1
|
Müller C, Oliveira-Ferrer L, Müller V, Schmalfeldt B, Windhorst S. Transcriptome-based identification of key actin-binding proteins associated with high metastatic potential in breast cancer. Front Mol Biosci 2024; 11:1440276. [PMID: 39281318 PMCID: PMC11392851 DOI: 10.3389/fmolb.2024.1440276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/05/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction Actin-binding proteins (ABPs) are essential for the regulation of morphological plasticity required for tumor cells to metastasize. The aim of this study was to perform an unbiased bioinformatic approach to identify the key ABPs significantly associated with the metastatic potential of breast cancer cells. Methods Microarray data from 181 primary breast cancer samples from our hospital were used, and all genes belonging to the Gene Ontology term actin cytoskeleton organization were obtained from QuickGO. Association with metastasis-free survival probability was tested using Cox proportional hazards regression, and pairwise co-expression was tested by Pearson correlations. Differential expression between different subgroups was analyzed using Wilcoxon tests for dichotomous traits and Kruskal-Wallis tests for categorical traits. Validation was performed using four publicly available breast cancer datasets. Results ARHGAP25 was significantly associated with a low metastatic potential, and CFL1, TMSB15A, and ACTL8 were significantly associated with a high metastatic potential. A significantly higher expression of CFL1, TMSB15A, and ACTL8 mRNA was found in the more aggressive Her2-positive and triple-negative subtypes as well as in ER-negative samples. Also, these genes were co-expressed in the same tumors. However, only mRNA levels of CFL1 were increased in pN1 compared to pN0 patients. External validation revealed that CFL1 and TMSB15A had significant associations with consistent hazard ratios in two breast cancer cohorts, and among these, CFL1 exhibited the highest hazard ratios. Conclusion CFL1 showed the strongest correlation with the metastatic potential of breast tumors. Thus, targeted inhibition of CFL1 might be a promising approach to treat malignant breast cancer cells.
Collapse
Affiliation(s)
- Christian Müller
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Volkmar Müller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Barbara Schmalfeldt
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Windhorst
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Zhang B, Zhang S, Zhang S. Whole brain alignment of spatial transcriptomics between humans and mice with BrainAlign. Nat Commun 2024; 15:6302. [PMID: 39080277 PMCID: PMC11289418 DOI: 10.1038/s41467-024-50608-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
The increasing utilization of mouse models in human neuroscience research places higher demands on computational methods to translate findings from the mouse brain to the human one. In this study, we develop BrainAlign, a self-supervised learning approach, for the whole brain alignment of spatial transcriptomics (ST) between humans and mice. BrainAlign encodes spots and genes simultaneously in two separated shared embedding spaces by a heterogeneous graph neural network. We demonstrate that BrainAlign could integrate cross-species spots into the embedding space and reveal the conserved brain regions supported by ST information, which facilitates the detection of homologous regions between humans and mice. Genomic analysis further presents gene expression connections between humans and mice and reveals similar expression patterns for marker genes. Moreover, BrainAlign can accurately map spatially similar homologous regions or clusters onto a unified spatial structural domain while preserving their relative positions.
Collapse
Affiliation(s)
- Biao Zhang
- School of Mathematical Sciences, Fudan University, Shanghai, China
| | - Shuqin Zhang
- School of Mathematical Sciences, Fudan University, Shanghai, China.
- Key Laboratory of Mathematics for Nonlinear Science, Fudan University, Ministry of Education, Shanghai, China.
- Shanghai Key Laboratory for Contemporary Applied Mathematics, Fudan University, Shanghai, China.
| | - Shihua Zhang
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China.
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
3
|
Zhang Y, Yu Z, Wong KC, Li X. Unraveling Spatial Domain Characterization in Spatially Resolved Transcriptomics with Robust Graph Contrastive Clustering. Bioinformatics 2024; 40:btae451. [PMID: 39012523 PMCID: PMC11272174 DOI: 10.1093/bioinformatics/btae451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/12/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024] Open
Abstract
MOTIVATION Spatial transcriptomics can quantify gene expression and its spatial distribution in tissues, thus revealing molecular mechanisms of cellular interactions underlying tissue heterogeneity, tissue regeneration, and spatially localized disease mechanisms. However, existing spatial clustering methods often fail to exploit the full potential of spatial information, resulting in inaccurate identification of spatial domains. RESULTS In this paper, we develop a deep graph contrastive clustering framework, stDGCC, that accurately uncovers underlying spatial domains via explicitly modeling spatial information and gene expression profiles from spatial transcriptomics data. The stDGCC framework proposes a spatially informed graph node embedding model to preserve the topological information of spots and to learn the informative and discriminative characterization of spatial transcriptomics data through self-supervised contrastive learning. By simultaneously optimizing the contrastive learning loss, reconstruction loss, and Kullback-Leibler (KL) divergence loss, stDGCC achieves joint optimization of feature learning and topology structure preservation in an end-to-end manner. We validate the effectiveness of stDGCC on various spatial transcriptomics datasets acquired from different platforms, each with varying spatial resolutions. Our extensive experiments demonstrate the superiority of stDGCC over various state-of-the-art clustering methods in accurately identifying cellular-level biological structures. AVAILABILITY Code and data are available from https://github.com/TimE9527/stDGCC and https://figshare.com/projects/stDGCC/186525. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yingxi Zhang
- School of Artificial Intelligence, Jilin University, Changchun 130012, China
| | - Zhuohan Yu
- School of Artificial Intelligence, Jilin University, Changchun 130012, China
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Hong Kong 999077, Hong Kong SAR
| | - Xiangtao Li
- School of Artificial Intelligence, Jilin University, Changchun 130012, China
| |
Collapse
|
4
|
Xiong T, Zhang Z, Fan T, Ye F, Ye Z. Origin, evolution, and diversification of inositol 1,4,5-trisphosphate 3-kinases in plants and animals. BMC Genomics 2024; 25:350. [PMID: 38589807 PMCID: PMC11000326 DOI: 10.1186/s12864-024-10257-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND In Eukaryotes, inositol polyphosphates (InsPs) represent a large family of secondary messengers and play crucial roes in various cellular processes. InsPs are synthesized through a series of pohophorylation reactions catalyzed by various InsP kinases in a sequential manner. Inositol 1,4,5-trisphosphate 3-kinase (IP3 3-kinase/IP3K), one member of InsP kinase, plays important regulation roles in InsPs metabolism by specifically phosphorylating inositol 1,4,5-trisphosphate (IP3) to inositol 1,3,4,5-tetrakisphosphate (IP4) in animal cells. IP3Ks were widespread in fungi, plants and animals. However, its evolutionary history and patterns have not been examined systematically. RESULTS A total of 104 and 31 IP3K orthologues were identified across 57 plant genomes and 13 animal genomes, respectively. Phylogenetic analyses indicate that IP3K originated in the common ancestor before the divergence of fungi, plants and animals. In most plants and animals, IP3K maintained low-copy numbers suggesting functional conservation during plant and animal evolution. In Brassicaceae and vertebrate, IP3K underwent one and two duplication events, respectively, resulting in multiple gene copies. Whole-genome duplication (WGD) was the main mechanism for IP3K duplications, and the IP3K duplicates have experienced functional divergence. Finally, a hypothetical evolutionary model for the IP3K proteins is proposed based on phylogenetic theory. CONCLUSION Our study reveals the evolutionary history of IP3K proteins and guides the future functions of animal, plant, and fungal IP3K proteins.
Collapse
Affiliation(s)
- Tao Xiong
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Zaibao Zhang
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China.
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China.
| | - Tianyu Fan
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China
| | - Fan Ye
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang, China
| | - Ziyi Ye
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China
| |
Collapse
|
5
|
Márquez-Moñino MÁ, Ortega-García R, Whitfield H, Riley AM, Infantes L, Garrett SW, Shipton ML, Brearley CA, Potter BVL, González B. Substrate promiscuity of inositol 1,4,5-trisphosphate kinase driven by structurally-modified ligands and active site plasticity. Nat Commun 2024; 15:1502. [PMID: 38374076 PMCID: PMC10876669 DOI: 10.1038/s41467-024-45917-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/05/2024] [Indexed: 02/21/2024] Open
Abstract
D-myo-inositol 1,4,5-trisphosphate (InsP3) is a fundamental second messenger in cellular Ca2+ mobilization. InsP3 3-kinase, a highly specific enzyme binding InsP3 in just one mode, phosphorylates InsP3 specifically at its secondary 3-hydroxyl group to generate a tetrakisphosphate. Using a chemical biology approach with both synthetised and established ligands, combining synthesis, crystallography, computational docking, HPLC and fluorescence polarization binding assays using fluorescently-tagged InsP3, we have surveyed the limits of InsP3 3-kinase ligand specificity and uncovered surprisingly unforeseen biosynthetic capacity. Structurally-modified ligands exploit active site plasticity generating a helix-tilt. These facilitated uncovering of unexpected substrates phosphorylated at a surrogate extended primary hydroxyl at the inositol pseudo 3-position, applicable even to carbohydrate-based substrates. Crystallization experiments designed to allow reactions to proceed in situ facilitated unequivocal characterization of the atypical tetrakisphosphate products. In summary, we define features of InsP3 3-kinase plasticity and substrate tolerance that may be more widely exploitable.
Collapse
Affiliation(s)
- María Ángeles Márquez-Moñino
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry Blas Cabrera, CSIC, Serrano 119, 28006, Madrid, Spain
| | - Raquel Ortega-García
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry Blas Cabrera, CSIC, Serrano 119, 28006, Madrid, Spain
| | - Hayley Whitfield
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Andrew M Riley
- Drug Discovery and Medicinal Chemistry, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Lourdes Infantes
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry Blas Cabrera, CSIC, Serrano 119, 28006, Madrid, Spain
| | - Shane W Garrett
- Wolfson Laboratory of Medicinal Chemistry, Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Megan L Shipton
- Drug Discovery and Medicinal Chemistry, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Charles A Brearley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Barry V L Potter
- Drug Discovery and Medicinal Chemistry, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
- Wolfson Laboratory of Medicinal Chemistry, Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Beatriz González
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry Blas Cabrera, CSIC, Serrano 119, 28006, Madrid, Spain.
| |
Collapse
|
6
|
Zhang X, He J, Ren D. Commentary on: The actin bundling activity of ITPKA mainly accounts for its migration-promoting effect in lung cancer cells. Biosci Rep 2023; 43:BSR20230057. [PMID: 37664985 PMCID: PMC10500224 DOI: 10.1042/bsr20230057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023] Open
Abstract
1,4,5-triphosphate 3-kinase A (ITPKA) was first described and characterized by Irvine et al. in 1986 and cloned by Takazawa et al. in 1990. It is one of the components of the Ca2+ and calmodulin signaling pathway and a substrate for cAMP-dependent kinase (PKA) and protein kinase C (PKC), and is mainly involved in the regulation of intracellular inositol polyphosphate signaling molecules. Through a series of studies, Sabine's team has found that ITPKA expression was up-regulated in a variety of cancer cells, and silencing ITPKA inhibited while overexpressing ITPKA promoted cancer cell migration in vitro and metastasis in vivo. The latest research from Sabine's team has demonstrated that in H1299 lung cancer cells, the mechanism by which ITPKA promoted migration and invasion was predominantly depending on the ability of binding to F-actin, which will induce cancer cells to form a tight flexible actin networks. Small molecule compounds targeting the IP3 kinase activity of ITPKA protein may only inhibit the migration and invasion of cancer cells caused by the enhanced ITPKA kinase activity under ATP stimulation, but not the cytoskeletal remodeling caused by the binding of ITPKA protein to F-actin and the driven migration and invasion of cancer cells. Therefore, targeted therapeutic strategy focusing on blocking the binding of ITPKA to F-actin is indispensable when designing the inhibitors targeting ITPKA protein.
Collapse
Affiliation(s)
- Xin Zhang
- Postdoctoral Innovation Practice Base, Postdoctoral Research Center of Jiangmen Central Hospital, Southern Medical University, Jiangmen 529030, China
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobank and Translational Research, Jiangmen Central Hospital, Jiangmen 529030, China
| | - Jiadi He
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobank and Translational Research, Jiangmen Central Hospital, Jiangmen 529030, China
| | - Dong Ren
- Department of Pathology, University of California Irvine Medical Center, Orange, CA 92868, U.S.A
| |
Collapse
|
7
|
Chen J, Xu F, Ruan X, Sun J, Zhang Y, Zhang H, Zhao J, Zheng J, Larsson SC, Wang X, Li X, Yuan S. Therapeutic targets for inflammatory bowel disease: proteome-wide Mendelian randomization and colocalization analyses. EBioMedicine 2023; 89:104494. [PMID: 36857861 PMCID: PMC9986512 DOI: 10.1016/j.ebiom.2023.104494] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Identifying new drug targets for inflammatory bowel disease (IBD) is urgently needed. The proteome is a major source of therapeutic targets. We conducted a proteome-wide Mendelian randomization (MR) and colocalization analyses to identify possible targets for IBD. METHODS Summary-level data of 4907 circulating protein levels were extracted from a large-scale protein quantitative trait loci study including 35,559 individuals. Genetic associations with IBD and its subtypes were obtained from the Inflammatory Bowel Disease Genetics Consortium (25,024 cases and 34,915 controls), the FinnGen study (7206 cases and 253,199 controls), and the UK Biobank study (7045 cases and 449,282 controls). MR analysis was conducted to estimate the associations between protein and IBD risk. The colocalization analysis was used to examine whether the identified proteins and IBD shared casual variants. FINDINGS Genetically predicted levels of 3, and 5 circulating proteins were associated with IBD and ulcerative colitis (UC), respectively. With high supporting evidence of colocalization, genetically predicted MST1 (macrophage stimulating 1) and HGFAC (hepatocyte growth factor activator) levels were inversely associated with IBD risks. The associations of STAT3 (signal transducer and activator of transcription 3), MST1, CXCL5 (C-X-C motif chemokine ligand 5), and ITPKA (inositol-trisphosphate 3-kinase A) with the risk of UC were supported by colocalization analysis. INTERPRETATION The proteome-wide MR investigation identified many proteins associated with the risk of IBD. MST1, HGFAC, STAT3, ITPKA, and CXCL5 deserve further investigation as potential therapeutic targets for IBD. FUNDING SCL is supported by research grants from the Swedish Research Council for Health, Working Life and Welfare (Forte; grant no. 2018-00123) and the Swedish Research Council (Vetenskapsrådet; grant no. 2019-00977). XYW is supported by research grants from the National Natural Science Foundation of China (81970494) and Key Project of Research and Development Plan of Hunan Province (2019SK2041). XL is supported by research grants from the Natural Science Fund for Distinguished Young Scholars of Zhejiang Province (LR22H260001).
Collapse
Affiliation(s)
- Jie Chen
- Department of Big Data in Health Science, School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fengzhe Xu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xixian Ruan
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jing Sun
- Department of Big Data in Health Science, School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yao Zhang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Zhang
- Department of Big Data in Health Science, School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianhui Zhao
- Department of Big Data in Health Science, School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China.
| | - Xue Li
- Department of Big Data in Health Science, School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
8
|
The actin bundling activity of ITPKA mainly accounts for its migration-promoting effect in lung cancer cells. Biosci Rep 2023; 43:232487. [PMID: 36688944 PMCID: PMC9912108 DOI: 10.1042/bsr20222150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Expression of Ins(1,4,5)P3-kinase-A (ITPKA), the neuronal isoform of Ins(1,4,5)P3-kinases, is up-regulated in many tumor types. In particular, in lung cancer cells this up-regulation is associated with bad prognosis and it has been shown that a high level of ITPKA increases migration and invasion of lung cancer cell lines. However, since ITPKA exhibits actin bundling and Ins(1,4,5)P3-kinase activity, it was not clear which of these activities account for ITPKA-promoted migration and invasion of cancer cells. To address this issue, we inhibited endogenous actin bundling activity of ITPKA in lung cancer H1299 cells by overexpressing the dominant negative mutant ITPKAL34P. Analysis of actin dynamics in filopodia as well as wound-healing migration revealed that ITPKAL34P inhibited both processes. Moreover, the formation of invasive protrusions into collagen I was strongly blocked in cells overexpressing ITPKAL34P. Furthermore, we found that ATP stimulation slightly but significantly (by 13%) increased migration of cells overexpressing ITPKA while under basal conditions up-regulation of ITPKA had no effect. In accordance with these results, overexpression of a catalytic inactive ITPKA mutant did not affect migration, and the Ins(1,4,5)P3-kinase-inhibitor GNF362 reversed the stimulating effect of ITPKA overexpression on migration. In summary, we demonstrate that under basal conditions the actin bundling activity controls ITPKA-facilitated migration and invasion and in presence of ATP the Ins(1,4,5)P3-kinase activity slightly enhances this effect.
Collapse
|
9
|
Du Q, Zhou R, Wang H, Li Q, Yan Q, Dang W, Guo J. A metabolism-related gene signature for predicting the prognosis in thyroid carcinoma. Front Genet 2023; 13:972950. [PMID: 36685893 PMCID: PMC9846547 DOI: 10.3389/fgene.2022.972950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 11/23/2022] [Indexed: 01/06/2023] Open
Abstract
Metabolic reprogramming is one of the cancer hallmarks, important for the survival of malignant cells. We investigated the prognostic value of genes associated with metabolism in thyroid carcinoma (THCA). A prognostic risk model of metabolism-related genes (MRGs) was built and tested based on datasets in The Cancer Genome Atlas (TCGA), with univariate Cox regression analysis, LASSO, and multivariate Cox regression analysis. We used Kaplan-Meier (KM) curves, time-dependent receiver operating characteristic curves (ROC), a nomogram, concordance index (C-index) and restricted mean survival (RMS) to assess the performance of the risk model, indicating the splendid predictive performance. We established a three-gene risk model related to metabolism, consisting of PAPSS2, ITPKA, and CYP1A1. The correlation analysis in patients with different risk statuses involved immune infiltration, mutation and therapeutic reaction. We also performed pan-cancer analyses of model genes to predict the mutational value in various cancers. Our metabolism-related risk model had a powerful predictive capability in the prognosis of THCA. This research will provide the fundamental data for further development of prognostic markers and individualized therapy in THCA.
Collapse
Affiliation(s)
- Qiujing Du
- Department of General Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Ruhao Zhou
- Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Heng Wang
- Department of Vascular Surgery, Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Qian Li
- Basic Medical College, Shanxi Medical University, Jinzhong, China
| | - Qi Yan
- Department of Endocrinology, Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Wenjiao Dang
- Department of General Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Jianjin Guo
- Department of General Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China,*Correspondence: Jianjin Guo,
| |
Collapse
|
10
|
Liu J, Zhang C, Wang J, Huang Y, Shen D, Hu Y, Chu H, Yu X, Zhang L, Ma H. A Class I HDAC Inhibitor BG45 Alleviates Cognitive Impairment through the CaMKII/ITPKA/Ca 2+ Signaling Pathway. Pharmaceuticals (Basel) 2022; 15:1481. [PMID: 36558932 PMCID: PMC9786203 DOI: 10.3390/ph15121481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer's disease (AD) seriously endangers the health and life of elderly individuals worldwide. However, despite all scientific efforts, at the moment there are no effective clinical treatment options for AD. In this work, the effect of the class I histone deacetylase inhibitor (HDACI) BG45 on synapse-related proteins was investigated in primary neurons from APP/PS1 transgenic mice. The results showed that BG45 can upregulate the expression of synaptotagmin-1 (SYT-1) and neurofilament light chain (NF-L) in primary neurons. In vivo, the APPswe/PS1dE9 (APP/PS1) transgenic mice were treated with BG45 (30 mg/kg) daily for 12 days. Behavioral testing of BG45-treated APP/PS1 mice showed improvements in learning and memory. BG45 can alleviate damage to the dendritic spine and reduce the deposition of Aβ. Similar to the in vitro results, synapse-related proteins in the prefrontal cortex were increased after BG45 treatment. Proteomic analysis results highlighted the differences in the biological processes of energy metabolism and calmodulin regulation in APP/PS1 mice with or without BG45 treatment. Further verification demonstrated that the effect of BG45 on synapses and learning and memory may involve the CaMKII/ITPKA/Ca2+ pathway. These results suggest that class I HDACI BG45 might be a promising drug for the early clinical treatment of AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Liyuan Zhang
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Haiying Ma
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
11
|
Dong K, Zhang S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nat Commun 2022; 13:1739. [PMID: 35365632 PMCID: PMC8976049 DOI: 10.1038/s41467-022-29439-6] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/16/2022] [Indexed: 11/29/2022] Open
Abstract
Recent advances in spatially resolved transcriptomics have enabled comprehensive measurements of gene expression patterns while retaining the spatial context of the tissue microenvironment. Deciphering the spatial context of spots in a tissue needs to use their spatial information carefully. To this end, we develop a graph attention auto-encoder framework STAGATE to accurately identify spatial domains by learning low-dimensional latent embeddings via integrating spatial information and gene expression profiles. To better characterize the spatial similarity at the boundary of spatial domains, STAGATE adopts an attention mechanism to adaptively learn the similarity of neighboring spots, and an optional cell type-aware module through integrating the pre-clustering of gene expressions. We validate STAGATE on diverse spatial transcriptomics datasets generated by different platforms with different spatial resolutions. STAGATE could substantially improve the identification accuracy of spatial domains, and denoise the data while preserving spatial expression patterns. Importantly, STAGATE could be extended to multiple consecutive sections to reduce batch effects between sections and extracting three-dimensional (3D) expression domains from the reconstructed 3D tissue effectively.
Collapse
Affiliation(s)
- Kangning Dong
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shihua Zhang
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
12
|
Kröber T, Bartsch SM, Fiedler D. Pharmacological tools to investigate inositol polyphosphate kinases - Enzymes of increasing therapeutic relevance. Adv Biol Regul 2021; 83:100836. [PMID: 34802993 DOI: 10.1016/j.jbior.2021.100836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/01/2023]
Abstract
Inositol poly- and pyrophosphates (InsPs and PP-InsPs) are a group of central eukaryotic metabolites and signaling molecules. Due to the diverse cellular functions and widespread diseases InsPs and PP-InsPs are associated with, pharmacological targeting of the kinases involved in their biosynthesis has become a significant research interest in the last decade. In particular, the development of inhibitors for inositol hexakisphosphate kinases (IP6Ks) has leaped forward, while other inositol phosphate kinases have received scant attention. This review summarizes the efforts undertaken so far for discovering potent and selective inhibitors for this diverse group of small molecule kinases. The benefits of pharmacological inhibition are highlighted, given the multiple kinase-independent functions of inositol phosphate kinases. The distinct structural families of InsP and PP-InsP kinases are presented, and we discuss how compound availability for different inositol phosphate kinase families varies drastically. Lead compound discovery and optimization for the inositol kinases would benefit from detailed structural information on the ATP-binding sites of these kinases, as well as reliable biochemical and cellular read-outs to monitor inositol phosphate kinase activity in complex settings. Efforts to further tune well-established inhibitors, while simultaneously reviving tool compound development for the more neglected kinases from this family are indisputably worthwhile, considering the large potential therapeutic benefits.
Collapse
Affiliation(s)
- Tim Kröber
- Leibniz Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany; Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Straße 2, 12489, Berlin, Germany.
| | - Simon M Bartsch
- Leibniz Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany; Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Straße 2, 12489, Berlin, Germany.
| | - Dorothea Fiedler
- Leibniz Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany; Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Straße 2, 12489, Berlin, Germany.
| |
Collapse
|
13
|
Mechanism of BIP-4 mediated inhibition of InsP3Kinase-A. Biosci Rep 2021; 41:229216. [PMID: 34232294 PMCID: PMC8292763 DOI: 10.1042/bsr20211259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 11/17/2022] Open
Abstract
Overexpression of the neuronal InsP3kinase-A increases malignancy of different tumor types. Since InsP3kinase-A highly selectively binds Ins(1,4,5)P3, small molecules competing with Ins(1,4,5)P3 provide a promising approach for the therapeutic targeting of InsP3kinase-A. Based on this consideration, we analyzed the binding mechanism of BIP-4 (2-[3,5-dimethyl-1-(4-nitrophenyl)-1H-pyrazol-4-yl]-5, 8-dinitro-1H-benzo[de]isoquinoline-1,3(2H)-dione), a known competitive small-molecule inhibitor of Ins(1,4,5)P3. We tested a total of 80 BIP-4 related compounds in biochemical assays. The results of these experiments revealed that neither the nitrophenyl nor the benzisochinoline group inhibited InsP3kinase-A activity. Moreover, none of the BIP-4 related compounds competed for Ins(1,4,5)P3, demonstrating the high selectivity of BIP-4. To analyze the inhibition mechanism of BIP-4, mutagenesis experiments were performed. The results of these experiments suggest that the nitro groups attached to the benzisochinoline ring compete for binding of Ins(1,4,5)P3 while the nitrophenyl group is associated with amino acids of the ATP-binding pocket. Our results now offer the possibility to optimize BIP-4 to design specific InsP3Kinase-A inhibitors suitable for therapeutic targeting of the enzyme.
Collapse
|
14
|
Ren C, Tang X, Lan H. Comprehensive analysis based on DNA methylation and RNA-seq reveals hypermethylation of the up-regulated WT1 gene with potential mechanisms in PAM50 subtypes of breast cancer. PeerJ 2021; 9:e11377. [PMID: 33987034 PMCID: PMC8103922 DOI: 10.7717/peerj.11377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/08/2021] [Indexed: 11/20/2022] Open
Abstract
Background Breast cancer (BC), one of the most widespread cancers worldwide, caused the deaths of more than 600,000 women in 2018, accounting for about 15% of all cancer-associated deaths in women that year. In this study, we aimed to discover potential prognostic biomarkers and explore their molecular mechanisms in different BC subtypes using DNA methylation and RNA-seq. Methods We downloaded the DNA methylation datasets and the RNA expression profiles of primary tissues of the four BC molecular subtypes (luminal A, luminal B, basal-like, and HER2-enriched), as well as the survival information from The Cancer Genome Atlas (TCGA). The highly expressed and hypermethylated genes across all the four subtypes were screened. We examined the methylation sites and the downstream co-expressed genes of the selected genes and validated their prognostic value using a different dataset (GSE20685). For selected transcription factors, the downstream genes were predicted based on the Gene Transcription Regulation Database (GTRD). The tumor microenvironment was also evaluated based on the TCGA dataset. Results We found that Wilms tumor gene 1 (WT1), a transcription factor, was highly expressed and hypermethylated in all the four BC subtypes. All the WT1 methylation sites exhibited hypermethylation. The methylation levels of the TSS200 and 1stExon regions were negatively correlated with WT1 expression in two BC subtypes, while that of the gene body region was positively associated with WT1 expression in three BC subtypes. Patients with low WT1 expression had better overall survival (OS). Five genes including COL11A1, GFAP, FGF5, CD300LG, and IGFL2 were predicted as the downstream genes of WT1. Those five genes were dysregulated in the four BC subtypes. Patients with a favorable 6-gene signature (low expression of WT1 and its five predicted downstream genes) exhibited better OS than that with an unfavorable 6-gene signature. We also found a correlation between WT1 and tamoxifen using STITCH. Higher infiltration rates of CD8 T cells, plasma cells, and monocytes were found in the lower quartile WT1 group and the favorable 6-gene signature group. In conclusion, we demonstrated that WT1 is hypermethylated and up-regulated in the four BC molecular subtypes and a 6-gene signature may predict BC prognosis.
Collapse
Affiliation(s)
- Chongyang Ren
- Department of Breast Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Xiaojiang Tang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Haitao Lan
- Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Shaosheng W, Shaochuang W, Lichun F, Na X, Xiaohong Z. ITPKA induces cell senescence, inhibits ovarian cancer tumorigenesis and can be downregulated by miR-203. Aging (Albany NY) 2021; 13:11822-11832. [PMID: 33879633 PMCID: PMC8109125 DOI: 10.18632/aging.202880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/14/2021] [Indexed: 01/26/2023]
Abstract
Overcoming senescence is a feature of ovarian cancer cells; however, the mechanisms underlying senescence regulation in ovarian cancer cells remain largely unknown. In this study, we found that ITPKA was downregulated in ovarian cancer samples, and the lower expression correlated with poor survival. Overexpression of ITPKA inhibited the anchorage-independent growth of ovarian cancer cells and induced senescence. However, knockdown of ITPKA promoted the anchorage-independent growth of ovarian cancer cells and inhibited senescence. Mechanistically, ITPKA was found to interact with MDM2, which stabilized P53, an essential regulator of senescence. Moreover, ITPKA was negatively regulated by miR-203, a microRNA that has been previously reported to be upregulated in ovarian cancer. Taken together, the results of this study demonstrated the tumor suppressive roles of ITPKA in ovarian cancer and provided a good explanation for the oncogenic roles of miR-203.
Collapse
Affiliation(s)
- Wang Shaosheng
- Maternity Service Center of Pengzhou Maternal & Children Health Care Hospital, Chengdu, Sichuan Province 611930, People’s Republic of China
| | - Wang Shaochuang
- Department of Hepatobiliary and Pancreatic Surgery, Huai’an First People’s Hospital, Nanjing Medical University, Huai'an 223300, Jiangsu Province, People’s Republic of China
| | - Fan Lichun
- Hainan Maternal and Children’s Medical Center, Haikou 570206, Hainan Province, People’s Republic of China
| | - Xie Na
- Department of Pathology, The Affiliated Hospital of Hainan Medical University, Haikou 571101, Hainan Province, People’s Republic of China
| | - Zhao Xiaohong
- Hainan Maternal and Children’s Medical Center, Haikou 570206, Hainan Province, People’s Republic of China
| |
Collapse
|
16
|
Zhang J, Zhang S, Li X, Pi H. Relationship of ITPKA expression with the prognosis of breast cancer. Mol Genet Genomic Med 2021; 9:e1598. [PMID: 33624455 PMCID: PMC8123748 DOI: 10.1002/mgg3.1598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/06/2020] [Accepted: 12/15/2020] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Breast cancer (BC) represents a most common cancer among women worldwide. The outcomes of this disease remain dismal due to frequent recurrence and metastasis. Inositol-1,4,5-trisphosphate-3-kinase-A (ITPKA) plays an important role in regulating calcium signaling and actin dynamics. The dysregulation of ITPKA has been observed in several human cancers. The present study aimed to assess ITPKA expression and its prognostic value in BC. METHODS ITPKA expression was examined via quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC) methods. In addition, Kaplan-Meier survival analysis and Cox regression analysis were performed to evaluate prognostic value of ITPKA in BC. RESULTS Upregulated ITPKA expression was found in BC samples, according to both qRT-PCR and IHC analyses (all p < .05). ITPKA expression was positively correlated with lymph node metastasis (p = .021) and TNM stage (p = .009). Moreover, BC patients with high expression of ITPKA had poor overall survival compared with those with low expression (log-rank p < .05). Cox analysis verified that ITPKA expression was an independent prognostic factor for BC patients (HR = 4.239, 95%CI = 2.221-8.093 and p = .000). CONCLUSION BC cases show increased expression of ITPKA. ITPKA may act as an independent prognostic biomarker in BC.
Collapse
Affiliation(s)
- Jie Zhang
- Nursing Department, Sixth Medical Center of Chinese PLA Hospital, Medical School of Chinese PLA, Beijing, China
| | - Sujie Zhang
- Department of Oncology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Xiaoyan Li
- Department of Oncology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Hongying Pi
- Nursing Department, Sixth Medical Center of Chinese PLA Hospital, Medical School of Chinese PLA, Beijing, China
| |
Collapse
|
17
|
Zhu X, Xu A, Zhang Y, Huo N, Cong R, Ma L, Chu Z, Tang Z, Kang X, Xian S, Xu X. ITPKA1 Promotes Growth, Migration and Invasion of Renal Cell Carcinoma via Activation of mTOR Signaling Pathway. Onco Targets Ther 2020; 13:10515-10523. [PMID: 33116630 PMCID: PMC7573328 DOI: 10.2147/ott.s266095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
Background Renal cell cancer (RCC) is one of the most lethal malignancies of the kidney in adults. mTOR (mammalian target of rapamycin) signaling pathway plays a pivotal role in RCC tumorigenesis and progression and inhibitors targeting the mTOR pathway have been widely used in advanced RCC treatment. Therefore, it is of great significance to explore the potential regulators of the mTOR pathway as RCC therapeutic targets. Materials and Methods Bioinformatics analysis was used to screen out the most significant differentially expressed genes in the RCC dataset of The Cancer Genome Atlas (TCGA). Real-time PCR and Western-blot analysis were utilized to examine the expression of inositol-1,4,5-trisphosphate-3-kinase-A (ITPKA) in four RCC cell lines and one human embryonic kidney cell line. Cell counting Kit-8 and colony formation assay were performed to estimate the effect of ITPKA on the proliferation ability of RCC cells. Wound healing and Transwell assays were used to test the effect of ITPKA on RCC cell migration and invasion. Xenograft formation assay was performed in nude mice to investigate the effect of ITPKA in vivo. mTORC1 pathway inhibitor was added to explore the mechanisms by which ITPKA regulates RCC cell growth and progression. Results Based on bioinformatics analysis, ITPKA is screened out as one of the most significant differentially expressed genes in RCC. ITPKA is upregulated and positively correlated with RCC malignancy and poorer prognosis. ITPKA promotes RCC growth, migration and invasion in cultured cells, and accelerates tumor growth in nude mice. Mechanistically, ITPKA stimulates the mTORC1 signaling pathway which is a requirement for ITPKA modulation of RCC cell proliferation, migration and invasion. Conclusion Our data demonstrate a critical regulatory role of the ITPKA in RCC and suggest that ITPKA/mTORC1 axis may be a promising target for diagnosis and treatment of RCC.
Collapse
Affiliation(s)
- Xiang Zhu
- Department of Infectious Disease, Army No.82 Group Military Hospital, Baoding, People's Republic of China.,Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - An Xu
- Department of Oncology, Second Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yang Zhang
- Department of Radiation Oncology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Nan Huo
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Rui Cong
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Luyuan Ma
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Zhong Chu
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Zhi Tang
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Xiaofeng Kang
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Shaozhong Xian
- Department of Urology, Beijing Luhe Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiaojie Xu
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| |
Collapse
|
18
|
Blechner C, Becker L, Fuchs H, Rathkolb B, Prehn C, Adler T, Calzada-Wack J, Garrett L, Gailus-Durner V, Morellini F, Conrad S, Hölter SM, Wolf E, Klopstock T, Adamski J, Busch D, de Angelis MH, Schmeisser MJ, Windhorst S. Physiological relevance of the neuronal isoform of inositol-1,4,5-trisphosphate 3-kinases in mice. Neurosci Lett 2020; 735:135206. [PMID: 32593773 DOI: 10.1016/j.neulet.2020.135206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/09/2020] [Accepted: 06/23/2020] [Indexed: 10/24/2022]
Abstract
Inositol-1,4,5-trisphosphate 3-kinase-A (ITPKA) is the neuronal isoform of ITPKs and exhibits both actin bundling and InsP3kinase activity. In addition to neurons, ITPKA is ectopically expressed in tumor cells, where its oncogenic activity increases tumor cell malignancy. In order to analyze the physiological relevance of ITPKA, here we performed a broad phenotypic screening of itpka deficient mice. Our data show that among the neurobehavioral tests analyzed, itpka deficient mice reacted faster to a hotplate, prepulse inhibition was impaired and the accelerating rotarod test showed decreased latency of itpka deficient mice to fall. These data indicate that ITPKA is involved in the regulation of nociceptive pathways, sensorimotor gating and motor learning. Analysis of extracerebral functions in control and itpka deficient mice revealed significantly reduced glucose, lactate, and triglyceride plasma concentrations in itpka deficient mice. Based on this finding, expression of ITPKA was analyzed in extracerebral tissues and the highest level was found in the small intestine. However, functional studies on CaCo-2 control and ITPKA depleted cells showed that glucose, as well as triglyceride uptake, were not significantly different between the cell lines. Altogether, these data show that ITPKA exhibits distinct functions in the central nervous system and reveal an involvement of ITPKA in energy metabolism.
Collapse
Affiliation(s)
- Christine Blechner
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Lore Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany; Geman Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany; Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University München, Feodor-Lynen Str. 25, 81377, Munich, Germany
| | - Cornelia Prehn
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Thure Adler
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Julia Calzada-Wack
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Lillian Garrett
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Valerie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Fabio Morellini
- Behavioral Biology, Center for Molecular Neurobiology Hamburg, Falkenried 94, D-20251 Hamburg, Germany
| | - Susanne Conrad
- Forschungstierhaltung University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Sabine M Hölter
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University München, Feodor-Lynen Str. 25, 81377, Munich, Germany
| | - Thomas Klopstock
- Dept. of Neurology, Friedrich-Baur-Institute, Klinikum der Ludwig-Maximilians-Universität München, Ziemssenstr. 1a, 80336, Munich, Germany; Deutsches Institut für Neurodegenerative Erkrankungen (DZNE), Site Munich, 80336, München, Germany; Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Schillerstr. 44, 80336, Munich, Germany
| | - Jerzy Adamski
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany; Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Alte Akademie 8, 85354, Freising, Germany
| | - Dirk Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Trogerstrasse 30, 81675, Munich, Germany
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany; Geman Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany; Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Alte Akademie 8, 85354, Freising, Germany
| | - Michael J Schmeisser
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany; Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany; Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Sabine Windhorst
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany.
| |
Collapse
|
19
|
Arsović A, Halbach MV, Canet-Pons J, Esen-Sehir D, Döring C, Freudenberg F, Czechowska N, Seidel K, Baader SL, Gispert S, Sen NE, Auburger G. Mouse Ataxin-2 Expansion Downregulates CamKII and Other Calcium Signaling Factors, Impairing Granule-Purkinje Neuron Synaptic Strength. Int J Mol Sci 2020; 21:E6673. [PMID: 32932600 PMCID: PMC7555182 DOI: 10.3390/ijms21186673] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is caused by polyglutamine expansion in Ataxin-2 (ATXN2). This factor binds RNA/proteins to modify metabolism after stress, and to control calcium (Ca2+) homeostasis after stimuli. Cerebellar ataxias and corticospinal motor neuron degeneration are determined by gain/loss in ATXN2 function, so we aimed to identify key molecules in this atrophic process, as potential disease progression markers. Our Atxn2-CAG100-Knock-In mouse faithfully models features observed in patients at pre-onset, early and terminal stages. Here, its cerebellar global RNA profiling revealed downregulation of signaling cascades to precede motor deficits. Validation work at mRNA/protein level defined alterations that were independent of constant physiological ATXN2 functions, but specific for RNA/aggregation toxicity, and progressive across the short lifespan. The earliest changes were detected at three months among Ca2+ channels/transporters (Itpr1, Ryr3, Atp2a2, Atp2a3, Trpc3), IP3 metabolism (Plcg1, Inpp5a, Itpka), and Ca2+-Calmodulin dependent kinases (Camk2a, Camk4). CaMKIV-Sam68 control over alternative splicing of Nrxn1, an adhesion component of glutamatergic synapses between granule and Purkinje neurons, was found to be affected. Systematic screening of pre/post-synapse components, with dendrite morphology assessment, suggested early impairment of CamKIIα abundance together with the weakening of parallel fiber connectivity. These data reveal molecular changes due to ATXN2 pathology, primarily impacting excitability and communication.
Collapse
Affiliation(s)
- Aleksandar Arsović
- Experimental Neurology, Medical Faculty, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (A.A.); (M.V.H.); (J.C.-P.); (S.G.)
| | - Melanie Vanessa Halbach
- Experimental Neurology, Medical Faculty, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (A.A.); (M.V.H.); (J.C.-P.); (S.G.)
| | - Júlia Canet-Pons
- Experimental Neurology, Medical Faculty, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (A.A.); (M.V.H.); (J.C.-P.); (S.G.)
| | - Dilhan Esen-Sehir
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Medical Faculty, Goethe University, Heinrich-Hoffmann-Str. 10, 60528 Frankfurt am Main, Germany; (D.E.-S.); (F.F.)
- Faculty of Biosciences, Goethe-University, Max von Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Claudia Döring
- Dr. Senckenberg Institute of Pathology, Goethe University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany;
| | - Florian Freudenberg
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Medical Faculty, Goethe University, Heinrich-Hoffmann-Str. 10, 60528 Frankfurt am Main, Germany; (D.E.-S.); (F.F.)
| | - Nicoletta Czechowska
- Institute of Anatomy, Anatomy and Cell Biology, University of Bonn, Nussallee 10, 53115 Bonn, Germany; (N.C.); (K.S.); (S.L.B.)
| | - Kay Seidel
- Institute of Anatomy, Anatomy and Cell Biology, University of Bonn, Nussallee 10, 53115 Bonn, Germany; (N.C.); (K.S.); (S.L.B.)
| | - Stephan L. Baader
- Institute of Anatomy, Anatomy and Cell Biology, University of Bonn, Nussallee 10, 53115 Bonn, Germany; (N.C.); (K.S.); (S.L.B.)
| | - Suzana Gispert
- Experimental Neurology, Medical Faculty, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (A.A.); (M.V.H.); (J.C.-P.); (S.G.)
| | - Nesli-Ece Sen
- Experimental Neurology, Medical Faculty, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (A.A.); (M.V.H.); (J.C.-P.); (S.G.)
- Faculty of Biosciences, Goethe-University, Max von Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Georg Auburger
- Experimental Neurology, Medical Faculty, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (A.A.); (M.V.H.); (J.C.-P.); (S.G.)
| |
Collapse
|
20
|
Guoren Z, Zhaohui F, Wei Z, Mei W, Yuan W, Lin S, Xiaoyue X, Xiaomei Z, Bo S. TFAP2A Induced ITPKA Serves as an Oncogene and Interacts with DBN1 in Lung Adenocarcinoma. Int J Biol Sci 2020; 16:504-514. [PMID: 32015686 PMCID: PMC6990902 DOI: 10.7150/ijbs.40435] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/12/2019] [Indexed: 12/22/2022] Open
Abstract
The inositol polyphosphate kinase (IPK) family member ITPKA (inositol 1,4,5-trisphosphate 3-kinase) regulates the levels of many inositol polyphosphates which are important in cellular signaling. Several recent studies reported the aberrant expression of ITPKA in malignancy disease and usually made cancer more aggressive. However, the contribution of the inositol polyphosphate kinase ITPKA to lung cancer development remains unclear. Here we report that ITPKA is overexpressed in lung adenocarcinoma (LUAD) and positively correlated with advanced clinical parameters. ITPKA contributes to the malignant phenotypes in-vitro. Mechanistically, ITPKA executed its action through the inducting of epithelial-mesenchymal transition (EMT) and interacting with Drebrin 1 (which is related to cancer metastasis). Moreover, the hyper-expression of ITPKA in LUAD is transcriptionally activated by the transcription factor TFAP2A. In survival analysis by using tissue microarray (TMA), we indicate that ITPKA is hyper-expressed in LUAD tissues compared to adjacent normal tissues, and increased expression of ITPKA is associated with poor prognosis. Collectively, this study indicates that TFAP2A induced ITPKA hyperexpression promotes LUAD via interacting with Drebrin 1 and activating epithelial-mesenchymal transition (EMT). ITPKA might represent a potent candidate for the treatment and prognostic prediction of LUAD.
Collapse
Affiliation(s)
- Zhou Guoren
- Jiangsu Cancer Hospital, Jiangsu Institute Of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital; 42 Baiziting, Nanjing, Jiangsu, 210009, China (Corresponding Address)
| | - Fan Zhaohui
- Jiangsu Cancer Hospital, Jiangsu Institute Of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital; 42 Baiziting, Nanjing, Jiangsu, 210009, China (Corresponding Address)
| | - Zhu Wei
- School Of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wang Mei
- School Of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wu Yuan
- Jiangsu Cancer Hospital, Jiangsu Institute Of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital; 42 Baiziting, Nanjing, Jiangsu, 210009, China (Corresponding Address)
| | - Shi Lin
- Jiangsu Cancer Hospital, Jiangsu Institute Of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital; 42 Baiziting, Nanjing, Jiangsu, 210009, China (Corresponding Address)
| | - Xu Xiaoyue
- Jiangsu Cancer Hospital, Jiangsu Institute Of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital; 42 Baiziting, Nanjing, Jiangsu, 210009, China (Corresponding Address)
| | - Zhang Xiaomei
- Jiangsu Cancer Hospital, Jiangsu Institute Of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital; 42 Baiziting, Nanjing, Jiangsu, 210009, China (Corresponding Address)
| | - Shen Bo
- Jiangsu Cancer Hospital, Jiangsu Institute Of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital; 42 Baiziting, Nanjing, Jiangsu, 210009, China (Corresponding Address)
| |
Collapse
|
21
|
Moinova HR, LaFramboise T, Lutterbaugh JD, Chandar AK, Dumot J, Faulx A, Brock W, De la Cruz Cabrera O, Guda K, Barnholtz-Sloan JS, Iyer PG, Canto MI, Wang JS, Shaheen NJ, Thota PN, Willis JE, Chak A, Markowitz SD. Identifying DNA methylation biomarkers for non-endoscopic detection of Barrett's esophagus. Sci Transl Med 2019; 10:10/424/eaao5848. [PMID: 29343623 DOI: 10.1126/scitranslmed.aao5848] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/08/2017] [Indexed: 12/17/2022]
Abstract
We report a biomarker-based non-endoscopic method for detecting Barrett's esophagus (BE) based on detecting methylated DNAs retrieved via a swallowable balloon-based esophageal sampling device. BE is the precursor of, and a major recognized risk factor for, developing esophageal adenocarcinoma. Endoscopy, the current standard for BE detection, is not cost-effective for population screening. We performed genome-wide screening to ascertain regions targeted for recurrent aberrant cytosine methylation in BE, identifying high-frequency methylation within the CCNA1 locus. We tested CCNA1 DNA methylation as a BE biomarker in cytology brushings of the distal esophagus from 173 individuals with or without BE. CCNA1 DNA methylation demonstrated an area under the curve of 0.95 for discriminating BE-related metaplasia and neoplasia cases versus normal individuals, performing identically to methylation of VIM DNA, an established BE biomarker. When combined, the resulting two biomarker panel was 95% sensitive and 91% specific. These results were replicated in an independent validation cohort of 149 individuals who were assayed using the same cutoff values for test positivity established in the training population. To progress toward non-endoscopic esophageal screening, we engineered a well-tolerated, swallowable, encapsulated balloon device able to selectively sample the distal esophagus within 5 min. In balloon samples from 86 individuals, tests of CCNA1 plus VIM DNA methylation detected BE metaplasia with 90.3% sensitivity and 91.7% specificity. Combining the balloon sampling device with molecular assays of CCNA1 plus VIM DNA methylation enables an efficient, well-tolerated, sensitive, and specific method of screening at-risk populations for BE.
Collapse
Affiliation(s)
- Helen R Moinova
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Thomas LaFramboise
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - James D Lutterbaugh
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Apoorva Krishna Chandar
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - John Dumot
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Ashley Faulx
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Wendy Brock
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | | | - Kishore Guda
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jill S Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Prasad G Iyer
- Barrett's Esophagus Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Marcia I Canto
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Jean S Wang
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicholas J Shaheen
- Center for Esophageal Diseases and Swallowing, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Prashanti N Thota
- Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Joseph E Willis
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA. .,Department of Pathology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA.,University Hospitals Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Amitabh Chak
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA. .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.,University Hospitals Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Sanford D Markowitz
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA. .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA.,University Hospitals Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
22
|
Gu C, Stashko MA, Puhl-Rubio AC, Chakraborty M, Chakraborty A, Frye SV, Pearce KH, Wang X, Shears SB, Wang H. Inhibition of Inositol Polyphosphate Kinases by Quercetin and Related Flavonoids: A Structure-Activity Analysis. J Med Chem 2019; 62:1443-1454. [PMID: 30624931 DOI: 10.1021/acs.jmedchem.8b01593] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dietary flavonoids inhibit certain protein kinases and phospholipid kinases by competing for their ATP-binding sites. These nucleotide pockets have structural elements that are well-conserved in two human small-molecule kinases, inositol hexakisphosphate kinase (IP6K) and inositol polyphosphate multikinase (IPMK), which synthesize multifunctional inositol phosphate cell signals. Herein, we demonstrate that both kinases are inhibited by quercetin and 16 related flavonoids; IP6K is the preferred target. Relative inhibitory activities were rationalized by X-ray analysis of kinase/flavonoid crystal structures; this detailed structure-activity analysis revealed hydrophobic and polar ligand/protein interactions, the degree of flexibility of key amino acid side chains, and the importance of water molecules. The seven most potent IP6K inhibitors were incubated with intact HCT116 cells at concentrations of 2.5 μM; diosmetin was the most selective and effective IP6K inhibitor (>70% reduction in activity). Our data can instruct on pharmacophore properties to assist the future development of inositol phosphate kinase inhibitors. Finally, we propose that dietary flavonoids may inhibit IP6K activity in cells that line the gastrointestinal tract.
Collapse
Affiliation(s)
- Chunfang Gu
- Inositol Signaling Group, Signal Transduction Laboratory , National Institute of Environmental Health Sciences , Research Triangle Park , North Carolina 27709 , United States
| | - Michael A Stashko
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Ana C Puhl-Rubio
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Molee Chakraborty
- Department of Pharmacology and Physiology , Saint Louis University School of Medicine , M370, Schwitalla Hall, 1402 South Grand Boulevard , Saint Louis , Missouri 63104 , United States
| | - Anutosh Chakraborty
- Department of Pharmacology and Physiology , Saint Louis University School of Medicine , M370, Schwitalla Hall, 1402 South Grand Boulevard , Saint Louis , Missouri 63104 , United States
| | - Stephen V Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Kenneth H Pearce
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Xiaodong Wang
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Stephen B Shears
- Inositol Signaling Group, Signal Transduction Laboratory , National Institute of Environmental Health Sciences , Research Triangle Park , North Carolina 27709 , United States
| | - Huanchen Wang
- Inositol Signaling Group, Signal Transduction Laboratory , National Institute of Environmental Health Sciences , Research Triangle Park , North Carolina 27709 , United States
| |
Collapse
|
23
|
Effect of the actin- and calcium-regulating activities of ITPKB on the metastatic potential of lung cancer cells. Biochem J 2018; 475:2057-2071. [DOI: 10.1042/bcj20180238] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 01/10/2023]
Abstract
Inositol-1,4,5-trisphosphate 3-kinase-A (ITPKA) exhibits oncogenic activity in lung cancer cells by regulating Ins(1,4,5)P3-mediated calcium release and cytoskeletal dynamics. Since, in normal cells, ITPKA is mainly expressed in the brain, it is an excellent target for selected therapy of lung cancer. However, ITPKB is strongly expressed in normal lung tissues, but is down-regulated in lung cancer cells by miR-375, assuming that ITPKB might have tumor suppressor activity. In addition, ITPKB binds to F-actin making it likely that, similar to ITPKA, it controls actin dynamics. Thus, the treatment of ITPKA-expressing lung cancer with ITPKA inhibitors simultaneously inhibiting ITPKB may counteract the therapy. Based on these considerations, we analyzed if ITPKB controls actin dynamics and if the protein reduces aggressive progression of lung cancer cells. We found that ITPKB bundled F-actin in cell-free systems. However, the stable expression of ITPKB in H1299 lung cancer cells, exhibiting very low endogenous ITPKB expression, had no significant effect on the actin structure. In addition, our data show that ITPKB negatively controls transmigration of H1299 cells in vitro by blocking Ins(1,4,5)P3-mediated calcium release. On the other hand, colony formation was stimulated by ITPKB, independent of Ins(1,4,5)P3-mediated calcium signals. However, dissemination of H1299 cells from the skin to the lung in NOD scid gamma mice was not significantly affected by ITPKB expression. In summary, ITPKB does not affect the cellular actin structure and does not suppress dissemination of human lung cancer cells in mice. Thus, our initial hypotheses that ITPKB exhibits tumor suppressor activity could not be supported.
Collapse
|