric cancer cells to the chemotherapy drugs. Methods We extracted exosomes from sensitive (SGC-7901, MGC-803) and resistant (SGC-7901/5-FU) gastric cancer cells by ultracentrifugation and the isolated exosomes were identified using transmission electron microscopy (TEM) and dynamic light scattering analysis (DLS). The expression of miR-107 and high mobility group A2 (HMGA2) were detected by real-time quantitative PCR (RT-qPCR). MTT assay was used to investigate the effect of exosomes on gastric cancer cells growth in vitro. The uptake of exosomes by recipient cells were observed using a fluorescence microscope. The predicted target relationship between miR-107 and HMGA2 was verified by gauss-luciferase reporter assay. The expression of HMGA2, p-mTOR/mTOR, P-gp and other exosomal indicated marker proteins was detected by western blot. Results Our results indicated that the isolated exosomes were typically cup-like lipid bilayer membranes structure. SGC-7901/5-FU cells were cross-resistant to chemotherapy drug cisplatin (CDDP), and the sensitive cells-secreted exosomes drastically reversed the resistance of the resistant GC cells to the chemotherapeutic drugs, which was verified by exosomal inhibitor GW4896. Mechanistically, the reversal effect was mainly mediated by exosome-secreted miR-107 through downregulating the expression of target molecular HMGA2 and inhibiting HMGA2/mTOR/P-gp pathway, which were supported by results from luciferase reporter assay and rescue assay. Conclusions These findings demonstrated that exosome-transmitted miR-107 significantly enhanced the sensitivity of resistant gastric cancer cells to chemotherapeutic agents by mediating the HMGA2/mTOR/P-gp axis and exosomal miR-107 may be a novel target in gastric cancers treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-09020-y.
Collapse
Affiliation(s)
- Lu Jiang
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou, 450046, China
| | - Yan Zhang
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou, 450046, China
| | - Linghui Guo
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou, 450046, China
| | - Chaoyang Liu
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou, 450046, China
| | - Pan Wang
- School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), 2001 Longxiang Ave, Shenzhen, 518172, China
| | - Weihong Ren
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Chinese Medicine, 19 Renmin Road, Zhengzhou, 450000, China.
| |
Collapse
|
12
|
Whyte-Allman SK, Kaul R, Bendayan R. Regulation of ABC Drug Efflux Transporters in Human T-Cells Exposed to an HIV Pseudotype. Front Pharmacol 2021; 12:711999. [PMID: 34421607 PMCID: PMC8371480 DOI: 10.3389/fphar.2021.711999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022] Open
Abstract
ATP-binding cassette (ABC) drug efflux transporters could contribute to low intracellular concentrations of antiretroviral drugs in HIV-1 cell reservoirs and sanctuary sites. Furthermore, the functional expression of these transporters could be induced in activated T-cells. Therefore, we investigated the expression of ABC drug efflux transporters in human T-cells exposed to an HIV pseudotype virus (pHIVNL4-3), and further examined the potential involvement of the mammalian target of rapamycin (mTOR) signaling pathway in regulating their expression following exposure to pHIVNL4-3. Additionally, we investigated the contribution of the drug efflux transporters to the inflammatory response following pHIVNL4-3-induced T-cell activation. Human peripheral blood mononuclear cells (PBMCs) were exposed to HIV-1 envelope glycoprotein gp120IIIB, pHIVNL4-3 and/or mTOR inhibitors. The expression of ABC transporters, T-cell activation marker CD69, mTOR and pHIVNL4-3 was assessed in CD4+ T-cells by Flow cytometry. mRNA and protein levels of proinflammatory cytokines (IL6, TNFα and INFγ) were examined in PBMCs by qPCR and ELISA analyses, respectively, following exposure to pHIVNL4-3 with or without inhibitors of mTOR or ABC transporters. The expression of ABC transporters (P-glycoprotein, breast cancer resistance protein and multi-drug resistance associated protein-1) was significantly increased in CD4+ T-cells exposed to pHIVNL4-3. Treatment with mTOR inhibitors attenuated pHIVNL4-3-induced transporter expression, as well as mRNA and protein levels of IL6, TNFα and INFγ. Additionally, inhibition of P-gp or MRP1 activity resulted in lower concentrations of proinflammatory cytokines in supernatants of PBMC exposed to pHIVNL4-3. Herein we present novel data demonstrating that upregulation of ABC drug efflux transporters could involve the mTOR signaling pathway in CD4+ T-cells exposed to an HIV pseudotype. These transporters could limit antiretroviral drug penetration in HIV target T-cells. Furthermore, ABC transporters could potentially contribute to HIV-associated proinflammatory cytokine secretion.
Collapse
Affiliation(s)
- Sana-Kay Whyte-Allman
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Rupert Kaul
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Mayengbam SS, Singh A, Pillai AD, Bhat MK. Influence of cholesterol on cancer progression and therapy. Transl Oncol 2021; 14:101043. [PMID: 33751965 PMCID: PMC8010885 DOI: 10.1016/j.tranon.2021.101043] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/24/2021] [Accepted: 02/11/2021] [Indexed: 12/24/2022] Open
Abstract
Abnormality in blood cholesterol level is significantly correlated with risk of different cancers. Majority of tumor tissue from cancer patient exhibits overexpression of LDLR and ACAT for supporting rapid cancer cell proliferation. Alteration of the cholesterol metabolism in cancer cells hampers therapeutic response. Targeting cholesterol metabolism for treatment of cancer with other conventional chemotherapeutic drugs appears to be beneficial.
Cholesterol is a fundamental molecule necessary for the maintenance of cell structure and is vital to various normal biological functions. It is a key factor in lifestyle-related diseases including obesity, diabetes, cardiovascular disease, and cancer. Owing to its altered serum chemistry status under pathological states, it is now being investigated to unravel the mechanism by which it triggers various health complications. Numerous clinical studies in cancer patients indicate an alteration in blood cholesterol level (either decreased or increased) in comparison to normal healthy individuals. This article elaborates on our understanding as to how cholesterol is being hijacked in the malignancy for the development, survival, stemness, progression, and metastasis of cancerous cells. Also, it provides a glimpse of how cholesterol derived entities, alters the signaling pathway towards their advantage. Moreover, deregulation of the cholesterol metabolism pathway has been often reported to hamper various treatment strategies in different cancer. In this context, attempts have been made to bring forth its relevance in being targeted, in pre-clinical and clinical studies for various treatment modalities. Thus, understanding the role of cholesterol and deciphering associated molecular mechanisms in cancer progression and therapy are of relevance towards improvement in the management of various cancers.
Collapse
Affiliation(s)
| | - Abhijeet Singh
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Ajay D Pillai
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Manoj Kumar Bhat
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India.
| |
Collapse
|
14
|
Kloudova-Spalenkova A, Holy P, Soucek P. Oxysterols in cancer management: From therapy to biomarkers. Br J Pharmacol 2020; 178:3235-3247. [PMID: 32986851 DOI: 10.1111/bph.15273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 12/20/2022] Open
Abstract
Oxysterols are oxidized derivatives of cholesterol, both endogenous and exogenous. They have been implicated in numerous pathologies, including cancer. In addition to their roles in carcinogenesis, proliferation, migration, apoptosis, and multiple signalling pathways, they have been shown to modulate cancer therapy. They are known to affect therapy of hormonally positive breast cancer through modulating oestrogen receptor activity. Oxysterols have also been shown in various in vitro models to influence efficacy of chemotherapeutics, such as doxorubicin, vincristine, cisplatin, 5-fluorouracil, and others. Their effects on the immune system should also be considered in immunotherapy. Selective anti-cancer cytotoxic properties of some oxysterols make them candidates for new therapeutic molecules. Finally, differences in oxysterol levels in blood of cancer patients in different stages or versus healthy controls, and in tumour versus non-tumour tissues, show potential of oxysterols as biomarkers for cancer management and patient stratification for optimization of therapy. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Alzbeta Kloudova-Spalenkova
- Department of Toxicogenomics, National Institute of Public Health, Prague, Czech Republic.,Third Faculty of Medicine, Charles University, Prague, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Petr Holy
- Department of Toxicogenomics, National Institute of Public Health, Prague, Czech Republic.,Third Faculty of Medicine, Charles University, Prague, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Pavel Soucek
- Department of Toxicogenomics, National Institute of Public Health, Prague, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
15
|
Deng R, Fan FY, Yi H, Liu F, He GC, Sun HP, Su Y. MEG3 affects the progression and chemoresistance of T-cell lymphoblastic lymphoma by suppressing epithelial-mesenchymal transition via the PI3K/mTOR pathway. J Cell Biochem 2019; 120:8144-8153. [PMID: 30556337 DOI: 10.1002/jcb.28093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/29/2018] [Indexed: 01/24/2023]
Abstract
Long noncoding RNAs (lncRNA) are emerging as integral functional and regulatory components in the development of different diseases including cancer. Maternally expressed gene 3 (MEG3), is a lncRNA, that has a depressed expression in multiple tumor types, including T-cell lymphoblastic lymphoma (T-LBL). However, the molecular mechanisms that regulate the tumorigenic functions of MEG3 in T-LBL remain largely unknown. In this study, we aimed to discover and identify the function of MEG3 in T-LBL tumorigenesis, epithelial-mesenchymal transition (EMT) and drug resistance, and explore their mechanisms of action. Knockdown MEG3 promoted the proliferation, migration, invasion, and drug resistance of T-LBL cells while overexpression of MEG3 gets the opposite results. The mechanism study showed that decreased MEG3 expression in T-LBL cells could activate PI3K/mTOR signaling pathways, increase the expression of p-glycoprotein and affect the expression of EMT markers for transforming to mesenchymal cells in vitro and in vivo. Together, these results indicate that MEG3 could inhibit the migration, invasion, and drug resistance in T-LBL cells by suppression of the PI3K/mTOR pathway. MEG3 might be a potential target, through which poor prognosis with high recurrence and drug resistance of T-LBL in a clinical setting could be reversed.
Collapse
Affiliation(s)
- Rui Deng
- Department of Hematology, Hematopoietic Stem Cell Transplantation/Cell Immunotherapy Center, Cheng Du Military General Hospital of PLA, Cheng Du, China
| | - Fang-Yi Fan
- Department of Hematology, Hematopoietic Stem Cell Transplantation/Cell Immunotherapy Center, Cheng Du Military General Hospital of PLA, Cheng Du, China
| | - Hai Yi
- Department of Hematology, Hematopoietic Stem Cell Transplantation/Cell Immunotherapy Center, Cheng Du Military General Hospital of PLA, Cheng Du, China
| | - Fang Liu
- Department of Hematology, Hematopoietic Stem Cell Transplantation/Cell Immunotherapy Center, Cheng Du Military General Hospital of PLA, Cheng Du, China
| | - Guang-Cui He
- Department of Hematology, Hematopoietic Stem Cell Transplantation/Cell Immunotherapy Center, Cheng Du Military General Hospital of PLA, Cheng Du, China
| | - Hao-Ping Sun
- Department of Hematology, Hematopoietic Stem Cell Transplantation/Cell Immunotherapy Center, Cheng Du Military General Hospital of PLA, Cheng Du, China
| | - Yi Su
- Department of Hematology, Hematopoietic Stem Cell Transplantation/Cell Immunotherapy Center, Cheng Du Military General Hospital of PLA, Cheng Du, China
| |
Collapse
|
16
|
Wali H, Rehman FU, Umar A, Ahmed S. Cholesterol Degradation and Production of Extracellular Cholesterol Oxidase from Bacillus pumilus W1 and Serratia marcescens W8. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1359528. [PMID: 31183360 PMCID: PMC6512041 DOI: 10.1155/2019/1359528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/13/2022]
Abstract
Cholesterol is a waxy substance present in all types of the body cells. The presence of higher concentration of low density lipoprotein (LDL) is characterized by abnormal cholesterol level and is associated with cardiovascular diseases which lead to the development of atheroma in arteries known as atherosclerosis. The transformation of cholesterol by bacterial cholesterol oxidase can provide a key solution for the treatment of diseases related to cholesterol and its oxidized derivatives. Previously isolated bacteria from oil-contaminated soil were screened for cholesterol degradation. Among fourteen, five isolates were able to utilize cholesterol. Two strains Serratia marcescens W1 and Bacillus pumilus W8 using cholesterol as only carbon and energy source were selected for degradation studies. Several parameters (incubation time, substrate concentration, pH, temperature, and different metal ions) for cholesterol decomposition by the selected bacterial strains were evaluated. Maximum cholesterol reduction was achieved on the 5th day of incubation, 1g/L of substrate concentration, pH 7, in the presence of Mg2+ and Ca2+ ions, and at 35°C. Cholesterol degradation was analyzed by enzymatic colorimetric method, thin layer chromatography (TLC), and high-performance liquid chromatography (HPLC). Under optimized conditions 50% and 84% cholesterol reduction were recorded with Serratia marcescens W1 and Bacillus pumilus W8, respectively. Cholesterol oxidase activity was assayed qualitatively and quantitatively. The results revealed that Serratia marcescens W1 and Bacillus pumilus W8 have great potential for cholesterol degradation and would be regarded as a source for cholesterol oxidase (CHO).
Collapse
Affiliation(s)
- Hasina Wali
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Department of Microbiology, University of Balochistan, Quetta 87300, Pakistan
| | - Fazal Ur Rehman
- Department of Microbiology, University of Balochistan, Quetta 87300, Pakistan
| | - Aiman Umar
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Safia Ahmed
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
17
|
The Oxysterol 7-Ketocholesterol Reduces Zika Virus Titers in Vero Cells and Human Neurons. Viruses 2018; 11:v11010020. [PMID: 30598036 PMCID: PMC6356585 DOI: 10.3390/v11010020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/22/2018] [Accepted: 12/29/2018] [Indexed: 01/19/2023] Open
Abstract
Zika virus (ZIKV) is an emerging flavivirus responsible for a major epidemic in the Americas beginning in 2015. ZIKV associated with maternal infection can lead to neurological disorders in newborns, including microcephaly. Although there is an abundance of research examining the neurotropism of ZIKV, we still do not completely understand the mechanism by which ZIKV targets neural cells or how to limit neural cell infection. Recent research suggests that flaviviruses, including ZIKV, may hijack the cellular autophagy pathway to benefit their replication. Therefore, we hypothesized that ZIKV replication would be impacted when infected cells were treated with compounds that target the autophagy pathway. We screened a library of 94 compounds known to affect autophagy in both mammalian and insect cell lines. A subset of compounds that inhibited ZIKV replication without affecting cellular viability were tested for their ability to limit ZIKV replication in human neurons. From this second screen, we identified one compound, 7-ketocholesterol (7-KC), which inhibited ZIKV replication in neurons without significantly affecting neuron viability. Interestingly, 7-KC induces autophagy, which would be hypothesized to increase ZIKV replication, yet it decreased virus production. Time-of-addition experiments suggest 7-KC inhibits ZIKV replication late in the replication cycle. While 7-KC did not inhibit RNA replication, it decreased the number of particles in the supernatant and the relative infectivity of the released particles, suggesting it interferes with particle budding, release from the host cell, and particle integrity.
Collapse
|
18
|
Koubek EJ, Weissenrieder JS, Neighbors JD, Hohl RJ. Schweinfurthins: Lipid Modulators with Promising Anticancer Activity. Lipids 2018; 53:767-784. [DOI: 10.1002/lipd.12088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Emily J. Koubek
- Departments of Medicine and Pharmacology, The Pennsylvania State Cancer Institute; The Pennsylvania State College of Medicine, 500 University Drive Hershey; Hershey PA 17033 USA
| | - Jillian S. Weissenrieder
- Departments of Medicine and Pharmacology; The Pennsylvania State College of Medicine, 500 University Drive Hershey; Hershey PA 17033 USA
| | - Jeffrey D. Neighbors
- Departments of Pharmacology and Medicine; The Pennsylvania State College of Medicine, 500 University Drive Hershey; Hershey PA 17033 USA
| | - Raymond J. Hohl
- Departments of Medicine and Pharmacology, The Pennsylvania State Cancer Institute; The Pennsylvania State College of Medicine, 500 University Drive Hershey; Hershey PA 17033 USA
| |
Collapse
|
19
|
Holy P, Kloudova A, Soucek P. Importance of genetic background of oxysterol signaling in cancer. Biochimie 2018; 153:109-138. [DOI: 10.1016/j.biochi.2018.04.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/27/2018] [Indexed: 12/14/2022]
|
20
|
Chang MC, Chen YJ, Liou EJW, Tseng WY, Chan CP, Lin HJ, Liao WC, Chang YC, Jeng PY, Jeng JH. 7-Ketocholesterol induces ATM/ATR, Chk1/Chk2, PI3K/Akt signalings, cytotoxicity and IL-8 production in endothelial cells. Oncotarget 2018; 7:74473-74483. [PMID: 27740938 PMCID: PMC5342680 DOI: 10.18632/oncotarget.12578] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/06/2016] [Indexed: 01/01/2023] Open
Abstract
Cardiovascular diseases (atherosclerosis, stroke, myocardiac infarction etc.) are the major systemic diseases of elder peoples in the world. This is possibly due to increased levels of oxidized low-density lipoproteins (oxLDLs) such as 7-ketocholesterol (7-KC) and lysophosphatidylcholine (LPC) that damage vascular endothelial cells, induce inflammatory responses, to elevate the risk of cardiovascular diseases, Alzheimer's disease, and age-related macular degeneration. However the toxic effects of 7-KC on endothelial cells are not known. In this study, 7-KC showed cytotoxicity to endothelial cells at concentrations higher than 10 µg/ml. 7-KC stimulated ATM/Chk2, ATR-Chk1 and p53 signaling pathways in endothelial cells. 7-KC also induced G0/G1 cell cycle arrest and apoptosis with an inhibition of Cyclin dependent kinase 1 (Cdk1) and cyclin B1 expression. Secretion and expression of IL-8 in endothelial cells were stimulated by 7-KC. 7-KC further induced intracellular ROS production as shown by increase in DCF fluorescence and Akt phosphorylation. LY294002 attenuated the 7-KC-induced apoptosis and IL-8 mRNA expression of endothelial cells. These results indicate that oxLDLs such as 7-KC may contribute to the pathogenesis of atherosclerosis, thrombosis and cardiovascular diseases by induction of endothelial damage, apoptosis and inflammatory responses. These events are associated with ROS production, activation of ATM/Chk2, ATR/Chk1, p53 and PI3K/Akt signaling pathways.
Collapse
Affiliation(s)
- Mei-Chi Chang
- Biomedical Science Team, Chang Gung University of Science and Technology, Kwei-Shan, Taoyuan, Taiwan.,Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Yi-Jane Chen
- School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | | | - Wan-Yu Tseng
- School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Chiu-Po Chan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Hseuh-Jen Lin
- Department of Dentistry, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Wan-Chuen Liao
- School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Ya-Ching Chang
- Department of Dentistry, Mackey Memorial Hospital, Taipei, Taiwan
| | - Po-Yuan Jeng
- School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Jiiang-Huei Jeng
- School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
21
|
Yang CJ, Chang WW, Lin ST, Chen MC, Lee CH. Salmonella Overcomes Drug Resistance in Tumor through P-glycoprotein Downregulation. Int J Med Sci 2018; 15:574-579. [PMID: 29725247 PMCID: PMC5930458 DOI: 10.7150/ijms.23285] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/14/2018] [Indexed: 01/09/2023] Open
Abstract
Chemotherapy is one of effective methods for the treatment of tumor. Patients often develop drug resistance after chemotherapic cycles. Salmonella has potential as antitumor agent. Salmonella used in tandem with chemotherapy had additive effects, providing a rationale for using tumor-targeting Salmonella in combination with conventional chemotherapy. To improve the efficacy and safety of Salmonella, a further understanding of Salmonella interactions with the tumor microenvironment is required. The presence of plasma membrane multidrug resistance protein P-glycoprotein (P-gp) is highly relevant for the success of chemotherapy. Following Salmonella infection, dose-dependent downregulation of P-gp expressions were examined. Salmonella significantly decreased the efflux capabilities of P-gp, as based on the influx of Rhodamine 123 assay. In addition, Salmonella significant reduced the protein express the expression levels of phosph-protein kinase B (P-AKT), phosph-mammalian targets of rapamycin (P-mTOR), and phosph-p70 ribosomal s6 kinase (P-p70s6K) in tumor cells. The Salmonella-induced downregulation of P-gp was rescued by transfection of cells with active P-AKT. Our results demonstrate that Salmonella in tumor sites leads to decrease the expression of P-gp and enhances the combination of Salmonella and 5-Fluorouracil therapeutic effects.
Collapse
Affiliation(s)
- Chih-Jen Yang
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Taiwan
| | - Wen-Wei Chang
- Department of Biomedical Sciences, College of Medical Science and Technology, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Song-Tao Lin
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Man-Chin Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Che-Hsin Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
22
|
Wang CW, Huang CC, Chou PH, Chang YP, Wei S, Guengerich FP, Chou YC, Wang SF, Lai PS, Souček P, Ueng YF. 7-ketocholesterol and 27-hydroxycholesterol decreased doxorubicin sensitivity in breast cancer cells: estrogenic activity and mTOR pathway. Oncotarget 2017; 8:66033-66050. [PMID: 29029490 PMCID: PMC5630390 DOI: 10.18632/oncotarget.19789] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/27/2017] [Indexed: 11/30/2022] Open
Abstract
Hypercholesterolemia is one of the risk factors for poor outcome in breast cancer therapy. To elucidate the influence of the main circulating oxysterols, cholesterol oxidation products, on the cell-killing effect of doxorubicin, cells were exposed to oxysterols at a subtoxic concentration. When cells were exposed to oxysterols in fetal bovine serum-supplemented medium, 7-ketocholesterol (7-KC), but not 27-hydroxycholesterol (27-HC), decreased the cytotoxicity of doxorubicin in MCF-7 (high estrogen receptor (ER)α/ERβ ratio) cells and the decreased cytotoxicity was restored by the P-glycoprotein inhibitor verapamil. 7-KC stimulated the efflux function of P-glycoprotein and reduced intracellular doxorubicin accumulation in MCF-7 but not in ERα(-) MDA-MB-231 and the resistant MCF-7/ADR cells. In MCF-7 cells, 7-KC increased the mRNA and protein levels of P-glycoprotein. The 7-KC-suppressed doxorubicin accumulation was restored by the fluvestrant and ERα knockdown. In a yeast reporter assay, the ERα activation by 7-KC was more potent than 27-HC. 7-KC, but not 27-HC, stimulated the expression of an ER target, Trefoil factor 1 in MCF-7 cells. When charcoal-stripped fetal bovine serum was used, both 7-KC and 27-HC induced Trefoil factor 1 expression and reduced doxorubicin accumulation in MCF-7 cells. 7-KC-reduced doxorubicin accumulation could be reversed by inhibitors of phosphatidylinositol 3-kinase, Akt, and mammalian target of rapamycin (mTOR). These findings demonstrate that 7-KC decreases the cytotoxicity of doxorubicin through the up-regulation of P-glycoprotein in an ERα- and mTOR-dependent pathway. The 7-KC- and 27-HC-elicited estrogenic effects are crucial in the P-glycoprotein induction in breast cancer cells.
Collapse
Affiliation(s)
- Chun-Wei Wang
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan, R.O.C.,Institute of Biopharmaceutical Sciences, School of Pharmacy, National Yang-Ming University, Taipei, Taiwan, R.O.C
| | - Chiung-Chiao Huang
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan, R.O.C
| | - Pei-Hsin Chou
- Department of Environmental Engineering, National Chung-Kung University, Tainan, Taiwan, R.O.C
| | - Yu-Ping Chang
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan, R.O.C
| | - Shouzuo Wei
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Yueh-Ching Chou
- Department of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, R.O.C.,Department of Pharmacy, Taipei Veterans General Hospital, Taipei, Taiwan, R.O.C.,Department of Pharmacy, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Sheng-Fan Wang
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan, R.O.C.,Department of Pharmacy, Taipei Veterans General Hospital, Taipei, Taiwan, R.O.C
| | - Ping-Shan Lai
- Department of Chemistry, College of Science, National Chung-Hsin University, Taichung, Taiwan, R.O.C
| | - Pavel Souček
- Department of Toxicogenomics, National Institute of Public Health, Prague, Czech Republic
| | - Yune-Fang Ueng
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan, R.O.C.,Institute of Biopharmaceutical Sciences, School of Pharmacy, National Yang-Ming University, Taipei, Taiwan, R.O.C.,Department of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, R.O.C.,Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan, R.O.C
| |
Collapse
|
23
|
Ge C, Cao B, Feng D, Zhou F, Zhang J, Yang N, Feng S, Wang G, Aa J. The down-regulation of SLC7A11 enhances ROS induced P-gp over-expression and drug resistance in MCF-7 breast cancer cells. Sci Rep 2017; 7:3791. [PMID: 28630426 PMCID: PMC5476638 DOI: 10.1038/s41598-017-03881-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/08/2017] [Indexed: 12/20/2022] Open
Abstract
Adriamycin (ADR) induces the over-expression of P-glycoprotein (P-gp) and multiple drug resistance in breast cancer cells. However, the biochemical process and underlying mechanisms are not clear. Our previous study revealed that ADR increased reactive oxygen species (ROS) generation and decreased glutathione (GSH) biosynthesis, while N-acetylcysteine, the ROS scavenger, reversed the over-expression of P-gp. The present study showed that ADR inhibited the influx of cystine (the source material of GSH) and the activity of the SLC7A11 transporter (in charge of cystine uptake) in MCF-7 cells. For the first time, we showed that the down-regulation/silence of SLC7A11, or cystine deprivation, or enhanced ROS exposure significantly increased P-gp expression in MCF-7 cells. The down-regulation of SLC7A11 markedly enhanced ROS induced P-gp over-expression and drug resistance in MCF-7 cells; a combination of either an inhibited/silenced SLC7A11 or cystine deprivation and increased ROS dramatically promoted P-gp expression, which could be reversed by N-acetylcysteine. In contrast, the over-expression of SLC7A11, or supplementation with sufficiently cystine, or treatment with N-acetylcysteine significantly decreased P-gp expression and activity. It was suggested that ROS and SLC7A11/cystine were the two relevant factors responsible for the expression and function of P-gp, and that SLC7A11 might be a potential target modulating ADR resistance.
Collapse
Affiliation(s)
- Chun Ge
- Laboratory of Metabolomics, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China
| | - Bei Cao
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210009, China
| | - Dong Feng
- Laboratory of Metabolomics, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China
| | - Fang Zhou
- Laboratory of Metabolomics, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China
| | - Jingwei Zhang
- Laboratory of Metabolomics, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China
| | - Na Yang
- Laboratory of Metabolomics, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China
| | - Siqi Feng
- Laboratory of Metabolomics, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China
| | - Guangji Wang
- Laboratory of Metabolomics, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China.
| | - Jiye Aa
- Laboratory of Metabolomics, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
24
|
Sato Y, Ishihara N, Nagayama D, Saiki A, Tatsuno I. 7-ketocholesterol induces apoptosis of MC3T3-E1 cells associated with reactive oxygen species generation, endoplasmic reticulum stress and caspase-3/7 dependent pathway. Mol Genet Metab Rep 2017; 10:56-60. [PMID: 28116245 PMCID: PMC5233792 DOI: 10.1016/j.ymgmr.2017.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is associated with an increased risk of bone fractures without reduction of bone mineral density. The cholesterol oxide 7-ketocholesterol (7KCHO) has been implicated in numerous diseases such as atherosclerosis, Alzheimer's disease, Parkinson's disease, cancer, age-related macular degeneration and T2DM. In the present study, 7KCHO decreased the viability of MC3T3-E1 cells, increased reactive oxygen species (ROS) production and apoptotic rate, and upregulated the caspase-3/7 pathway. Furthermore, these effects of 7KCHO were abolished by pre-incubation of the cells with N-acetylcysteine (NAC), an ROS inhibitor. Also, 7KCHO enhanced the mRNA expression of two endoplasmic reticulum (ER) stress markers; CHOP and GRP78, in MC3T3-E1 cells. Pre-incubation of the cells with NAC suppressed the 7KCHO-induced upregulation of CHOP, but not GRP78. In conclusion, we demonstrated that 7KCHO induced apoptosis of MC3T3-E1 cells associated with ROS generation, ER stress, and caspase-3/7 activity, and the effects of 7KCHO were abolished by the ROS inhibitor NAC. These findings may provide new insight into the relationship between oxysterol and pathophysiology of osteoporosis seen in T2DM. We examined the effects of 7-ketocholesterol (7KCHO) on MC3T3-E1 cells. 7KCHO increased reactive oxygen species (ROS) and apoptosis. 7KCHO enhanced CHOP and GRP78 expression. N-acetylcysteine suppressed 7KCHO-induced ROS, apoptosis and CHOP expression.
Collapse
Affiliation(s)
- Yuta Sato
- Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center, 564-1, Shimoshizu, Sakura City, Chiba 285-8741, Japan
| | - Noriko Ishihara
- Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center, 564-1, Shimoshizu, Sakura City, Chiba 285-8741, Japan
| | - Daiji Nagayama
- Center of Endocrinology and Metabolism, Shin-Oyama City Hospital, 1-1-5, Wakagi-cho, Oyama City, Tochigi 323-0028, Japan
| | - Atsuhito Saiki
- Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center, 564-1, Shimoshizu, Sakura City, Chiba 285-8741, Japan
| | - Ichiro Tatsuno
- Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center, 564-1, Shimoshizu, Sakura City, Chiba 285-8741, Japan
| |
Collapse
|
25
|
Drug Transporter Expression and Activity in Human Hepatoma HuH-7 Cells. Pharmaceutics 2016; 9:pharmaceutics9010003. [PMID: 28036031 PMCID: PMC5374369 DOI: 10.3390/pharmaceutics9010003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/17/2016] [Accepted: 12/22/2016] [Indexed: 12/31/2022] Open
Abstract
Human hepatoma cells may represent a valuable alternative to the use of human hepatocytes for studying hepatic drug transporters, which is now a regulatory issue during drug development. In the present work, we have characterized hepatic drug transporter expression, activity and regulation in human hepatoma HuH-7 cells, in order to determine the potential relevance of these cells for drug transport assays. HuH-7 cells displayed notable multidrug resistance-associated protein (MRP) activity, presumed to reflect expression of various hepatic MRPs, including MRP2. By contrast, they failed to display functional activities of the uptake transporters sodium taurocholate co-transporting polypeptide (NTCP), organic anion-transporting polypeptides (OATPs) and organic cation transporter 1 (OCT1), and of the canalicular transporters P-glycoprotein and breast cancer resistance protein (BCRP). Concomitantly, mRNA expressions of various sinusoidal and canalicular hepatic drug transporters were not detected (NTCP, OATP1B1, organic anion transporter 2 (OAT2), OCT1 and bile salt export pump) or were found to be lower (OATP1B3, OATP2B1, multidrug and toxin extrusion protein 1, BCRP and MRP3) in hepatoma HuH-7 cells than those found in human hepatocytes, whereas other transporters such as OAT7, MRP4 and MRP5 were up-regulated. HuH-7 cells additionally exhibited farnesoid X receptor (FXR)- and nuclear factor erythroid 2-related factor 2 (Nrf2)-related up-regulation of some transporters. Such data indicate that HuH-7 cells, although expressing rather poorly some main hepatic drug transporters, may be useful for investigating interactions of drugs with MRPs, notably MRP2, and for studying FXR- or Nrf2-mediated gene regulation.
Collapse
|
26
|
Song L, Duan P, Gan Y, Li P, Zhao C, Xu J, Zhang Z, Zhou Q. Silencing LPAATβ inhibits tumor growth of cisplatin-resistant human osteosarcoma in vivo and in vitro. Int J Oncol 2016; 50:535-544. [DOI: 10.3892/ijo.2016.3820] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/06/2016] [Indexed: 11/06/2022] Open
|
27
|
Madden JA, Thomas PQ, Keating AF. Phosphoramide mustard induces autophagy markers and mTOR inhibition prevents follicle loss due to phosphoramide mustard exposure. Reprod Toxicol 2016; 67:65-78. [PMID: 27888070 DOI: 10.1016/j.reprotox.2016.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/15/2016] [Accepted: 11/21/2016] [Indexed: 01/07/2023]
Abstract
Phosphoramide mustard (PM) is an ovotoxic metabolite of cyclophosphamide. Postnatal day 4 Fisher 344 rat ovaries were exposed to vehicle control (1% DMSO) or PM (60μM)±LY294002 or rapamycin for 2 or 4 d. Transmission election microscopy revealed abnormally large golgi apparatus and electron dense mitochondria in PM-exposed ovaries prior to and at the time of follicle depletion. PM exposure increased (P<0.05) mRNA abundance of Bbc3, Cdkn1a, Ctfr, Edn1, Gstp1, Nqo1, Tlr4, Tnfrsfla, Txnrd1 and decreased (P<0.05) Casp1 and Il1b after 4d. PM exposure increased (P<0.1) BECN1 and LAMP, decreased (P<0.1) ABCB1 and did not alter ABCC1 protein. LY294002 did not impact PM-induced ovotoxicity, but decreased ABCC1 and ABCB1 protein. Rapamycin prevented PM-induced follicle loss. These data suggest that the mammalian target of rapamycin, mTOR, may be a gatekeeper of PM-induced follicle loss.
Collapse
Affiliation(s)
- Jill A Madden
- Department of Animal Science, Iowa State University, Ames, IA, 50011, United States
| | - Porsha Q Thomas
- Department of Animal Science, Iowa State University, Ames, IA, 50011, United States
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA, 50011, United States.
| |
Collapse
|
28
|
Ye RP, Chen ZD. Saikosaponin A, an active glycoside from Radix bupleuri, reverses P-glycoprotein-mediated multidrug resistance in MCF-7/ADR cells and HepG2/ADM cells. Xenobiotica 2016; 47:176-184. [PMID: 27123551 DOI: 10.3109/00498254.2016.1171932] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. The expression and function of P-glycoprotein (P-gp) is associated with the phenotype of multidrug resistance (MDR). Saikosaponin A (SSA) is a triterpenoid saponin isolated from Radix Bupleuri. This study was mainly designed to understand effects of SSA on MDR in MCF-7/ADR and HepG2/ADM cells. 2. MDR reversal was examined as the alteration of cytotoxic drugs IC50 in resistant cells in the presence of SSA by MTT assay, and was compared with the non-resistant cells. Apoptosis and uptake of P-gp substrates in the tumor cells were detected by flow cytometry. Western blot was performed to assay the expression of P-gp. 3. Our results demonstrate SSA could increase the chemosensitivity of P-gp overexpressing HepG2/ADM and MCF-7/ADR cells to doxorubicin (DOX), vincristine (VCR) and paclitaxel. SSA promoted apoptosis of MCF-7/ADR cells in the presence of DOX. Moreover, it could also increase the retention of P-gp substrates DOX and rhodamine 123 in MCF-7/ADR cells, and decrease digoxin efflux ratio in Caco-2 cell monolayer. Finally, a mechanistic study showed that SSA reduced P-gp expression without affecting hydrolytic activity of P-gp. 4. In conclusion, our findings suggest that SSA could be further developed for sensitizing resistant cancer cells and used as an adjuvant therapy together with anticancer drugs to improve their therapeutic efficacies.
Collapse
Affiliation(s)
- Rui-Ping Ye
- a Department of Medical Oncology , The Second Affiliated Hospital of Anhui Medical University , Hefei , China
| | - Zhen-Dong Chen
- a Department of Medical Oncology , The Second Affiliated Hospital of Anhui Medical University , Hefei , China
| |
Collapse
|
29
|
Chabamide induces cell cycle arrest and apoptosis by the Akt/MAPK pathway and inhibition of P-glycoprotein in K562/ADR cells. Anticancer Drugs 2015; 26:498-507. [PMID: 25714087 DOI: 10.1097/cad.0000000000000209] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
One of the major mechanisms of multidrug resistance in cancer therapy is the overexpression of P-glycoprotein (P-gp). Chabamide, a dimeric alkaloid isolated from Piper chaba Hunter, shows antimalarial, antituberculosis, and cytotoxic activities. However, its mechanism of action has not been elucidated. In this study, the molecular mechanism underlying the cytotoxicity and downregulation of P-gp expression by chabamide in adriamycin-resistant human leukemia cells (K562/ADR) was clarified. Results show that chabamide inhibited the growth of K562/ADR cells in a dose-dependent and time-dependent manner, and significantly inhibited cell proliferation by cell cycle arrest in the G0/G1 phase, which was associated with an obvious increase in p21 and decrease in cyclin D1 and CDK2/4/6 protein expression. Moreover, chabamide could regulate the changes in the mitochondrial membrane potential, increase the expression of apoptosis-related proteins, such as Bax and cytochrome c, and decrease the protein expression levels of Bcl-2, caspase-9, caspase-3, PARP-1, and p-Akt. In addition, we found that JNK, ERK1/2, and p38 were regulated by chabamide in K562/ADR cells. Further studies indicated that the decrease in the reactive oxygen species level inhibited intrinsic P-gp expression. Therefore, chabamide-induced apoptosis in K562/ADR cells was associated with Akt/MAPK and the inhibition of P-gp. These results provide a biochemical basis for possible clinical applications of chabamide in the treatment of leukemia.
Collapse
|
30
|
Liu Y, Flynn TJ, Xia M, Wiesenfeld PL, Ferguson MS. Evaluation of CYP3A4 inhibition and hepatotoxicity using DMSO-treated human hepatoma HuH-7 cells. Cell Biol Toxicol 2015; 31:221-30. [PMID: 26377104 DOI: 10.1007/s10565-015-9306-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/09/2015] [Indexed: 02/07/2023]
Abstract
A human hepatoma cell line (HuH-7) was evaluated as a metabolically competent cell model to investigate cytochrome P450 3A4 (CYP3A4) inhibition, induction, and hepatotoxicity. First, CYP3A4 gene expression and activity were determined in HuH-7 cells under three culture conditions: 1-week culture, 3-week culture, or 1 % dimethyl sulfoxide (DMSO) treatment. HuH-7 cells treated with DMSO for 2 weeks after confluence expressed the highest CYP3A4 gene expression and activity compared to the other two culture conditions. Furthermore, CYP3A4 activity in DMSO-treated HuH-7 cells was compared to that in a human hepatoma cell line (HepG2/C3A) and human bipotent progenitor cell line (HepaRG), which yielded the following ranking: HepaRG > DMSO-treated HuH-7 >> HepG2/C3A cells. The effects of three known CYP3A4 inhibitors were evaluated using DMSO-treated HuH-7 cells. CYP3A4 enzyme inhibition in HuH-7 cells was further compared to human recombinant CYP3A4, indicating similar potency for reversible inhibitors (IC 50 within 2.5-fold), but different potency for the irreversible inhibitor. Next, induction of CYP3A4 activity was compared between DMSO-treated HuH-7 and HepaRG cells using two known inducers. DMSO-treated HuH-7 cells yielded minimal CYP3A4 induction compared to that in the HepaRG cells after 48-h treatments. Finally, the cytotoxicity of five known hepatotoxicants was evaluated in DMSO-treated HuH-7, HepG2/C3A, and HepaRG cells, and significant differences in cytotoxic sensitivity were observed. Overall, DMSO-treated HuH-7 cells are a valuable model for medium- or high-throughput screening of chemicals for CYP3A4 inhibition and hepatotoxicity.
Collapse
Affiliation(s)
- Yitong Liu
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD, USA.
| | - Thomas J Flynn
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD, USA
| | - Menghang Xia
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Paddy L Wiesenfeld
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD, USA
| | - Martine S Ferguson
- Division of Public Health Informatics & Analytics, Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, USA
| |
Collapse
|
31
|
Aldonza MBD, Hong JY, Bae SY, Song J, Kim WK, Oh J, Shin Y, Lee SH, Lee SK. Suppression of MAPK Signaling and Reversal of mTOR-Dependent MDR1-Associated Multidrug Resistance by 21α-Methylmelianodiol in Lung Cancer Cells. PLoS One 2015; 10:e0127841. [PMID: 26098947 PMCID: PMC4476707 DOI: 10.1371/journal.pone.0127841] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 04/21/2015] [Indexed: 12/26/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide and remains the most prevalent. Interplay between PI3K/AMPK/AKT and MAPK pathways is a crucial effector in lung cancer growth and progression. These signals transduction protein kinases serve as good therapeutic targets for non-small cell lung cancer (NSCLC) which comprises up to 90% of lung cancers. Here, we described whether 21α-Methylmelianodiol (21α-MMD), an active triterpenoid derivative of Poncirus trifoliate, can display anticancer properties by regulating these signals and modulate the occurrence of multidrug resistance in NSCLC cells. We found that 21α-MMD inhibited the growth and colony formation of lung cancer cells without affecting the normal lung cell phenotype. 21α-MMD also abrogated the metastatic activity of lung cancer cells through the inhibition of cell migration and invasion, and induced G0/G1 cell cycle arrest with increased intracellular ROS generation and loss of mitochondrial membrane integrity. 21α-MMD regulated the expressions of PI3K/AKT/AMPK and MAPK signaling which drove us to further evaluate its activity on multidrug resistance (MDR) in lung cancer cells by specifying on P-glycoprotein (P-gp)/MDR1-association. Employing the established paclitaxel-resistant A549 cells (A549-PacR), we further found that 21α-MMD induced a MDR reversal activity through the inhibition of P-gp/MDR1 expressions, function, and transcription with regained paclitaxel sensitivity which might dependently correlate to the regulation of PI3K/mTOR signaling pathway. Taken together, these findings demonstrate, for the first time, the mechanistic evaluation in vitro of 21α-MMD displaying growth-inhibiting potential with influence on MDR reversal in human lung cancer cells.
Collapse
Affiliation(s)
| | - Ji-Young Hong
- College of Pharmacy, Seoul National University, Seoul, Korea
| | - Song Yi Bae
- College of Pharmacy, Seoul National University, Seoul, Korea
| | - Jayoung Song
- College of Pharmacy, Seoul National University, Seoul, Korea
| | - Won Kyung Kim
- College of Pharmacy, Seoul National University, Seoul, Korea
| | - Jedo Oh
- College of Pharmacy, Seoul National University, Seoul, Korea
| | - Yoonho Shin
- College of Pharmacy, Seoul National University, Seoul, Korea
| | - Seung Ho Lee
- College of Pharmacy, Yeungnam University, Gyeongbuk, Korea
| | - Sang Kook Lee
- College of Pharmacy, Seoul National University, Seoul, Korea
| |
Collapse
|
32
|
Wei Z, Liang L, Junsong L, Rui C, Shuai C, Guanglin Q, Shicai H, Zexing W, Jin W, Xiangming C, Shufeng W. The impact of insulin on chemotherapeutic sensitivity to 5-fluorouracil in gastric cancer cell lines SGC7901, MKN45 and MKN28. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:64. [PMID: 26084465 PMCID: PMC4494778 DOI: 10.1186/s13046-015-0151-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 03/31/2015] [Indexed: 11/10/2022]
Abstract
Background The role of insulin in the pathogenesis of cancer has been increasingly emphasized because of the high incidence of obesity and metabolic syndrome and their correlated complication including cancer. This study aimed to explore the impact of insulin on chemoresistance to 5-fluorouracil in gastric cancer and the possible mechanisms. Methods Tissue samples of gastric cancer and adjacent normal gastric mucosa from patients with or without obesity were performed immunohistochemical staining for P-glycoprotein. The follow-up was done after the surgical treatment. The effect of insulin on chemotherapeutic sensitivity of the three gastric cancer cell lines to 5-fluorouracil was evaluated by pre-incubation with insulin before administration of 5-fluorouracil. The expression of P-glycoprotein was determined by Western blotting. Results P-glycoprotein were overexpressed in tissues from patients who suffered gastric cancer and were higher in those simultaneously suffered gastric cancer and obesity. Addition of 1 μM insulin remarkably promoted the proliferation of SGC7901, MKN45 and MKN28 cells and decreased the cytotoxicity of 5-fluorouracil. In addition, the expression of P-glycoprotein was upregulated in SGC7901, MKN45 and MKN28 cells. Conclusion Insulin improved the proliferation of gastric cancer cell lines and contributed to chemoresistance of gastric cancer cells to 5-fluorouracil which is likely to involve upregulation of P-glycoprotein.
Collapse
Affiliation(s)
- Zhao Wei
- Department of General Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R.China. .,Health science center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R.China.
| | - Li Liang
- Department of General Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R.China. .,Health science center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R.China.
| | - Liu Junsong
- Department of General Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R.China. .,Health science center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R.China.
| | - Chen Rui
- Department of Neonatal Surgery, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P.R.China.
| | - Chang Shuai
- Department of General Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R.China. .,Health science center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R.China.
| | - Qiu Guanglin
- Department of General Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R.China. .,Health science center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R.China.
| | - He Shicai
- Department of General Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R.China. .,Health science center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R.China.
| | - Wang Zexing
- Department of General Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R.China. .,Health science center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R.China.
| | - Wang Jin
- Department of General Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R.China. .,Health science center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R.China.
| | - Che Xiangming
- Department of General Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R.China. .,Health science center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R.China.
| | - Wang Shufeng
- Department of General Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R.China. .,Health science center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R.China.
| |
Collapse
|
33
|
Sheehy RM, Kuder CH, Bachman Z, Hohl RJ. Calcium and P-glycoprotein independent synergism between schweinfurthins and verapamil. Cancer Biol Ther 2015; 16:1259-68. [PMID: 26046259 DOI: 10.1080/15384047.2015.1056420] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Schweinfurthins are intriguing natural products with anti-cancer activities and as yet incompletely understood mechanisms of action. We investigated whether inhibitors of P-glycoprotein (Pgp), in a manner analogous to other natural products, might enhance schweinfurthins' growth inhibitory actions by increasing intracellular schweinfurthin levels. Both the schweinfurthin-sensitive glioblastoma multiforme cell line SF-295 and relatively insensitive lung carcinoma cell line A549 were treated with 2 schweinfurthin analogs: 3-deoxyschweinfurthin B-p-nitro bis-stilbene (3dSB-PNBS) and 5'-methylschweinfurthin G (methyl-G). There was a synergistic enhancement of growth inhibition with the combination of the Pgp inhibitor verapamil and both analogs in SF-295 cells. Methyl-G, verapamil, and the combination did not result in alterations to intracellular calcium concentration. Verapamil increased the intracellular concentration of 3dSB-PNBS in both SF-295 and A549 cells in a Pgp-independent manner. Methyl-G, verapamil, and the combination do not result in increased ER stress. Methyl-G increased the intracellular concentration of a known Pgp substrate, Rhodamine 123 in SF-295 cells. Reduction of cellular cholesterol leads to the accumulation of Pgp substrates, as Pgp requires cholesterol for proper function. Since 3dSB enhances lovastatin-induced upregulation of the cholesterol efflux pump ABCA1, it is intriguing that co-treatment with cholesterol rescued the methyl-G-induced increase in Rhodamine 123 intracellular concentration. These studies support the hypothesis that verapamil potentiates the schweinfurthin growth inhibitory effect by increasing its intracellular concentration.
Collapse
Key Words
- 3dSB, 3-deoxyschweinfurthin B
- 3dSB-PNBS, 3-deoxyschweinfurthin B p-nitro bis-stilbene
- BAPTA-AM, 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid
- CI, combination index
- DMP-PNBS, 3,4-dimethoxypheny-p-nitro bis-stilbene
- ER, endoplasmic reticulum
- GBM, Glioblastoma Multiforme
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- Methyl-G, 5'-methoxyschweinfurthin G
- NCI, National Cancer Institute
- PARP, poly-ADP-ribose polymerase
- Pgp, P-glycoprotein drug efflux pump
- cholesterol metabolism
- drug efflux pump
- glioblastoma multiforme
- oxysterol binding protein
- p-glycoprotein
- schweinfurthin
- verapamil
Collapse
Affiliation(s)
- Ryan M Sheehy
- a Department of Pharmacology ; University of Iowa ; Iowa City , IA USA
| | | | | | | |
Collapse
|
34
|
Chen BW, Chen W, Liang H, Liu H, Liang C, Zhi X, Hu LQ, Yu XZ, Wei T, Ma T, Xue F, Zheng L, Zhao B, Feng XH, Bai XL, Liang TB. Inhibition of mTORC2 Induces Cell-Cycle Arrest and Enhances the Cytotoxicity of Doxorubicin by Suppressing MDR1 Expression in HCC Cells. Mol Cancer Ther 2015; 14:1805-15. [PMID: 26026051 DOI: 10.1158/1535-7163.mct-15-0029] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/17/2015] [Indexed: 12/21/2022]
Abstract
mTOR is aberrantly activated in hepatocellular carcinoma (HCC) and plays pivotal roles in tumorigenesis and chemoresistance. Rapamycin has been reported to exert antitumor activity in HCC and sensitizes HCC cells to cytotoxic agents. However, due to feedback activation of AKT after mTOR complex 1 (mTORC1) inhibition, simultaneous targeting of mTORC1/2 may be more effective. In this study, we examined the interaction between the dual mTORC1/2 inhibitor OSI-027 and doxorubicin in vitro and in vivo. OSI-027 was found to reduce phosphorylation of both mTORC1 and mTORC2 substrates, including 4E-BP1, p70S6K, and AKT (Ser473), and inhibit HCC cell proliferation. Similar to OSI-027 treatment, knockdown of mTORC2 induced G0-G1 phase cell-cycle arrest. In contrast, rapamycin or knockdown of mTORC1 increased phosphorylation of AKT (Ser473), yet had little antiproliferative effect. Notably, OSI-027 synergized with doxorubicin for the antiproliferative efficacy in a manner dependent of MDR1 expression in HCC cells. The synergistic antitumor effect of OSI-027 and doxorubicin was also observed in a HCC xenograft mouse model. Moreover, AKT was required for OSI-027-induced cell-cycle arrest and downregulation of MDR1. Our findings provide a rationale for dual mTORC1/mTORC2 inhibitors, such as OSI-027, as monotherapy or in combination with cytotoxic agents to treat HCC. Mol Cancer Ther; 14(8); 1805-15. ©2015 AACR.
Collapse
Affiliation(s)
- Bryan Wei Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wei Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hui Liang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hao Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chao Liang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiao Zhi
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Li-Qiang Hu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xia-Zhen Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tao Wei
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tao Ma
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Xue
- Department of Hepatobiliary and Pancreatic Surgery, People's Hospital of Zhengzhou University/Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Lei Zheng
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland. Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bin Zhao
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin-Hua Feng
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xue-Li Bai
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ting-Bo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. Collaborative Innovation Center for Cancer Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
35
|
Decreased expression of nucleophosmin/B23 increases drug sensitivity of adriamycin-resistant Molt-4 leukemia cells through mdr-1 regulation and Akt/mTOR signaling. Immunobiology 2015; 220:331-40. [DOI: 10.1016/j.imbio.2014.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/23/2014] [Accepted: 10/12/2014] [Indexed: 11/17/2022]
|
36
|
Lizard G. Highlight on transient activation of red/ox-dependent survival signals involving MEK/ERK and PI3/Akt signaling pathways in 27-hydroxycholesterol treated-U937 Human monocytic cells: commentary on "Survival signaling elicited by 27-hydroxycholesterol through the combined modulation of cellular redox state and ERK/Akt phosphorylation," by Beyza Vurusaner et al. Free Radic Biol Med 2014; 77:386-7. [PMID: 25236738 DOI: 10.1016/j.freeradbiomed.2014.07.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
Affiliation(s)
- Gérard Lizard
- Université de Bourgogne, Laboratoire Bio-PeroxIL "Biochimie du Peroxysome, Inflammation et Métabolisme Lipidique" (EA7270)/INSERM, 6 Bd Gabriel, Dijon, F-21000, France.
| |
Collapse
|
37
|
Zarrouk A, Vejux A, Mackrill J, O’Callaghan Y, Hammami M, O’Brien N, Lizard G. Involvement of oxysterols in age-related diseases and ageing processes. Ageing Res Rev 2014; 18:148-62. [PMID: 25305550 DOI: 10.1016/j.arr.2014.09.006] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/23/2014] [Accepted: 09/30/2014] [Indexed: 12/15/2022]
Abstract
Ageing is accompanied by increasing vulnerability to major pathologies (atherosclerosis, Alzheimer's disease, age-related macular degeneration, cataract, and osteoporosis) which can have similar underlying pathoetiologies. All of these diseases involve oxidative stress, inflammation and/or cell death processes, which are triggered by cholesterol oxide derivatives, also named oxysterols. These oxidized lipids result either from spontaneous and/or enzymatic oxidation of cholesterol on the steroid nucleus or on the side chain. The ability of oxysterols to induce severe dysfunctions in organelles (especially mitochondria) plays key roles in RedOx homeostasis, inflammatory status, lipid metabolism, and in the control of cell death induction, which may at least in part contribute to explain the potential participation of these molecules in ageing processes and in age related diseases. As no efficient treatments are currently available for most of these diseases, which are predicted to become more prevalent due to the increasing life expectancy and average age, a better knowledge of the biological activities of the different oxysterols is of interest, and constitutes an important step toward identification of pharmacological targets for the development of new therapeutic strategies.
Collapse
|
38
|
Huang JD, Amaral J, Lee JW, Rodriguez IR. 7-Ketocholesterol-induced inflammation signals mostly through the TLR4 receptor both in vitro and in vivo. PLoS One 2014; 9:e100985. [PMID: 25036103 PMCID: PMC4103802 DOI: 10.1371/journal.pone.0100985] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/01/2014] [Indexed: 12/23/2022] Open
Abstract
The cholesterol oxide 7-ketocholesterol (7KCh) has been implicated in numerous age-related diseases such as atherosclerosis, Alzheimer's disease, Parkinson's disease, cancer and age-related macular degeneration. It is formed by the autooxidation of cholesterol and especially cholesterol-fatty acid esters found in lipoprotein deposits. This molecule causes complex and potent inflammatory responses in vitro and in vivo. It is suspected of causing chronic inflammation in tissues exposed to oxidized lipoprotein deposits. In this study we have examined the inflammatory pathways activated by 7KCh both in cultured ARPE19 cells and in vivo using 7KCh-containing implants inserted into the anterior chamber of the rat eye. Our results indicate that 7KCh-induced inflammation is mediated mostly though the TLR4 receptor with some cross-activation of EGFR-related pathways. The majority of the cytokine inductions seem to signal via the TRIF/TRAM side of the TLR4 receptor. The MyD88/TIRAP side only significantly effects IL-1β inductions. The 7KCh-induced inflammation also seems to involve a robust ER stress response. However, this response does not seem to involve a calcium efflux-mediated UPR. Instead the ER stress response seems to be mediated by yet identified kinases activated through the TLR4 receptor. Some of the kinases identified are the RSKs which seem to mediate the cytokine inductions and the cell death pathway but do not seem to be involved in the ER stress response.
Collapse
Affiliation(s)
- Jiahn-Dar Huang
- Mechanisms of Retinal Diseases Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Juan Amaral
- Mechanisms of Retinal Diseases Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jung Wha Lee
- Mechanisms of Retinal Diseases Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ignacio R. Rodriguez
- Mechanisms of Retinal Diseases Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|