1
|
Liao W, Fan YS, Yang S, Li J, Duan X, Cui Q, Chen H. Preservation Effect: Cigarette Smoking Acts on the Dynamic of Influences Among Unifying Neuropsychiatric Triple Networks in Schizophrenia. Schizophr Bull 2019; 45:1242-1250. [PMID: 30561724 PMCID: PMC6811814 DOI: 10.1093/schbul/sby184] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The high prevalence of cigarette smoking in schizophrenia (SZ) is generally explained by the self-medication theory. However, its neurobiological mechanism remains unclear. The impaired dynamic of influences among unifying neuropsychiatric triple networks in SZ, including the central executive network (CEN), the default mode network (DMN), and the salience network (SN), might explain the nature of their syndromes, whereas smoking could regulate the dynamics within networks. Therefore, this study examined whether cigarette smoking could elicit a distinct improvement in the dynamics of triple networks in SZ and associated with the alleviation of symptoms. METHODS Four groups were recruited, namely, SZ smoking (n = 22)/nonsmoking (n = 25), and healthy controls smoking (n = 22)/nonsmoking (n = 21). All participants underwent a resting-state functional magnetic resonance imaging (fMRI). The dynamics among unifying neuropsychiatric triple networks were measured using Granger causality analysis on the resting-sate fMRI signal. Interaction effects between SZ and smoking on dynamics were detected using 2-way analysis of covariance, correcting for sex, age, and education level. RESULTS Whereas smoking reduced SN→DMN dynamic in healthy controls, it preserved the dynamic in SZ, thus suggesting a preservation effect. Moreover, smoking additionally increased DMN→CEN dynamic in SZ. CONCLUSIONS This finding from neural pathways shed new insights into the prevailing self-medication hypothesis in SZ. More broadly, this study elaborates on the neurobiological dynamics that may assist in the treatment of the symptomatology of SZ.
Collapse
Affiliation(s)
- Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Yun-Shuang Fan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Siqi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Qian Cui
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, P.R. China
| |
Collapse
|
2
|
Cognitive Control, the Anterior Cingulate, and Nicotinic Receptors: A Case of Heterozygote Advantage. J Neurosci 2018; 38:257-259. [PMID: 29321144 DOI: 10.1523/jneurosci.2775-17.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 11/21/2022] Open
|
3
|
Wylie KP, Smucny J, Legget KT, Tregellas JR. Targeting Functional Biomarkers in Schizophrenia with Neuroimaging. Curr Pharm Des 2017; 22:2117-23. [PMID: 26818860 DOI: 10.2174/1381612822666160127113912] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/26/2016] [Indexed: 01/09/2023]
Abstract
Many of the most debilitating symptoms for psychiatric disorders such as schizophrenia remain poorly treated. As such, the development of novel treatments is urgently needed. Unfortunately, the costs associated with high failure rates for investigational compounds as they enter clinical trials has led to pharmaceutical companies downsizing or eliminating research programs needed to develop these drugs. One way of increasing the probability of success for investigational compounds is to incorporate alternative methods of identifying biological targets in order to more effectively screen new drugs. A promising method of accomplishing this goal for psychiatric drugs is to use functional magnetic resonance imaging (fMRI). fMRI investigates neural circuits, shedding light on the biology that generates symptoms such as hallucinations. Once identified, relevant neural circuits can be targeted with pharmacologic interventions and the response to these drugs measured with fMRI. This review describes the early use of fMRI in this context, and discusses the alpha7 nicotinic receptor agonist 3-(2,4-dimethoxybenzylidene) anabaseine (DMXB-A), as an example of the potential value of fMRI for psychiatric drug development.
Collapse
Affiliation(s)
- Korey P Wylie
- Department of Psychiatry, Anschutz Medical Campus, Bldg. 500, Mail Stop F546, 13001 East 17th Place, Aurora, CO, 80045, USA.
| | | | | | | |
Collapse
|
4
|
Smucny J, Tregellas JR. Targeting neuronal dysfunction in schizophrenia with nicotine: Evidence from neurophysiology to neuroimaging. J Psychopharmacol 2017; 31:801-811. [PMID: 28441884 PMCID: PMC5963521 DOI: 10.1177/0269881117705071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Patients with schizophrenia self-administer nicotine at rates higher than is self-administered for any other psychiatric illness. Although the reasons are unclear, one hypothesis suggests that nicotine is a form of 'self-medication' in order to restore normal levels of nicotinic signaling and target abnormalities in neuronal function associated with cognitive processes. This brief review discusses evidence from neurophysiological and neuroimaging studies in schizophrenia patients that nicotinic agonists may effectively target dysfunctional neuronal circuits in the illness. Evidence suggests that nicotine significantly modulates a number of these circuits, although relatively few studies have used modern neuroimaging techniques (e.g. functional magnetic resonance imaging (fMRI)) to examine the effects of nicotinic drugs on disease-related neurobiology. The neuronal effects of nicotine and other nicotinic agonists in schizophrenia remain a priority for psychiatry research.
Collapse
Affiliation(s)
- Jason Smucny
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jason R Tregellas
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA,Research Service, Denver VA Medical Center, Denver, CO, USA
| |
Collapse
|
5
|
Smucny J, Wylie KP, Kronberg E, Legget KT, Tregellas JR. Nicotinic modulation of salience network connectivity and centrality in schizophrenia. J Psychiatr Res 2017; 89:85-96. [PMID: 28193583 PMCID: PMC5373996 DOI: 10.1016/j.jpsychires.2017.01.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 12/27/2022]
Abstract
Although functional abnormalities of the salience network are associated with schizophrenia, the acute effects of nicotine on its function and network dynamics during the resting state in patients are poorly understood. In this study, the effects of a 7 mg nicotine patch (vs. placebo) on salience network connectivity were examined in 17 patients with schizophrenia and 19 healthy subjects. We hypothesized abnormal connectivity between the salience network and other major networks (e.g. executive network) in patients under placebo administration and amelioration of this difference after nicotine. We also examined effects of nicotine on betweenness centrality (a measure of the influence of a region on information transfer throughout the brain) and local efficiency (a measure of local information transfer) of the network. A hybrid independent component analysis (ICA)/seed-based connectivity approach was implemented in which the salience network was extracted by ICA and cortical network peaks (anterior cingulate cortex (ACC), left and right insula) were used as seeds for whole-brain seed-to-voxel connectivity analysis. Significant drug X diagnosis interactions were observed between the ACC seed and superior parietal lobule and ventrolateral prefrontal cortex. A significant interaction effect was also observed between the left insula seed and middle cingulate cortex. During placebo conditions, abnormal connectivity predicted negative symptom severity and lower global functioning in patients. A significant drug X diagnosis interaction was also observed for betweenness centrality of the ACC. These results suggest that nicotine may target abnormalities in functional connectivity between salience and executive network areas in schizophrenia as well as affect the ability of the salience network to act as an integrator of global signaling in the disorder.
Collapse
Affiliation(s)
- Jason Smucny
- Neuroscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Korey P. Wylie
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora CO USA
| | - Eugene Kronberg
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora CO USA
| | - Kristina T. Legget
- Neuroscience Program, University of Colorado Anschutz Medical Campus, Aurora CO USA,Research Service, Denver VA Medical Center, Denver, CO USA,Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora CO USA
| | - Jason R. Tregellas
- Neuroscience Program, University of Colorado Anschutz Medical Campus, Aurora CO USA,Research Service, Denver VA Medical Center, Denver, CO USA,Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora CO USA
| |
Collapse
|
6
|
Bajic D, Craig MM, Borsook D, Becerra L. Probing Intrinsic Resting-State Networks in the Infant Rat Brain. Front Behav Neurosci 2016; 10:192. [PMID: 27803653 PMCID: PMC5067436 DOI: 10.3389/fnbeh.2016.00192] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/26/2016] [Indexed: 01/01/2023] Open
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI) measures spontaneous fluctuations in blood oxygenation level-dependent (BOLD) signal in the absence of external stimuli. It has become a powerful tool for mapping large-scale brain networks in humans and animal models. Several rs-fMRI studies have been conducted in anesthetized and awake adult rats, reporting consistent patterns of brain activity at the systems level. However, the evolution to adult patterns of resting-state activity has not yet been evaluated and quantified in the developing rat brain. In this study, we hypothesized that large-scale intrinsic networks would be easily detectable but not fully established as specific patterns of activity in lightly anesthetized 2-week-old rats (N = 11). Independent component analysis (ICA) identified 8 networks in 2-week-old-rats. These included Default mode, Sensory (Exteroceptive), Salience (Interoceptive), Basal Ganglia-Thalamic-Hippocampal, Basal Ganglia, Autonomic, Cerebellar, as well as Thalamic-Brainstem networks. Many of these networks consisted of more than one component, possibly indicative of immature, underdeveloped networks at this early time point. Except for the Autonomic network, infant rat networks showed reduced connectivity with subcortical structures in comparison to previously published adult networks. Reported slow fluctuations in the BOLD signal that correspond to functionally relevant resting-state networks in 2-week-old rats can serve as an important tool for future studies of brain development in the settings of different pharmacological applications or disease.
Collapse
Affiliation(s)
- Dusica Bajic
- Center for Pain and the Brain, Boston Children's HospitalBoston, MA, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's HospitalBoston, MA, USA; Department of Anaesthesia, Harvard Medical SchoolBoston, MA, USA
| | - Michael M Craig
- Center for Pain and the Brain, Boston Children's HospitalBoston, MA, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's HospitalBoston, MA, USA
| | - David Borsook
- Center for Pain and the Brain, Boston Children's HospitalBoston, MA, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's HospitalBoston, MA, USA; Department of Anaesthesia, Harvard Medical SchoolBoston, MA, USA
| | - Lino Becerra
- Center for Pain and the Brain, Boston Children's HospitalBoston, MA, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's HospitalBoston, MA, USA; Department of Anaesthesia, Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
7
|
Nicotine restores functional connectivity of the ventral attention network in schizophrenia. Neuropharmacology 2016; 108:144-51. [PMID: 27085606 DOI: 10.1016/j.neuropharm.2016.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/24/2016] [Accepted: 04/12/2016] [Indexed: 11/23/2022]
Abstract
While previous work has suggested that nicotine may transiently improve attention deficits in schizophrenia, the neuronal mechanisms are poorly understood. This study is the first to examine the effects of nicotine on connectivity within the ventral attention network (VAN) during a selective attention task in schizophrenia. Using a crossover design, 17 nonsmoking patients with schizophrenia and 20 age/gender-matched nonsmoking healthy controls performed a go/no-go task with environmental noise distractors during application of a 7 mg nicotine or placebo patch. Psychophysiological interaction analysis was performed to analyze task-associated changes in connectivity between a ventral parietal cortex (VPC) seed and the inferior frontal gyrus (IFG), key components of the human VAN. Effects of nicotine on resting state VAN connectivity were also examined. A significant diagnosis × drug interaction was observed on task-associated connectivity between the VPC seed and the left IFG (F(1,35) = 8.03, p < 0.01). This effect was driven by decreased connectivity after placebo in patients and greater connectivity after nicotine. Resting state connectivity analysis showed a significant main effect of diagnosis between the seed and right IFG (F = 4.25, p = 0.023) due to increased connectivity in patients during placebo, but no drug × diagnosis interactions or main effects of drug. This study is the first to demonstrate that 1) the VAN is disconnected in schizophrenia during selective attention, and 2) nicotine may normalize this pathological state.
Collapse
|
8
|
Sutherland MT, Ray KL, Riedel MC, Yanes JA, Stein EA, Laird AR. Neurobiological impact of nicotinic acetylcholine receptor agonists: an activation likelihood estimation meta-analysis of pharmacologic neuroimaging studies. Biol Psychiatry 2015; 78:711-20. [PMID: 25662104 PMCID: PMC4494985 DOI: 10.1016/j.biopsych.2014.12.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 12/03/2014] [Accepted: 12/12/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Nicotinic acetylcholine receptor (nAChR) agonists augment cognition among cigarette smokers and nonsmokers, yet the systems-level neurobiological mechanisms underlying such improvements are not fully understood. Aggregating neuroimaging results regarding nAChR agonists provides a means to identify common functional brain changes that may be related to procognitive drug effects. METHODS We conducted a meta-analysis of pharmacologic neuroimaging studies within the activation likelihood estimation framework. We identified published studies contrasting a nAChR drug condition versus a baseline and coded each contrast by activity change direction (decrease or increase), participant characteristics (smokers or nonsmokers), and drug manipulation employed (pharmacologic administration or cigarette smoking). RESULTS When considering all studies, nAChR agonist administration was associated with activity decreases in multiple regions, including the ventromedial prefrontal cortex (vmPFC), posterior cingulate cortex (PCC), parahippocampus, insula, and the parietal and precentral cortices. Conversely, activity increases were observed in lateral frontoparietal cortices, the anterior cingulate cortex, thalamus, and cuneus. Exploratory analyses indicated that both smokers and nonsmokers showed activity decreases in the vmPFC and PCC, and increases in lateral frontoparietal regions. Among smokers, both pharmacologic administration and cigarette smoking were associated with activity decreases in the vmPFC, PCC, and insula and increases in the lateral PFC, dorsal anterior cingulate cortex, thalamus, and cuneus. CONCLUSIONS These results provide support for the systems-level perspective that nAChR agonists suppress activity in default-mode network regions and enhance activity in executive control network regions in addition to reducing activation of some task-related regions. We speculate these are potential mechanisms by which nAChR agonists enhance cognition.
Collapse
Affiliation(s)
- Matthew T. Sutherland
- Department of Psychology, Florida International University, Miami, FL,Correspondence: Matthew T. Sutherland, Ph.D. Florida International University Department of Psychology AHC-4, RM 312 11299 S.W. 8th St Miami, FL 33199
| | - Kimberly L. Ray
- Department of Psychiatry, University of California, Davis, Sacramento, CA
| | - Michael C. Riedel
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX
| | - Julio A. Yanes
- Department of Physics, Florida International University, Miami, FL
| | - Elliot A. Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, NIH/DHHS, Baltimore, MD
| | - Angela R. Laird
- Department of Physics, Florida International University, Miami, FL
| |
Collapse
|
9
|
Smucny J, Olincy A, Rojas DC, Tregellas JR. Neuronal effects of nicotine during auditory selective attention in schizophrenia. Hum Brain Mapp 2015; 37:410-21. [PMID: 26518728 DOI: 10.1002/hbm.23040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/29/2015] [Accepted: 10/18/2015] [Indexed: 12/11/2022] Open
Abstract
Although nicotine has been shown to improve attention deficits in schizophrenia, the neurobiological mechanisms underlying this effect are poorly understood. We hypothesized that nicotine would modulate attention-associated neuronal response in schizophrenia patients in the ventral parietal cortex (VPC), hippocampus, and anterior cingulate based on previous findings in control subjects. To test this hypothesis, the present study examined response in these regions in a cohort of nonsmoking patients and healthy control subjects using an auditory selective attention task with environmental noise distractors during placebo and nicotine administration. In agreement with our hypothesis, significant diagnosis (Control vs. Patient) X drug (Placebo vs. Nicotine) interactions were observed in the VPC and hippocampus. The interaction was driven by task-associated hyperactivity in patients (relative to healthy controls) during placebo administration, and decreased hyperactivity in patients after nicotine administration (relative to placebo). No significant interaction was observed in the anterior cingulate. Task-associated hyperactivity of the VPC predicted poor task performance in patients during placebo. Poor task performance also predicted symptoms in patients as measured by the Brief Psychiatric Rating Scale. These results are the first to suggest that nicotine may modulate brain activity in a selective attention-dependent manner in schizophrenia.
Collapse
Affiliation(s)
- Jason Smucny
- Neuroscience Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ann Olincy
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Research Service, Denver VA Medical Center, Denver, Colorado
| | - Donald C Rojas
- Department of Psychology, Colorado State University, Fort Collins, Colorado
| | - Jason R Tregellas
- Neuroscience Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Research Service, Denver VA Medical Center, Denver, Colorado
| |
Collapse
|
10
|
Smucny J, Wylie KP, Tregellas JR. Functional magnetic resonance imaging of intrinsic brain networks for translational drug discovery. Trends Pharmacol Sci 2014; 35:397-403. [PMID: 24906509 DOI: 10.1016/j.tips.2014.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/30/2014] [Accepted: 05/05/2014] [Indexed: 01/23/2023]
Abstract
Developing translational biomarkers is a priority for psychiatry research. Task-independent functional brain imaging is a relatively novel technique that allows examination of the brain's intrinsic networks, defined as functionally and (often) structurally connected populations of neurons whose properties reflect fundamental neurobiological organizational principles of the central nervous system. The ability to study the activity and organization of these networks has opened a promising new avenue for translational investigation, because they can be analogously examined across species and disease states. Interestingly, imaging studies have revealed shared spatial and functional characteristics of the intrinsic network architecture of the brain across species, including mice, rats, non-human primates, and humans. Using schizophrenia as an example, we show how intrinsic networks may show similar abnormalities in human diseases and animal models of these diseases, supporting their use as biomarkers in drug development.
Collapse
Affiliation(s)
- Jason Smucny
- Research Service, Denver VA Medical Center, Denver, CO, USA; Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Neuroscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Korey P Wylie
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jason R Tregellas
- Research Service, Denver VA Medical Center, Denver, CO, USA; Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Neuroscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
11
|
Tillman TS, Seyoum E, Mowrey DD, Xu Y, Tang P. ELIC-α7 Nicotinic acetylcholine receptor (α7nAChR) chimeras reveal a prominent role of the extracellular-transmembrane domain interface in allosteric modulation. J Biol Chem 2014; 289:13851-7. [PMID: 24695730 PMCID: PMC4022858 DOI: 10.1074/jbc.m113.524611] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 03/10/2014] [Indexed: 01/08/2023] Open
Abstract
The native α7 nicotinic acetylcholine receptor (α7nAChR) is a homopentameric ligand-gated ion channel mediating fast synaptic transmission and is of pharmaceutical interest for treatment of numerous disorders. The transmembrane domain (TMD) of α7nAChR has been identified as a target for positive allosteric modulators (PAMs), but it is unclear whether modulation occurs through changes entirely within the TMD or changes involving both the TMD and the extracellular domain (ECD)-TMD interface. In this study, we constructed multiple chimeras using the TMD of human α7nAChR and the ECD of a prokaryotic homolog, ELIC, which is not sensitive to these modulators, and for which a high resolution structure has been solved. Functional ELIC-α7nAChR (EA) chimeras were obtained when their ECD-TMD interfaces were modified to resemble either the ELIC interface (EAELIC) or α7nAChR interface (EAα7). Both EAα7 and EAELIC show similar activation response and desensitization characteristics, but only EAα7 retained the unique pharmacology of α7nAChR evoked by PAMs, including potentiation by ivermectin, PNU-120596, and TQS, as well as activation by 4BP-TQS. This study suggests that PAM modulation through the TMD has a more stringent requirement at the ECD-TMD interface than agonist activation.
Collapse
Affiliation(s)
| | | | - David D Mowrey
- From the Departments of Anesthesiology, Computational and Systems Biology, and
| | - Yan Xu
- From the Departments of Anesthesiology, Pharmacology and Chemical Biology, Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Pei Tang
- From the Departments of Anesthesiology, Computational and Systems Biology, and Pharmacology and Chemical Biology,
| |
Collapse
|