1
|
Hill SJ, Kilpatrick LE. Kinetic analysis of fluorescent ligand binding to cell surface receptors: Insights into conformational changes and allosterism in living cells. Br J Pharmacol 2024; 181:4091-4102. [PMID: 37386806 DOI: 10.1111/bph.16185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/02/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
Equilibrium binding assays are one of the mainstays of current drug discovery efforts to evaluate the interaction of drugs with receptors in membranes and intact cells. However, in recent years, there has been increased focus on the kinetics of the drug-receptor interaction to gain insight into the lifetime of drug-receptor complexes and the rate of association of a ligand with its receptor. Furthermore, drugs that act on topically distinct sites (allosteric) from those occupied by the endogenous ligand (orthosteric site) can induce conformational changes in the orthosteric binding site leading to changes in the association and/or dissociation rate constants of orthosteric ligands. Conformational changes in the orthosteric ligand binding site can also be induced through interaction with neighbouring accessory proteins and receptor homodimerisation and heterodimerisation. In this review, we provide an overview of the use of fluorescent ligand technologies to interrogate ligand-receptor kinetics in living cells and the novel insights that they can provide into the conformational changes induced by drugs acting on a variety of cell surface receptors including G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and cytokine receptors.
Collapse
Affiliation(s)
- Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
| | - Laura E Kilpatrick
- Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
- Division of Bimolecular Science and Medicinal Chemistry, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| |
Collapse
|
2
|
Waduge P, Kaur A, Li W. A method for rapid and reliable quantification of VEGF-cell binding activity. Biochem Biophys Res Commun 2024; 727:150321. [PMID: 38954982 PMCID: PMC11298814 DOI: 10.1016/j.bbrc.2024.150321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Vascular endothelial growth factor (VEGF) is a pleiotropic growth factor that binds a broad spectrum of cell types and regulates diverse cellular processes, including angiogenesis, growth and survival. However, it is technically difficult to quantify VEGF-cell binding activity because of reversible nature of ligand-receptor interactions. Here we used T7 bacteriophage display to quantify and compare binding activity of three human VEGF-A (hVEGF) isoforms, including hVEGF111, 165 and 206. All three isoforms bound equally well to immobilized aflibercept, a decoy VEGF receptor. hVEGF111-Phage exhibited minimal binding to immobilized heparan sulfate, whereas hVEGF206-Phage and hVEGF165-Phage had the highest and intermediate binding to heparan, respectively. In vitro studies revealed that all three isoforms bound to human umbilical vein endothelial cells (HUVECs), HEK293 epithelial and SK-N-AS neuronal cells. hVEGF111-Phage has the lowest binding activity, while hVEGF206-Phage has the highest binding. hVEGF206-Phage was the most sensitive to detect VEGF-cell binding, albeit with the highest background binding to SK-N-AS cells. These results suggest that hVEGF206-Phage is the best-suited isoform to quantify VEGF-cell binding even though VEGF165 is the most biologically active. Furthermore, this study demonstrates the utility of T7 phage display as a platform for rapid and convenient ligand-cell binding quantification with pros and cons discussed.
Collapse
Affiliation(s)
- Prabuddha Waduge
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Avinash Kaur
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wei Li
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Grätz L, Sajkowska-Kozielewicz JJ, Wesslowski J, Kinsolving J, Bridge LJ, Petzold K, Davidson G, Schulte G, Kozielewicz P. NanoBiT- and NanoBiT/BRET-based assays allow the analysis of binding kinetics of Wnt-3a to endogenous Frizzled 7 in a colorectal cancer model. Br J Pharmacol 2024; 181:3819-3835. [PMID: 37055379 DOI: 10.1111/bph.16090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/06/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Wnt binding to Frizzleds (FZD) is a crucial step that leads to the initiation of signalling cascades governing multiple processes during embryonic development, stem cell regulation and adult tissue homeostasis. Recent efforts have enabled us to shed light on Wnt-FZD pharmacology using overexpressed HEK293 cells. However, assessing ligand binding at endogenous receptor expression levels is important due to differential binding behaviour in a native environment. Here, we study FZD paralogue, FZD7, and analyse its interactions with Wnt-3a in live CRISPR-Cas9-edited SW480 cells typifying colorectal cancer. EXPERIMENTAL APPROACH SW480 cells were CRISPR-Cas9-edited to insert a HiBiT tag on the N-terminus of FZD7, preserving the native signal peptide. These cells were used to study eGFP-Wnt-3a association with endogenous and overexpressed HiBiT-FZD7 using NanoBiT/bioluminescence resonance energy transfer (BRET) and NanoBiT to measure ligand binding and receptor internalization. KEY RESULTS With this new assay the binding of eGFP-Wnt-3a to endogenous HiBiT-FZD7 was compared with overexpressed receptors. Receptor overexpression results in increased membrane dynamics, leading to an apparent decrease in binding on-rate and consequently in higher, up to 10 times, calculated Kd. Thus, measurements of binding affinities to FZD7 obtained in overexpressed cells are suboptimal compared with the measurements from endogenously expressing cells. CONCLUSIONS AND IMPLICATIONS Binding affinity measurements in the overexpressing cells fail to replicate ligand binding affinities assessed in a (patho)physiologically relevant context where receptor expression is lower. Therefore, future studies on Wnt-FZD7 binding should be performed using receptors expressed under endogenous promotion.
Collapse
Affiliation(s)
- Lukas Grätz
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Joanna J Sajkowska-Kozielewicz
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Janine Wesslowski
- Institute of Biological and Chemical Systems-Functional Molecular Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Julia Kinsolving
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Lloyd J Bridge
- Department of Computer Science and Creative Technologies, University of the West England, Bristol, UK
| | - Katja Petzold
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Gary Davidson
- Institute of Biological and Chemical Systems-Functional Molecular Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Gunnar Schulte
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Paweł Kozielewicz
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
4
|
White CW, Platt S, Kilpatrick LE, Dale N, Abhayawardana RS, Dekkers S, Kindon ND, Kellam B, Stocks MJ, Pfleger KDG, Hill SJ. CXCL17 is an allosteric inhibitor of CXCR4 through a mechanism of action involving glycosaminoglycans. Sci Signal 2024; 17:eabl3758. [PMID: 38502733 PMCID: PMC7615768 DOI: 10.1126/scisignal.abl3758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 02/29/2024] [Indexed: 03/21/2024]
Abstract
CXCL17 is a chemokine principally expressed by mucosal tissues, where it facilitates chemotaxis of monocytes, dendritic cells, and macrophages and has antimicrobial properties. CXCL17 is also implicated in the pathology of inflammatory disorders and progression of several cancers, and its expression is increased during viral infections of the lung. However, the exact role of CXCL17 in health and disease requires further investigation, and there is a need for confirmed molecular targets mediating CXCL17 functional responses. Using a range of bioluminescence resonance energy transfer (BRET)-based assays, here we demonstrated that CXCL17 inhibited CXCR4-mediated signaling and ligand binding. Moreover, CXCL17 interacted with neuropillin-1, a VEGFR2 coreceptor. In addition, we found that CXCL17 only inhibited CXCR4 ligand binding in intact cells and demonstrated that this effect was mimicked by known glycosaminoglycan binders, surfen and protamine sulfate. Disruption of putative GAG binding domains in CXCL17 prevented CXCR4 binding. This indicated that CXCL17 inhibited CXCR4 by a mechanism of action that potentially required the presence of a glycosaminoglycan-containing accessory protein. Together, our results revealed that CXCL17 is an endogenous inhibitor of CXCR4 and represents the next step in our understanding of the function of CXCL17 and regulation of CXCR4 signaling.
Collapse
Affiliation(s)
- Carl W. White
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- Dimerix Limited, Melbourne, Australia
| | - Simon Platt
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | - Laura E. Kilpatrick
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Natasha Dale
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Rekhati S. Abhayawardana
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Sebastian Dekkers
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Nicholas D Kindon
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Barrie Kellam
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Michael J Stocks
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Kevin D. G. Pfleger
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- Dimerix Limited, Melbourne, Australia
| | - Stephen J. Hill
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| |
Collapse
|
5
|
Spears RJ, Chudasama V. Recent advances in N- and C-terminus cysteine protein bioconjugation. Curr Opin Chem Biol 2023; 75:102306. [PMID: 37236135 DOI: 10.1016/j.cbpa.2023.102306] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 05/28/2023]
Abstract
Advances in the site-specific chemical modification of proteins, also referred to as protein bioconjugation, have proved instrumental in revolutionary approaches to designing new protein-based therapeutics. Of the sites available for protein modification, cysteine residues or the termini of proteins have proved especially popular owing to their favorable properties for site-specific modification. Strategies that, therefore, specifically target cysteine at the termini offer a combination of these favorable properties of cysteine and termini bioconjugation. In this review, we discuss these strategies with a particular focus on those reported recently and provide our opinion on the future direction of the field.
Collapse
Affiliation(s)
- Richard J Spears
- Department of Chemistry, University College London, 20 Gordon Street, London, UK
| | - Vijay Chudasama
- Department of Chemistry, University College London, 20 Gordon Street, London, UK.
| |
Collapse
|
6
|
Van Daele M, Kilpatrick LE, Woolard J, Hill SJ. Characterisation of tyrosine kinase inhibitor-receptor interactions at VEGFR2 using sunitinib-red and nanoBRET. Biochem Pharmacol 2023:115672. [PMID: 37406966 DOI: 10.1016/j.bcp.2023.115672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
Vascular endothelial growth factor (VEGF) is an important mediator of angiogenesis, proliferation and migration of vascular endothelial cells. It is well known that cardiovascular safety liability for a wide range of small molecule tyrosine kinase inhibitors (TKIs) can result from interference with the VEGFR2 signalling system. In this study we have developed a ligand-binding assay using a fluorescent analogue of sunitinib (sunitinib-red) and full length VEGFR2 tagged on its C-terminus with the bioluminescent protein nanoluciferase to monitor ligand-binding to VEGFR2 using bioluminescence resonance energy transfer (BRET). This NanoBRET assay is a proximity-based assay (requiring the fluorescent and bioluminescent components to be within 10nm of each other) that can monitor the binding of ligands to the kinase domain of VEGFR2. Sunitinib-red was not membrane permeable but was able to monitor the binding affinity and kinetics of a range of TKIs in cell lysates. Kinetic studies showed that sunitinib-red bound rapidly to VEGFR2 at 25 °C and that cediranib had slower binding kinetics with an average residence time of 112 min. Comparison between the log Ki values for inhibition of binding of sunitinib-red and log IC50 values for attenuation of VEGF165a-stimulated NFAT responses showed very similar values for compounds that inhibited sunitinib-red binding. However, two compounds that failed to inhibit sunitinib-red binding (dasatinib and entospletinib) were still able to attenuate VEGFR2-mediated NFAT signalling through inhibition of downstream signalling events. These results suggest that these compounds may still exhibit cardiovascular liabilities as a result of interference with downstream VEGFR2 signalling.
Collapse
Affiliation(s)
- Marieke Van Daele
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
| | - Laura E Kilpatrick
- Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK; Division of Bimolecular Science and Medicinal Chemistry, School of Pharmacy, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK.
| |
Collapse
|
7
|
Imaging strategies for receptor tyrosine kinase dimers in living cells. Anal Bioanal Chem 2023; 415:67-82. [PMID: 36190534 DOI: 10.1007/s00216-022-04334-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 01/10/2023]
Abstract
Receptor tyrosine kinases (RTKs) are the essential regulators of cell signal transduction pathways and play important roles in biological processes. RTK dimerization is generally considered the first step in receptor activation and cell communication. And the abnormal expression of RTK dimers is closely related to the occurrence and development of many diseases. Therefore, the visualization of RTK dimerization is of great significance for monitoring physiological processes. The genetic and nongenetic imaging strategies have attracted widespread attention due to their high efficiency and high sensitivity. In this review, the RTKs and their dimers as well as the advances in strategies for imaging RTK dimers are introduced. Furthermore, we analyze the limitations of existing imaging strategies and put forward suggestions for the future development of imaging probes. We expect that this review will inspire more in-depth investigation of RTK dimers, which will also broaden the application of strategies of RTK dimers in biomedical areas.
Collapse
|
8
|
Grätz L, Müller C, Pegoli A, Schindler L, Bernhardt G, Littmann T. Insertion of Nanoluc into the Extracellular Loops as a Complementary Method To Establish BRET-Based Binding Assays for GPCRs. ACS Pharmacol Transl Sci 2022; 5:1142-1155. [PMID: 36407949 PMCID: PMC9667534 DOI: 10.1021/acsptsci.2c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 11/13/2022]
Abstract
Luminescence-based techniques play an increasingly important role in all areas of biochemical research, including investigations on G protein-coupled receptors (GPCRs). One quite recent and popular addition has been made by introducing bioluminescence resonance energy transfer (BRET)-based binding assays for GPCRs, which are based on the fusion of nanoluciferase (Nluc) to the N-terminus of the receptor and the occurring energy transfer via BRET to a bound fluorescent ligand. However, being based on BRET, the technique is strongly dependent on the distance/orientation between the luciferase and the fluorescent ligand. Here we describe an alternative strategy to establish BRET-based binding assays for GPCRs, where the N-terminal fusion of Nluc did not result in functioning test systems with our fluorescent ligands (e.g., for the neuropeptide Y Y1 receptor (Y1R) and the neurotensin receptor type 1 (NTS1R)). Instead, we introduced Nluc into their second extracellular loop and we obtained binding data for the fluorescent ligands and reported standard ligands (in saturation and competition binding experiments, respectively) comparable to data from the literature. The strategy was transferred to the angiotensin II receptor type 1 (AT1R) and the M1 muscarinic acetylcholine receptor (M1R), which led to affinity estimates comparable to data from radioligand binding experiments. Additionally, an analysis of the binding kinetics of all fluorescent ligands at their respective target was performed using the newly described receptor/Nluc-constructs.
Collapse
Affiliation(s)
| | - Christoph Müller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | | | - Lisa Schindler
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Günther Bernhardt
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | | |
Collapse
|
9
|
Kok ZY, Stoddart LA, Mistry SJ, Mocking TAM, Vischer HF, Leurs R, Hill SJ, Mistry SN, Kellam B. Optimization of Peptide Linker-Based Fluorescent Ligands for the Histamine H 1 Receptor. J Med Chem 2022; 65:8258-8288. [PMID: 35734860 PMCID: PMC9234962 DOI: 10.1021/acs.jmedchem.2c00125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The histamine H1 receptor (H1R) has recently been implicated in mediating cell proliferation and cancer progression; therefore, high-affinity H1R-selective fluorescent ligands are desirable tools for further investigation of this behavior in vitro and in vivo. We previously reported a H1R fluorescent ligand, bearing a peptide-linker, based on antagonist VUF13816 and sought to further explore structure-activity relationships (SARs) around the linker, orthostere, and fluorescent moieties. Here, we report a series of high-affinity H1R fluorescent ligands varying in peptide linker composition, orthosteric targeting moiety, and fluorophore. Incorporation of a boron-dipyrromethene (BODIPY) 630/650-based fluorophore conferred high binding affinity to our H1R fluorescent ligands, remarkably overriding the linker SAR observed in corresponding unlabeled congeners. Compound 31a, both potent and subtype-selective, enabled H1R visualization using confocal microscopy at a concentration of 10 nM. Molecular docking of 31a with the human H1R predicts that the optimized peptide linker makes interactions with key residues in the receptor.
Collapse
Affiliation(s)
- Zhi Yuan Kok
- Division of Biomolecular Science and Medicinal Chemistry, School of Pharmacy, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, U.K.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, the Midlands, Nottingham NG7 2UH, U.K
| | - Leigh A Stoddart
- Division of Physiology, Pharmacology & Neuroscience, Medical School, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, U.K.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, the Midlands, Nottingham NG7 2UH, U.K
| | - Sarah J Mistry
- Division of Biomolecular Science and Medicinal Chemistry, School of Pharmacy, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, U.K.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, the Midlands, Nottingham NG7 2UH, U.K
| | - Tamara A M Mocking
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelean 1083, 1083 HV Amsterdam, The Netherlands
| | - Henry F Vischer
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelean 1083, 1083 HV Amsterdam, The Netherlands
| | - Rob Leurs
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelean 1083, 1083 HV Amsterdam, The Netherlands
| | - Stephen J Hill
- Division of Physiology, Pharmacology & Neuroscience, Medical School, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, U.K.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, the Midlands, Nottingham NG7 2UH, U.K
| | - Shailesh N Mistry
- Division of Biomolecular Science and Medicinal Chemistry, School of Pharmacy, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, U.K
| | - Barrie Kellam
- Division of Biomolecular Science and Medicinal Chemistry, School of Pharmacy, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, U.K.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, the Midlands, Nottingham NG7 2UH, U.K
| |
Collapse
|
10
|
Lay CS, Bridges A, Goulding J, Briddon SJ, Soloviev Z, Craggs PD, Hill SJ. Probing the binding of interleukin-23 to individual receptor components and the IL-23 heteromeric receptor complex in living cells using NanoBRET. Cell Chem Biol 2022; 29:19-29.e6. [PMID: 34038748 PMCID: PMC8790524 DOI: 10.1016/j.chembiol.2021.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/06/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Interleukin-23 (IL-23) is a pro-inflammatory cytokine involved in the host defense against pathogens but is also implicated in the development of several autoimmune disorders. The IL-23 receptor has become a key target for drug discovery, but the exact mechanism of the receptor ligand interaction remains poorly understood. In this study the affinities of IL-23 for its individual receptor components (IL23R and IL12Rβ1) and the heteromeric complex formed between them have been measured in living cells using NanoLuciferase-tagged full-length proteins. Here, we demonstrate that TAMRA-tagged IL-23 has a greater than 7-fold higher affinity for IL12Rβ1 than IL23R. However, in the presence of both receptor subunits, IL-23 affinity is increased more than three orders of magnitude to 27 pM. Furthermore, we show that IL-23 induces a potent change in the position of the N-terminal domains of the two receptor subunits, consistent with a conformational change in the heteromeric receptor structure.
Collapse
Affiliation(s)
- Charles S Lay
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, UK; Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Angela Bridges
- Protein and Cellular Sciences, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Joelle Goulding
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, UK
| | - Stephen J Briddon
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, UK
| | - Zoja Soloviev
- Protein and Cellular Sciences, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Peter D Craggs
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK; GSK-Francis Crick Institute Linklabs, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, UK.
| |
Collapse
|
11
|
Insights into the dynamics of ligand-induced dimerisation via mathematical modelling and analysis. J Theor Biol 2022; 538:110996. [DOI: 10.1016/j.jtbi.2021.110996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/08/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022]
|
12
|
CHEN W, YOUNIS MH, ZHAO Z, CAI W. Recent biomedical advances enabled by HaloTag technology. BIOCELL 2022; 46:1789-1801. [PMID: 35601815 PMCID: PMC9119580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The knowledge of interactions among functional proteins helps researchers understand disease mechanisms and design potential strategies for treatment. As a general approach, the fluorescent and affinity tags were employed for exploring this field by labeling the Protein of Interest (POI). However, the autofluorescence and weak binding strength significantly reduce the accuracy and specificity of these tags. Conversely, HaloTag, a novel self-labeling enzyme (SLE) tag, could quickly form a covalent bond with its ligand, enabling fast and specific labeling of POI. These desirable features greatly increase the accuracy and specificity, making the HaloTag a valuable system for various applications ranging from imaging to immobilization of POI. Notably, the HaloTag technique has already been successfully employed in a series of studies with excellent efficiency. In this review, we summarize the development of HaloTag and recent advanced investigations associated with HaloTag, including in vitro imaging (e.g., POI imaging, cellular condition monitoring, microorganism imaging, system development), in vivo imaging, biomolecule immobilization (e.g., POI collection, protein/nuclear acid interaction and protein structure analysis), targeted degradation (e.g., L-AdPROM), and more. We also present a systematic discussion regarding the future direction and challenges of the HaloTag technique.
Collapse
Affiliation(s)
- Weiyu CHEN
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China,International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Muhsin H. YOUNIS
- Departments of Radiology and Medical Physics, University of Wisconsin—Madison, Madison, WI, 53705, USA
| | - Zhongkuo ZHAO
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China,Address correspondence to: Zhongkuo Zhao, ; Weibo Cai,
| | - Weibo CAI
- Departments of Radiology and Medical Physics, University of Wisconsin—Madison, Madison, WI, 53705, USA,Address correspondence to: Zhongkuo Zhao, ; Weibo Cai,
| |
Collapse
|
13
|
Comez D, Glenn J, Anbuhl SM, Heukers R, Smit MJ, Hill SJ, Kilpatrick LE. Fluorescently tagged nanobodies and NanoBRET to study ligand-binding and agonist-induced conformational changes of full-length EGFR expressed in living cells. Front Immunol 2022; 13:1006718. [PMID: 36505413 PMCID: PMC9726709 DOI: 10.3389/fimmu.2022.1006718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction The Epidermal Growth Factor Receptor is a member of the Erb receptor tyrosine kinase family. It binds several ligands including EGF, betacellulin (BTC) and TGF-α, controls cellular proliferation and invasion and is overexpressed in various cancer types. Nanobodies (VHHs) are the antigen binding fragments of heavy chain only camelid antibodies. In this paper we used NanoBRET to compare the binding characteristics of fluorescent EGF or two distinct fluorescently labelled EGFR directed nanobodies (Q44c and Q86c) to full length EGFR. Methods Living HEK293T cells were stably transfected with N terminal NLuc tagged EGFR. NanoBRET saturation, displacement or kinetics experiments were then performed using fluorescently labelled EGF ligands (EGF-AF488 or EGF-AF647) or fluorescently labelled EGFR targeting nanobodies (Q44c-HL488 and Q86c-HL488). Results These data revealed that the EGFR nanobody Q44c was able to inhibit EGF binding to full length EGFR, while Q86c was able to recognise agonist bound EGFR and act as a conformational sensor. The specific binding of fluorescent Q44c-HL488 and EGF-AF488 was inhibited by a range of EGFR ligands (EGF> BTC>TGF-α). Discussion EGFR targeting nanobodies are powerful tools for studying the role of the EGFR in health and disease and allow real time quantification of ligand binding and distinct ligand induced conformational changes.
Collapse
Affiliation(s)
- Dehan Comez
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands Nottingham, Nottingham, United Kingdom
| | - Jacqueline Glenn
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands Nottingham, Nottingham, United Kingdom
| | - Stephanie M Anbuhl
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS) Vrije Universiteit (VU), Amsterdam, Netherlands.,QVQ Holding BV, Utrecht, Netherlands
| | - Raimond Heukers
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS) Vrije Universiteit (VU), Amsterdam, Netherlands.,QVQ Holding BV, Utrecht, Netherlands
| | - Martine J Smit
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS) Vrije Universiteit (VU), Amsterdam, Netherlands
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands Nottingham, Nottingham, United Kingdom
| | - Laura E Kilpatrick
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands Nottingham, Nottingham, United Kingdom.,Division of Bimolecular Science and Medicinal Chemistry, Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
14
|
Elimam DM, Elgazar AA, El-Senduny FF, El-Domany RA, Badria FA, Eldehna WM. Natural inspired piperine-based ureas and amides as novel antitumor agents towards breast cancer. J Enzyme Inhib Med Chem 2021; 37:39-50. [PMID: 34894962 PMCID: PMC8667897 DOI: 10.1080/14756366.2021.1988944] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In this work, the natural piperine moiety was utilised to develop two sets of piperine-based amides (5a–i) and ureas (8a–y) as potential anticancer agents. The anticancer action was assessed against triple negative breast cancer (TNBC) MDA-MB-231, ovarian A2780CP and hepatocellular HepG2 cancer cell lines. In particular, 8q stood out as the most potent anti-proliferative analogue against TNBC MDA-MB-231 cells with IC50 equals 18.7 µM, which is better than that of piperine (IC50 = 47.8 µM) and 5-FU (IC50 = 38.5 µM). Furthermore, 8q was investigated for its possible mechanism of action in MDA-MB-231 cells via Annexin V-FITC apoptosis assay and cell cycle analysis. Moreover, an in-silico analysis has proposed VEGFR-2 as a probable enzymatic target for piperine-based derivatives, and then has explored the binding interactions within VEGFR-2 active site (PDB:4ASD). Finally, an in vitro VEGFR-2 inhibition assay was performed to validate the in silico findings, where 8q showed good VEGFR-2 inhibitory activity with IC50 = 231 nM.
Collapse
Affiliation(s)
- Diaaeldin M Elimam
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.,School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Abdullah A Elgazar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Fardous F El-Senduny
- Department of Biochemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ramadan A El-Domany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Farid A Badria
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
15
|
The use of fluorescence correlation spectroscopy to characterise the molecular mobility of G protein-coupled receptors in membrane microdomains: an update. Biochem Soc Trans 2021; 49:1547-1554. [PMID: 34436556 DOI: 10.1042/bst20201001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022]
Abstract
It has become increasingly apparent that some G protein-coupled receptors (GPCRs) are not homogeneously expressed within the plasma membrane but may instead be organised within distinct signalling microdomains. These microdomains localise GPCRs in close proximity with other membrane proteins and intracellular signalling partners and could have profound implications for the spatial and temporal control of downstream signalling. In order to probe the molecular mechanisms that govern GPCR pharmacology within these domains, fluorescence techniques with effective single receptor sensitivity are required. Of these, fluorescence correlation spectroscopy (FCS) is a technique that meets this sensitivity threshold. This short review will provide an update of the recent uses of FCS based techniques in conjunction with GPCR subtype selective fluorescent ligands to characterise dynamic ligand-receptor interactions in whole cells and using purified GPCRs.
Collapse
|
16
|
Engineering with NanoLuc: a playground for the development of bioluminescent protein switches and sensors. Biochem Soc Trans 2021; 48:2643-2655. [PMID: 33242085 DOI: 10.1042/bst20200440] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022]
Abstract
The small engineered luciferase NanoLuc has rapidly become a powerful tool in the fields of biochemistry, chemical biology, and cell biology due to its exceptional brightness and stability. The continuously expanding NanoLuc toolbox has been employed in applications ranging from biosensors to molecular and cellular imaging, and currently includes split complementation variants, engineering techniques for spectral tuning, and bioluminescence resonance energy transfer-based concepts. In this review, we provide an overview of state-of-the-art NanoLuc-based sensors and switches with a focus on the underlying protein engineering approaches. We discuss the advantages and disadvantages of various strategies with respect to sensor sensitivity, modularity, and dynamic range of the sensor and provide a perspective on future strategies and applications.
Collapse
|
17
|
Receptor tyrosine kinases and cancer: oncogenic mechanisms and therapeutic approaches. Oncogene 2021; 40:4079-4093. [PMID: 34079087 DOI: 10.1038/s41388-021-01841-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 02/05/2023]
Abstract
Receptor tyrosine kinases (RTKs) are transmembrane receptors of great clinical interest due to their role in disease, notably cancer. Since their discovery, several mechanisms of RTK dysregulation have been identified, resulting in multiple cancer types displaying 'oncogenic addiction' to RTKs. As a result, RTKs have represented a major class for targeted therapeutics over the past two decades, with numerous small molecule-based tyrosine kinase inhibitor (TKI) therapeutics having been developed and clinically approved for several cancers. However, many of the current RTK inhibitor treatments eventually result in the rapid development of acquired resistance and subsequent tumor relapse. Recent technological advances and tools are being generated for the identification of novel RTK small molecule therapeutics. These newer technologies will be important for the identification of diverse types of RTK inhibitors, targeting both the receptors themselves as well as key cellular factors that play important roles in the RTK signaling cascade.
Collapse
|
18
|
Peach CJ, Kilpatrick LE, Woolard J, Hill SJ. Use of NanoBiT and NanoBRET to monitor fluorescent VEGF-A binding kinetics to VEGFR2/NRP1 heteromeric complexes in living cells. Br J Pharmacol 2021; 178:2393-2411. [PMID: 33655497 DOI: 10.1111/bph.15426] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/06/2021] [Accepted: 02/23/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE VEGF-A is a key mediator of angiogenesis, primarily signalling via VEGF receptor 2 (VEGFR2). Endothelial cells also express the co-receptor neuropilin-1 (NRP1) that potentiates VEGF-A/VEGFR2 signalling. VEGFR2 and NRP1 had distinct real-time ligand binding kinetics when monitored using BRET. We previously characterised fluorescent VEGF-A isoforms tagged at a single site with tetramethylrhodamine (TMR). Here, we explored differences between VEGF-A isoforms in living cells that co-expressed both receptors. EXPERIMENTAL APPROACH Receptor localisation was monitored in HEK293T cells expressing both VEGFR2 and NRP1 using membrane-impermeant HaloTag and SnapTag technologies. To isolate ligand binding pharmacology at a defined VEGFR2/NRP1 complex, we developed an assay using NanoBiT complementation technology whereby heteromerisation is required for luminescence emissions. Binding affinities and kinetics of VEGFR2-selective VEGF165 b-TMR and non-selective VEGF165 a-TMR were monitored using BRET from this defined complex. KEY RESULTS Cell surface VEGFR2 and NRP1 were co-localised and formed a constitutive heteromeric complex. Despite being selective for VEGFR2, VEGF165 b-TMR had a distinct kinetic ligand binding profile at the complex that largely remained elevated in cells over 90 min. VEGF165 a-TMR bound to the VEGFR2/NRP1 complex with kinetics comparable to those of VEGFR2 alone. Using a binding-dead mutant of NRP1 did not affect the binding kinetics or affinity of VEGF165 a-TMR. CONCLUSION AND IMPLICATIONS This NanoBiT approach enabled real-time ligand binding to be quantified in living cells at 37°C from a specified complex between a receptor TK and its co-receptor for the first time.
Collapse
Affiliation(s)
- Chloe J Peach
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | - Laura E Kilpatrick
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
- Division of Bimolecular Sciences and Medicinal Chemistry, Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| |
Collapse
|
19
|
Interactions between Ligand-Bound EGFR and VEGFR2. J Mol Biol 2021; 433:167006. [PMID: 33891904 DOI: 10.1016/j.jmb.2021.167006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/25/2021] [Accepted: 04/15/2021] [Indexed: 11/21/2022]
Abstract
In this work, we put forward the provocative hypothesis that the active, ligand-bound RTK dimers from unrelated subfamilies can associate into heterooligomers with novel signaling properties. This hypothesis is based on a quantitative FRET study that monitors the interactions between EGFR and VEGFR2 in the plasma membrane of live cells in the absence of ligand, in the presence of either EGF or VEGF, and in the presence of both ligands. We show that direct interactions occur between EGFR and VEGFR2 in the absence of ligand and in the presence of the two cognate ligands. However, there are not significant heterointeractions between EGFR and VEGFR2 when only one of the ligands is present. Since RTK dimers and RTK oligomers are believed to signal differently, this finding suggests a novel mechanism for signal diversification.
Collapse
|
20
|
Tóth AD, Garger D, Prokop S, Soltész-Katona E, Várnai P, Balla A, Turu G, Hunyady L. A general method for quantifying ligand binding to unmodified receptors using Gaussia luciferase. J Biol Chem 2021; 296:100366. [PMID: 33545176 PMCID: PMC7950324 DOI: 10.1016/j.jbc.2021.100366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 11/23/2022] Open
Abstract
Reliable measurement of ligand binding to cell surface receptors is of outstanding biological and pharmacological importance. Resonance energy transfer-based assays are powerful approaches to achieve this goal, but the currently available methods are hindered by the necessity of receptor tagging, which can potentially alter ligand binding properties. Therefore, we developed a tag-free system to measure ligand‒receptor interactions in live cells using the Gaussia luciferase (GLuc) as a bioluminescence resonance energy transfer donor. GLuc is as small as the commonly applied Nanoluciferase but has enhanced brightness, and its proper substrate is the frequently used coelenterazine. In our assay, bystander bioluminescence resonance energy transfer is detected between a GLuc-based extracellular surface biosensor and fluorescent ligands bound to their unmodified receptors. The broad spectrum of applications includes equilibrium and kinetic ligand binding measurements for both labeled and competitive unlabeled ligands, and the assay can be utilized for different classes of plasma membrane receptors. Furthermore, the assay is suitable for high-throughput screening, as evidenced by the identification of novel α1 adrenergic receptor ligands. Our data demonstrate that GLuc-based biosensors provide a simple, sensitive, and cost-efficient platform for drug characterization and development.
Collapse
Affiliation(s)
- András Dávid Tóth
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary; Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| | - Dániel Garger
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Susanne Prokop
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Eszter Soltész-Katona
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary
| | - Péter Várnai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary
| | - András Balla
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary
| | - Gábor Turu
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary.
| |
Collapse
|
21
|
BRET- and fluorescence anisotropy-based assays for real-time monitoring of ligand binding to M 2 muscarinic acetylcholine receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118930. [PMID: 33347921 DOI: 10.1016/j.bbamcr.2020.118930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/26/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022]
Abstract
BRET and fluorescence anisotropy (FA) are two fluorescence-based techniques used for the characterization of ligand binding to G protein-coupled receptors (GPCRs) and both allow monitoring of ligand binding in real time. In this study, we present the first direct comparison of BRET-based and FA-based binding assays using the human M2 muscarinic acetylcholine receptor (M2R) and two TAMRA (5-carboxytetramethylrhodamine)-labeled fluorescent ligands as a model system. The determined fluorescent ligand affinities from both assays were in good agreement with results obtained from radioligand competition binding experiments. The assays yielded real-time kinetic binding data revealing differences in the mechanism of binding for the investigated fluorescent probes. Furthermore, the investigation of various unlabeled M2R ligands yielded pharmacological profiles in accordance with earlier reported data. Taken together, this study showed that BRET- and FA-based binding assays represent valuable alternatives to radioactivity-based methods for screening purposes and for a precise characterization of binding kinetics supporting the exploration of binding mechanisms.
Collapse
|
22
|
Krasitskaya VV, Bashmakova EE, Frank LA. Coelenterazine-Dependent Luciferases as a Powerful Analytical Tool for Research and Biomedical Applications. Int J Mol Sci 2020; 21:E7465. [PMID: 33050422 PMCID: PMC7590018 DOI: 10.3390/ijms21207465] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022] Open
Abstract
: The functioning of bioluminescent systems in most of the known marine organisms is based on the oxidation reaction of the same substrate-coelenterazine (CTZ), catalyzed by luciferase. Despite the diversity in structures and the functioning mechanisms, these enzymes can be united into a common group called CTZ-dependent luciferases. Among these, there are two sharply different types of the system organization-Ca2+-regulated photoproteins and luciferases themselves that function in accordance with the classical enzyme-substrate kinetics. Along with deep and comprehensive fundamental research on these systems, approaches and methods of their practical use as highly sensitive reporters in analytics have been developed. The research aiming at the creation of artificial luciferases and synthetic CTZ analogues with new unique properties has led to the development of new experimental analytical methods based on them. The commercial availability of many ready-to-use assay systems based on CTZ-dependent luciferases is also important when choosing them by first-time-users. The development of analytical methods based on these bioluminescent systems is currently booming. The bioluminescent systems under consideration were successfully applied in various biological research areas, which confirms them to be a powerful analytical tool. In this review, we consider the main directions, results, and achievements in research involving these luciferases.
Collapse
Affiliation(s)
- Vasilisa V. Krasitskaya
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.V.K.); (E.E.B.)
| | - Eugenia E. Bashmakova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.V.K.); (E.E.B.)
| | - Ludmila A. Frank
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.V.K.); (E.E.B.)
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
| |
Collapse
|
23
|
Duffy C, Sorolla A, Wang E, Golden E, Woodward E, Davern K, Ho D, Johnstone E, Pfleger K, Redfern A, Iyer KS, Baer B, Blancafort P. Honeybee venom and melittin suppress growth factor receptor activation in HER2-enriched and triple-negative breast cancer. NPJ Precis Oncol 2020; 4:24. [PMID: 32923684 PMCID: PMC7463160 DOI: 10.1038/s41698-020-00129-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Despite decades of study, the molecular mechanisms and selectivity of the biomolecular components of honeybee (Apis mellifera) venom as anticancer agents remain largely unknown. Here, we demonstrate that honeybee venom and its major component melittin potently induce cell death, particularly in the aggressive triple-negative and HER2-enriched breast cancer subtypes. Honeybee venom and melittin suppress the activation of EGFR and HER2 by interfering with the phosphorylation of these receptors in the plasma membrane of breast carcinoma cells. Mutational studies reveal that a positively charged C-terminal melittin sequence mediates plasma membrane interaction and anticancer activity. Engineering of an RGD motif further enhances targeting of melittin to malignant cells with minimal toxicity to normal cells. Lastly, administration of melittin enhances the effect of docetaxel in suppressing breast tumor growth in an allograft model. Our work unveils a molecular mechanism underpinning the anticancer selectivity of melittin, and outlines treatment strategies to target aggressive breast cancers.
Collapse
Affiliation(s)
- Ciara Duffy
- School of Human Sciences, The University of Western Australia, Perth, WA 6009 Australia.,Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009 Australia.,Plant Energy Biology, The University of Western Australia, Perth, WA 6009 Australia.,Centre for Medical Research, The University of Western Australia, Perth, WA 6009 Australia
| | - Anabel Sorolla
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009 Australia.,Centre for Medical Research, The University of Western Australia, Perth, WA 6009 Australia
| | - Edina Wang
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009 Australia.,Centre for Medical Research, The University of Western Australia, Perth, WA 6009 Australia
| | - Emily Golden
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009 Australia.,Centre for Medical Research, The University of Western Australia, Perth, WA 6009 Australia
| | - Eleanor Woodward
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009 Australia.,Centre for Medical Research, The University of Western Australia, Perth, WA 6009 Australia
| | - Kathleen Davern
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009 Australia.,Monoclonal Antibody (MAb) Facility, Harry Perkins Institute of Medical Research, Perth, WA 6009 Australia
| | - Diwei Ho
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009 Australia
| | - Elizabeth Johnstone
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009 Australia.,Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, Perth, WA 6009 Australia.,Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, Australia
| | - Kevin Pfleger
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009 Australia.,Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, Perth, WA 6009 Australia.,Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, Australia.,Dimerix Limited; Nedlands, Perth, WA 6009 Australia
| | - Andrew Redfern
- School of Medicine, The University of Western Australia, Perth, WA 6009 Australia
| | - K Swaminathan Iyer
- Monoclonal Antibody (MAb) Facility, Harry Perkins Institute of Medical Research, Perth, WA 6009 Australia
| | - Boris Baer
- Centre for Integrative Bee Research (CIBER), Department of Entomology; University of California Riverside, Riverside, CA 92521 USA
| | - Pilar Blancafort
- School of Human Sciences, The University of Western Australia, Perth, WA 6009 Australia.,Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009 Australia.,Centre for Medical Research, The University of Western Australia, Perth, WA 6009 Australia.,The Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
| |
Collapse
|
24
|
White CW, Caspar B, Vanyai HK, Pfleger KDG, Hill SJ. CRISPR-Mediated Protein Tagging with Nanoluciferase to Investigate Native Chemokine Receptor Function and Conformational Changes. Cell Chem Biol 2020; 27:499-510.e7. [PMID: 32053779 PMCID: PMC7242902 DOI: 10.1016/j.chembiol.2020.01.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/02/2020] [Accepted: 01/24/2020] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptors are a major class of membrane receptors that mediate physiological and pathophysiological cellular signaling. Many aspects of receptor activation and signaling can be investigated using genetically encoded luminescent fusion proteins. However, the use of these biosensors in live cell systems requires the exogenous expression of the tagged protein of interest. To maintain the normal cellular context here we use CRISPR/Cas9-mediated homology-directed repair to insert luminescent tags into the endogenous genome. Using NanoLuc and bioluminescence resonance energy transfer we demonstrate fluorescent ligand binding at genome-edited chemokine receptors. We also demonstrate that split-NanoLuc complementation can be used to investigate conformational changes and internalization of CXCR4 and that recruitment of β-arrestin2 to CXCR4 can be monitored when both proteins are natively expressed. These results show that genetically encoded luminescent biosensors can be used to investigate numerous aspects of receptor function at native expression levels.
Collapse
Affiliation(s)
- Carl W White
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK; Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, WA 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia.
| | - Birgit Caspar
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | - Hannah K Vanyai
- Epithelial Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Kevin D G Pfleger
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, WA 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia; Dimerix Limited, Nedlands, WA 6009, Australia
| | - Stephen J Hill
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK; Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, WA 6009, Australia.
| |
Collapse
|
25
|
Soave M, Briddon SJ, Hill SJ, Stoddart LA. Fluorescent ligands: Bringing light to emerging GPCR paradigms. Br J Pharmacol 2020; 177:978-991. [PMID: 31877233 DOI: 10.1111/bph.14953] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/19/2019] [Accepted: 12/05/2019] [Indexed: 01/07/2023] Open
Abstract
In recent years, several novel aspects of GPCR pharmacology have been described, which are thought to play a role in determining the in vivo efficacy of a compound. Fluorescent ligands have been used to study many of these, which have also required the development of new experimental approaches. Fluorescent ligands offer the potential to use the same fluorescent probe to perform a broad range of experiments, from single-molecule microscopy to in vivo BRET. This review provides an overview of the in vitro use of fluorescent ligands in further understanding emerging pharmacological paradigms within the GPCR field, including ligand-binding kinetics, allosterism and intracellular signalling, along with the use of fluorescent ligands to study physiologically relevant therapeutic agents.
Collapse
Affiliation(s)
- Mark Soave
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Stephen J Briddon
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Stephen J Hill
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Leigh A Stoddart
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| |
Collapse
|
26
|
Maynard J, Hart P. The Opportunities and Use of Imaging to Measure Target Engagement. SLAS DISCOVERY 2019; 25:127-136. [PMID: 31885303 DOI: 10.1177/2472555219897270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lack of efficacy and poor safety outcomes are deemed to be the greatest causes of clinical failure of novel therapeutics. The use of biomarkers that give accurate information on target engagement, providing confidence that pharmacological activity in the target organ is being achieved, is key in optimizing clinical success. Without a measurement of target engagement, it can be very difficult to discern the basis for any lack of efficacy of a drug molecule within the pharmaceutical industry. Target engagement can be measured in both an in vitro and in vivo setting, and in recent years imaging measurements have been used frequently in drug discovery and development to assess target engagement and receptor occupancy in both human and animal models. From this perspective, we assess and look at the advancements in both in vivo and ex vivo imaging to demonstrate the enormous potential that imaging has as an application to provide a greater understanding of target engagement with a correlative therapeutic impact.
Collapse
Affiliation(s)
| | - Philippa Hart
- Medicines Discovery Catapult, Alderley Park, Cheshire, UK
| |
Collapse
|
27
|
Peach CJ, Kilpatrick LE, Woolard J, Hill SJ. Comparison of the ligand-binding properties of fluorescent VEGF-A isoforms to VEGF receptor 2 in living cells and membrane preparations using NanoBRET. Br J Pharmacol 2019; 176:3220-3235. [PMID: 31162634 PMCID: PMC6692582 DOI: 10.1111/bph.14755] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 05/01/2019] [Accepted: 05/21/2019] [Indexed: 11/28/2022] Open
Abstract
Background and Purpose Vascular endothelial growth factor A (VEGF‐A) is a key mediator of angiogenesis. A striking feature of the binding of a fluorescent analogue of VEGF165a to nanoluciferase‐tagged VEGF receptor 2 (VEGFR2) in living cells is that the BRET signal is not sustained and declines over time. This may be secondary to receptor internalisation. Here, we have compared the binding of three fluorescent VEGF‐A isoforms to VEGFR2 in cells and isolated membrane preparations. Experimental Approach Ligand‐binding kinetics were monitored in both intact HEK293T cells and membranes (expressing nanoluciferase‐tagged VEGFR2) using BRET between tagged receptor and fluorescent analogues of VEGF165a, VEGF165b, and VEGF121a. VEGFR2 endocytosis in intact cells expressing VEGFR2 was monitored by following the appearance of fluorescent ligand‐associated receptors in intracellular endosomes using automated quantitative imaging. Key Results Quantitative analysis of the effect of fluorescent VEGF‐A isoforms on VEGFR2 endocytosis in cells demonstrated that they produce a rapid and potent translocation of ligand‐bound VEGFR2 into intracellular endosomes. NanoBRET can be used to monitor the kinetics of the binding of fluorescent VEGF‐A isoforms to VEGFR2. In isolated membrane preparations, ligand‐binding association curves were maintained for the duration of the 90‐min experiment. Measurement of the koff at pH 6.0 in membrane preparations indicated shorter ligand residence times than those obtained at pH 7.4. Conclusions and Implications These studies suggest that rapid VEGF‐A isoform‐induced receptor endocytosis shortens agonist residence times on the receptor (1/koff) as VEGFR2 moves from the plasma membrane to the intracellular endosomes.
Collapse
Affiliation(s)
- Chloe J Peach
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | - Laura E Kilpatrick
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| |
Collapse
|
28
|
King C, Hristova K. Direct measurements of VEGF–VEGFR2 binding affinities reveal the coupling between ligand binding and receptor dimerization. J Biol Chem 2019; 294:9064-9075. [DOI: 10.1074/jbc.ra119.007737] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/05/2019] [Indexed: 01/13/2023] Open
|
29
|
Friedman Ohana R, Hurst R, Rosenblatt M, Levin S, Machleidt T, Kirkland TA, Encell LP, Robers MB, Wood KV. Utilizing a Simple Method for Stoichiometric Protein Labeling to Quantify Antibody Blockade. Sci Rep 2019; 9:7046. [PMID: 31065015 PMCID: PMC6504924 DOI: 10.1038/s41598-019-43469-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/23/2019] [Indexed: 12/13/2022] Open
Abstract
Ligand binding assays routinely employ fluorescently-labeled protein ligands to quantify the extent of binding. These ligands are commonly generated through chemical modification of accessible lysine residues, which often results in heterogeneous populations exhibiting variable binding properties. This could be remedied by quantitative, site-specific labeling. Recently, we reported on a single-step method integrating recombinant protein purification with 2-cyanobenzothiazole (CBT) condensation for labeling a proteolytically exposed N-terminal cysteine. Here, using three growth factors, we show that unlike random lysine labeling, this site-specific approach yielded homogeneous populations of growth factors that were quantitatively labeled at their N-termini and retained their binding characteristics. We demonstrate the utility of this labeling method through the development of a novel assay that quantifies the capacity of antibodies to block receptor-ligand interactions (i.e. antibody blockade). The assay uses bioluminescence resonance energy transfer (BRET) to detect binding of CBT-labeled growth factors to their cognate receptors genetically fused to NanoLuc luciferase. The ability of antibodies to block these interactions is quantified through decrease in BRET. Using several antibodies, we show that the assay provides reliable quantification of antibody blockade in a cellular context. As demonstrated here, this simple method for generating uniformly-labeled proteins has potential to promote more accurate and robust ligand binding assays.
Collapse
Affiliation(s)
| | - Robin Hurst
- Promega Corporation, 2800 Woods Hollow Rd, Madison, WI, 53711, USA
| | - Mike Rosenblatt
- Promega Corporation, 2800 Woods Hollow Rd, Madison, WI, 53711, USA
| | - Sergiy Levin
- Promega Biosciences LLC, 277 Granada Dr, San Luis Obispo, CA, 93401, USA
| | - Thomas Machleidt
- Promega Corporation, 2800 Woods Hollow Rd, Madison, WI, 53711, USA
| | - Thomas A Kirkland
- Promega Biosciences LLC, 277 Granada Dr, San Luis Obispo, CA, 93401, USA
| | - Lance P Encell
- Promega Corporation, 2800 Woods Hollow Rd, Madison, WI, 53711, USA
| | - Matthew B Robers
- Promega Corporation, 2800 Woods Hollow Rd, Madison, WI, 53711, USA
| | - Keith V Wood
- Promega Corporation, 2800 Woods Hollow Rd, Madison, WI, 53711, USA
| |
Collapse
|
30
|
Sykes DA, Stoddart LA, Kilpatrick LE, Hill SJ. Binding kinetics of ligands acting at GPCRs. Mol Cell Endocrinol 2019; 485:9-19. [PMID: 30738950 PMCID: PMC6406023 DOI: 10.1016/j.mce.2019.01.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/19/2019] [Accepted: 01/19/2019] [Indexed: 12/31/2022]
Abstract
The influence of drug-receptor binding kinetics has often been overlooked during the development of new therapeutics that target G protein-coupled receptors (GPCRs). Over the last decade there has been a growing understanding that an in-depth knowledge of binding kinetics at GPCRs is required to successfully target this class of proteins. Ligand binding to a GPCR is often not a simple single step process with ligand freely diffusing in solution. This review will discuss the experiments and equations that are commonly used to measure binding kinetics and how factors such as allosteric regulation, rebinding and ligand interaction with the plasma membrane may influence these measurements. We will then consider the molecular characteristics of a ligand and if these can be linked to association and dissociation rates.
Collapse
Affiliation(s)
- David A Sykes
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Leigh A Stoddart
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Laura E Kilpatrick
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Stephen J Hill
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.
| |
Collapse
|
31
|
Kilpatrick LE, Alcobia DC, White CW, Peach CJ, Glenn JR, Zimmerman K, Kondrashov A, Pfleger KDG, Ohana RF, Robers MB, Wood KV, Sloan EK, Woolard J, Hill SJ. Complex Formation between VEGFR2 and the β 2-Adrenoceptor. Cell Chem Biol 2019; 26:830-841.e9. [PMID: 30956148 PMCID: PMC6593180 DOI: 10.1016/j.chembiol.2019.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/30/2018] [Accepted: 02/24/2019] [Indexed: 12/26/2022]
Abstract
Vascular endothelial growth factor (VEGF) is an important mediator of endothelial cell proliferation and angiogenesis via its receptor VEGFR2. A common tumor associated with elevated VEGFR2 signaling is infantile hemangioma that is caused by a rapid proliferation of vascular endothelial cells. The current first-line treatment for infantile hemangioma is the β-adrenoceptor antagonist, propranolol, although its mechanism of action is not understood. Here we have used bioluminescence resonance energy transfer and VEGFR2 genetically tagged with NanoLuc luciferase to demonstrate that oligomeric complexes involving VEGFR2 and the β2-adrenoceptor can be generated in both cell membranes and intracellular endosomes. These complexes are induced by agonist treatment and retain their ability to couple to intracellular signaling proteins. Furthermore, coupling of β2-adrenoceptor to β-arrestin2 is prolonged by VEGFR2 activation. These data suggest that protein-protein interactions between VEGFR2, the β2-adrenoceptor, and β-arrestin2 may provide insight into their roles in health and disease.
Collapse
Affiliation(s)
- Laura E Kilpatrick
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | - Diana C Alcobia
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, VIC 3052, Australia
| | - Carl W White
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK; Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA 6009, Australia
| | - Chloe J Peach
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | - Jackie R Glenn
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | | | - Alexander Kondrashov
- Wolfson Centre for Stem Cells, Tissue Engineering & Modelling (STEM), Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Kevin D G Pfleger
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA 6009, Australia; Dimerix Limited, Nedlands, Perth, WA 6009, Australia
| | | | | | | | - Erica K Sloan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, VIC 3052, Australia; Cousins Center for Neuroimmunology, Semel Institute for Neuroscience and Human Behavior, Jonsson Comprehensive Cancer Center, UCLA AIDS Institute, University of California, Los Angeles, CA 90095, USA; Division of Surgical Oncology, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia
| | - Jeanette Woolard
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK.
| | - Stephen J Hill
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK.
| |
Collapse
|
32
|
Peach CJ, Kilpatrick LE, Woolard J, Hill SJ. Quantifying binding of VEGF‐A isoforms at VEGFR2 in membranes. FASEB J 2019. [DOI: 10.1096/fasebj.2019.33.1_supplement.679.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chloe J Peach
- Cell Signalling Research GroupUniversity of NottinghamNottinghamUnited Kingdom
- Centre of Membrane Proteins and ReceptorsThe MidlandsUnited Kingdom
| | - Laura E Kilpatrick
- Cell Signalling Research GroupUniversity of NottinghamNottinghamUnited Kingdom
- Centre of Membrane Proteins and ReceptorsThe MidlandsUnited Kingdom
| | - Jeanette Woolard
- Cell Signalling Research GroupUniversity of NottinghamNottinghamUnited Kingdom
- Centre of Membrane Proteins and ReceptorsThe MidlandsUnited Kingdom
| | - Steve J Hill
- Cell Signalling Research GroupUniversity of NottinghamNottinghamUnited Kingdom
- Centre of Membrane Proteins and ReceptorsThe MidlandsUnited Kingdom
| |
Collapse
|
33
|
Dale NC, Johnstone EKM, White CW, Pfleger KDG. NanoBRET: The Bright Future of Proximity-Based Assays. Front Bioeng Biotechnol 2019; 7:56. [PMID: 30972335 PMCID: PMC6443706 DOI: 10.3389/fbioe.2019.00056] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/04/2019] [Indexed: 12/17/2022] Open
Abstract
Bioluminescence resonance energy transfer (BRET) is a biophysical technique used to monitor proximity within live cells. BRET exploits the naturally occurring phenomenon of dipole-dipole energy transfer from a donor enzyme (luciferase) to an acceptor fluorophore following enzyme-mediated oxidation of a substrate. This results in production of a quantifiable signal that denotes proximity between proteins and/or molecules tagged with complementary luciferase and fluorophore partners. BRET assays have been used to observe an array of biological functions including ligand binding, intracellular signaling, receptor-receptor proximity, and receptor trafficking, however, BRET assays can theoretically be used to monitor the proximity of any protein or molecule for which appropriate fusion constructs and/or fluorophore conjugates can be produced. Over the years, new luciferases and approaches have been developed that have increased the potential applications for BRET assays. In particular, the development of the small, bright and stable Nanoluciferase (NanoLuc; Nluc) and its use in NanoBRET has vastly broadened the potential applications of BRET assays. These advances have exciting potential to produce new experimental methods to monitor protein-protein interactions (PPIs), protein-ligand interactions, and/or molecular proximity. In addition to NanoBRET, Nluc has also been exploited to produce NanoBiT technology, which further broadens the scope of BRET to monitor biological function when NanoBiT is combined with an acceptor. BRET has proved to be a powerful tool for monitoring proximity and interaction, and these recent advances further strengthen its utility for a range of applications.
Collapse
Affiliation(s)
- Natasha C Dale
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia.,Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia.,Australian Research Council Centre for Personalised Therapeutics TechnologiesAustralia
| | - Elizabeth K M Johnstone
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia.,Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia.,Australian Research Council Centre for Personalised Therapeutics TechnologiesAustralia
| | - Carl W White
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia.,Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia.,Australian Research Council Centre for Personalised Therapeutics TechnologiesAustralia
| | - Kevin D G Pfleger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia.,Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia.,Australian Research Council Centre for Personalised Therapeutics TechnologiesAustralia.,Dimerix Limited, Nedlands, WA, Australia
| |
Collapse
|
34
|
Hoare BL, Bruell S, Sethi A, Gooley PR, Lew MJ, Hossain MA, Inoue A, Scott DJ, Bathgate RAD. Multi-Component Mechanism of H2 Relaxin Binding to RXFP1 through NanoBRET Kinetic Analysis. iScience 2018; 11:93-113. [PMID: 30594862 PMCID: PMC6309025 DOI: 10.1016/j.isci.2018.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/20/2018] [Accepted: 12/05/2018] [Indexed: 12/27/2022] Open
Abstract
The peptide hormone H2 relaxin has demonstrated promise as a therapeutic, but mimetic development has been hindered by the poorly understood relaxin receptor RXFP1 activation mechanism. H2 relaxin is hypothesized to bind to two distinct ECD sites, which reorientates the N-terminal LDLa module to activate the transmembrane domain. Here we provide evidence for this model in live cells by measuring bioluminescence resonance energy transfer (BRET) between nanoluciferase-tagged RXFP1 constructs and fluorescently labeled H2 relaxin (NanoBRET). Additionally, we validate these results using the related RXFP2 receptor and chimeras with an inserted RXFP1-binding domain utilizing NanoBRET and nuclear magnetic resonance studies on recombinant proteins. We therefore provide evidence for the multi-component molecular mechanism of H2 relaxin binding to RXFP1 on the full-length receptor in cells. Also, we show the utility of NanoBRET real-time binding kinetics to reveal subtle binding complexities, which may be overlooked in traditional equilibrium binding assays. NanoBRET was used to assess relaxin binding kinetics to its receptor RXFP1 Binding on wild-type and mutant RXFP1 demonstrated a multi-component mechanism This binding mode was validated using RXFP2/RXFP1 chimeras and protein NMR studies NanoBRET binding can reveal subtle GPCR binding modes to aid drug development
Collapse
Affiliation(s)
- Bradley L Hoare
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Shoni Bruell
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Ashish Sethi
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, Australia; Bio21 Molecular and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Paul R Gooley
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, Australia; Bio21 Molecular and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Michael J Lew
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Mohammed A Hossain
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia; Department of Chemistry, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Daniel J Scott
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - Ross A D Bathgate
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
35
|
White CW, Johnstone EKM, See HB, Pfleger KDG. NanoBRET ligand binding at a GPCR under endogenous promotion facilitated by CRISPR/Cas9 genome editing. Cell Signal 2018; 54:27-34. [PMID: 30471466 DOI: 10.1016/j.cellsig.2018.11.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/10/2018] [Accepted: 11/20/2018] [Indexed: 01/14/2023]
Abstract
Bioluminescence resonance energy transfer (BRET) is a versatile tool used to investigate membrane receptor signalling and function. We have recently developed a homogenous NanoBRET ligand binding assay to monitor interactions between G protein-coupled receptors and fluorescent ligands. However, this assay requires the exogenous expression of a receptor fused to the nanoluciferase (Nluc) and is thus not applicable to natively-expressed receptors. To overcome this limitation in HEK293 cells, we have utilised CRISPR/Cas9 genome engineering to insert Nluc in-frame with the endogenous ADORA2B locus this resulted in HEK293 cells expressing adenosine A2B receptors under endogenous promotion tagged on their N-terminus with Nluc. As expected, we found relatively low levels of endogenous (gene-edited) Nluc/A2B receptor expression compared to cells transiently transfected with expression vectors coding for Nluc/A2B. However, in cells expressing gene-edited Nluc/A2B receptors we observed clear saturable ligand binding of a non-specific fluorescent adenosine receptor antagonist XAC-X-BY630 (Kd = 21.4 nM). Additionally, at gene-edited Nluc/A2B receptors we derived pharmacological parameters of ligand binding; Kd as well as Kon and Koff for binding of XAC-X-BY630 by NanoBRET association kinetic binding assays. Lastly, cells expressing gene-edited Nluc/A2B were used to determine the pKi of unlabelled adenosine receptor ligands in competition ligand binding assays. Utilising CRISPR/Cas9 genome engineering here we show that NanoBRET ligand binding assays can be performed at gene-edited receptors under endogenous promotion in live cells, therefore overcoming a fundamental limitation of NanoBRET ligand assays.
Collapse
Affiliation(s)
- Carl W White
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia; Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia.
| | - Elizabeth K M Johnstone
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia; Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Heng B See
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia; Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Kevin D G Pfleger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia; Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia; Dimerix Limited, Nedlands, Western Australia 6009, Australia.
| |
Collapse
|
36
|
Lakatos D, Somfai E, Méhes E, Czirók A. Soluble VEGFR1 signaling guides vascular patterns into dense branching morphologies. J Theor Biol 2018; 456:261-278. [PMID: 30086288 PMCID: PMC6292526 DOI: 10.1016/j.jtbi.2018.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 01/27/2023]
Abstract
Vascular patterning is a key process during development and disease. The diffusive decoy receptor sVEGFR1 (sFlt1) is a known regulator of endothelial cell behavior, yet the mechanism by which it controls vascular structure is little understood. We propose computational models to shed light on how vascular patterning is guided by self-organized gradients of the VEGF/sVEGFR1 factors. We demonstrate that a diffusive inhibitor can generate structures with a dense branching morphology in models where the activator elicits directed growth. Inadequate presence of the inhibitor leads to compact growth, while excessive production of the inhibitor blocks expansion and stabilizes existing structures. Model predictions were compared with time-resolved experimental data obtained from endothelial sprout kinetics in fibrin gels. In the presence of inhibitory antibodies against VEGFR1 vascular sprout density increases while the speed of sprout expansion remains unchanged. Thus, the rate of secretion and stability of extracellular sVEGFR1 can modulate vascular sprout density.
Collapse
Affiliation(s)
- Dóra Lakatos
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary.
| | - Ellák Somfai
- Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Hungarian Academy of Sciences, Budapest, Hungary
| | - Előd Méhes
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
| | - András Czirók
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary; Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
37
|
Auriau J, Roujeau C, Belaid Choucair Z, Oishi A, Derviaux C, Roux T, Trinquet E, Hermine O, Jockers R, Dam J. Gain of affinity for VEGF165 binding within the VEGFR2/NRP1 cellular complex detected by an HTRF-based binding assay. Biochem Pharmacol 2018; 158:45-59. [PMID: 30236477 DOI: 10.1016/j.bcp.2018.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
Abstract
Neuroplin 1 (NRP1), a transmembrane protein interacting with Vascular Endothelial Growth Factor VEGF-A165 (called here VEGF165) and the tyrosine kinase Receptor 2 (VEGFR2) promote angiogenesis and vascular homeostasis. In a pathophysiological context, several studies suggested that VEGFR2 and NRP1 mediate tumor development and progression. Given the involvement of the VEGF165 network in promoting tumor angiogenesis, NRP1, VEGFR2 and VEGF165 have been identified as targets for anti-angiogenic therapy. No binding assay exists to monitor specifically the binding of VEGF165 to the VEGFR2/NRP1 complex in intact cells. We established a binding assay based on the homogenous time-resolved fluorescence (HTRF®) technology. This unique binding assay enables to assess the interaction of VEGF165 with VEGFR2 or NRP1 within the VEGFR2/NRP1 complex. Ligand binding saturation experiments revealed that VEGF165 binds the VEGFR2/NRP1 complex at the cell surface with a ten to twenty-fold higher affinity compared to SNAP-VEGFR2 or SNAP-NRP1 receptors alone not engaged in the heteromeric complex. The assay allows characterizing the impact of NRP1 ligands on VEGF165 to the complex. It shows high specificity, reproducibility and robustness, making it compatible with high throughput screening (HTS) applications for identifying new VEGF165 antagonists selective for NRP1 or the VEGFR2/NRP1 complex.
Collapse
Affiliation(s)
- Johanna Auriau
- Institut Cochin, Inserm U1016, CNRS UMR 8104, University Paris Descartes, University Sorbonne Paris Cité, Paris, France
| | - Clara Roujeau
- Institut Cochin, Inserm U1016, CNRS UMR 8104, University Paris Descartes, University Sorbonne Paris Cité, Paris, France
| | - Zakia Belaid Choucair
- Hôpital Necker, CNRS UMR 8147, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France And THERANOVIR, Pépinière Genopole Entreprise, Evry, France
| | - Atsuro Oishi
- Institut Cochin, Inserm U1016, CNRS UMR 8104, University Paris Descartes, University Sorbonne Paris Cité, Paris, France
| | - Carine Derviaux
- Institut Cochin, Inserm U1016, CNRS UMR 8104, University Paris Descartes, University Sorbonne Paris Cité, Paris, France
| | - Thomas Roux
- Cisbio Bioassays, Parc Technologique Marcel Boiteux, BP84175, 30200 Codolet, France
| | - Eric Trinquet
- Cisbio Bioassays, Parc Technologique Marcel Boiteux, BP84175, 30200 Codolet, France
| | | | - Ralf Jockers
- Institut Cochin, Inserm U1016, CNRS UMR 8104, University Paris Descartes, University Sorbonne Paris Cité, Paris, France
| | - Julie Dam
- Institut Cochin, Inserm U1016, CNRS UMR 8104, University Paris Descartes, University Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
38
|
Alcobia DC, Ziegler AI, Kondrashov A, Comeo E, Mistry S, Kellam B, Chang A, Woolard J, Hill SJ, Sloan EK. Visualizing Ligand Binding to a GPCR In Vivo Using NanoBRET. iScience 2018; 6:280-288. [PMID: 30240618 PMCID: PMC6137713 DOI: 10.1016/j.isci.2018.08.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/05/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022] Open
Abstract
The therapeutic action of a drug depends on its ability to engage with its molecular target in vivo. However, current drug discovery strategies quantify drug levels within organs rather than determining the binding of drugs directly to their specific molecular targets in vivo. This is a particular problem for assessing the therapeutic potential of drugs that target malignant tumors where access and binding may be impaired by disrupted vasculature and local hypoxia. Here we have used triple-negative human breast cancer cells expressing β2-adrenoceptors tagged with the bioluminescence protein NanoLuc to provide a bioluminescence resonance energy transfer approach to directly quantify ligand binding to a G protein-coupled receptor in vivo using a mouse model of breast cancer.
Collapse
Affiliation(s)
- Diana C Alcobia
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Alexandra I Ziegler
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Alexander Kondrashov
- Wolfson Centre for Stem Cells, Tissue Engineering & Modelling (STEM), Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Eleonora Comeo
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK; School of Pharmacy, Division of Biomolecular Science and Medicinal Chemistry, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Sarah Mistry
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK; School of Pharmacy, Division of Biomolecular Science and Medicinal Chemistry, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Barrie Kellam
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK; School of Pharmacy, Division of Biomolecular Science and Medicinal Chemistry, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Aeson Chang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK.
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK.
| | - Erica K Sloan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Cousins Center for Neuroimmunology, Semel Institute for Neuroscience and Human Behavior, Jonsson Comprehensive Cancer Center, and UCLA AIDS Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; Division of Surgical Oncology, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia.
| |
Collapse
|
39
|
|
40
|
Peach CJ, Kilpatrick LE, Friedman-Ohana R, Zimmerman K, Robers MB, Wood KV, Woolard J, Hill SJ. Real-Time Ligand Binding of Fluorescent VEGF-A Isoforms that Discriminate between VEGFR2 and NRP1 in Living Cells. Cell Chem Biol 2018; 25:1208-1218.e5. [PMID: 30057299 PMCID: PMC6200776 DOI: 10.1016/j.chembiol.2018.06.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/23/2018] [Accepted: 06/29/2018] [Indexed: 12/20/2022]
Abstract
Fluorescent VEGF-A isoforms have been evaluated for their ability to discriminate between VEGFR2 and NRP1 in real-time ligand binding studies in live cells using BRET. To enable this, we synthesized single-site (N-terminal cysteine) labeled versions of VEGF165a, VEGF165b, and VEGF121a. These were used in combination with N-terminal NanoLuc-tagged VEGFR2 or NRP1 to evaluate the selectivity of VEGF isoforms for these two membrane proteins. All fluorescent VEGF-A isoforms displayed high affinity for VEGFR2. Only VEGF165a-TMR bound to NanoLuc-NRP1 with a similar high affinity (4.4 nM). Competition NRP1 binding experiments yielded a rank order of potency of VEGF165a > VEGF189a > VEGF145a. VEGF165b, VEGF-Ax, VEGF121a, and VEGF111a were unable to bind to NRP1. There were marked differences in the kinetic binding profiles of VEGF165a-TMR for NRP1 and VEGFR2. These data emphasize the importance of the kinetic aspects of ligand binding to VEGFR2 and its co-receptors in the dynamics of VEGF signaling. VEGF165a, VEGF121a, and VEGF165b were single-site labeled with tetramethylrhodamine NanoBRET quantified that VEGF-A isoforms have similar binding properties at VEGFR2 NRP1 expressed in live cells does not bind VEGF165b, VEGF121a, VEGF-Ax, or VEGF111a VEGFR2 and NRP1 have markedly distinct kinetic profiles binding VEGF165a-TMR
Collapse
Affiliation(s)
- Chloe J Peach
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Nottingham NG7 2UH, UK
| | - Laura E Kilpatrick
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Nottingham NG7 2UH, UK
| | | | - Kris Zimmerman
- Promega Corporation, 2800 Woods Hollow Road, Madison, WI 53711, USA
| | - Matthew B Robers
- Promega Corporation, 2800 Woods Hollow Road, Madison, WI 53711, USA
| | - Keith V Wood
- Promega Corporation, 2800 Woods Hollow Road, Madison, WI 53711, USA
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Nottingham NG7 2UH, UK.
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
41
|
Peach CJ, Mignone VW, Arruda MA, Alcobia DC, Hill SJ, Kilpatrick LE, Woolard J. Molecular Pharmacology of VEGF-A Isoforms: Binding and Signalling at VEGFR2. Int J Mol Sci 2018; 19:E1264. [PMID: 29690653 PMCID: PMC5979509 DOI: 10.3390/ijms19041264] [Citation(s) in RCA: 305] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/14/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023] Open
Abstract
Vascular endothelial growth factor-A (VEGF-A) is a key mediator of angiogenesis, signalling via the class IV tyrosine kinase receptor family of VEGF Receptors (VEGFRs). Although VEGF-A ligands bind to both VEGFR1 and VEGFR2, they primarily signal via VEGFR2 leading to endothelial cell proliferation, survival, migration and vascular permeability. Distinct VEGF-A isoforms result from alternative splicing of the Vegfa gene at exon 8, resulting in VEGFxxxa or VEGFxxxb isoforms. Alternative splicing events at exons 5⁻7, in addition to recently identified posttranslational read-through events, produce VEGF-A isoforms that differ in their bioavailability and interaction with the co-receptor Neuropilin-1. This review explores the molecular pharmacology of VEGF-A isoforms at VEGFR2 in respect to ligand binding and downstream signalling. To understand how VEGF-A isoforms have distinct signalling despite similar affinities for VEGFR2, this review re-evaluates the typical classification of these isoforms relative to the prototypical, “pro-angiogenic” VEGF165a. We also examine the molecular mechanisms underpinning the regulation of VEGF-A isoform signalling and the importance of interactions with other membrane and extracellular matrix proteins. As approved therapeutics targeting the VEGF-A/VEGFR signalling axis largely lack long-term efficacy, understanding these isoform-specific mechanisms could aid future drug discovery efforts targeting VEGF receptor pharmacology.
Collapse
Affiliation(s)
- Chloe J Peach
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
| | - Viviane W Mignone
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
- CAPES-University of Nottingham Programme in Drug Discovery, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Maria Augusta Arruda
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
- CAPES-University of Nottingham Programme in Drug Discovery, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Diana C Alcobia
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
| | - Laura E Kilpatrick
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
| |
Collapse
|
42
|
Stoddart LA, Kilpatrick LE, Hill SJ. NanoBRET Approaches to Study Ligand Binding to GPCRs and RTKs. Trends Pharmacol Sci 2018; 39:136-147. [PMID: 29132917 DOI: 10.1016/j.tips.2017.10.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/12/2017] [Accepted: 10/17/2017] [Indexed: 12/30/2022]
Abstract
Recent advances in the development of fluorescent ligands for G-protein-coupled receptors (GPCRs) and receptor tyrosine kinase receptors (RTKs) have facilitated the study of these receptors in living cells. A limitation of these ligands is potential uptake into cells and increased nonspecific binding. However, this can largely be overcome by using proximity approaches, such as bioluminescence resonance energy transfer (BRET), which localise the signal (within 10nm) to the specific receptor target. The recent engineering of NanoLuc has resulted in a luciferase variant that is smaller and significantly brighter (up to tenfold) than existing variants. Here, we review the use of BRET from N-terminal NanoLuc-tagged GPCRs or a RTK to a receptor-bound fluorescent ligand to provide quantitative pharmacology of ligand-receptor interactions in living cells in real time.
Collapse
Affiliation(s)
- Leigh A Stoddart
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK; These authors contributed equally to this work
| | - Laura E Kilpatrick
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK; These authors contributed equally to this work
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK.
| |
Collapse
|
43
|
Briddon SJ, Kilpatrick LE, Hill SJ. Studying GPCR Pharmacology in Membrane Microdomains: Fluorescence Correlation Spectroscopy Comes of Age. Trends Pharmacol Sci 2017; 39:158-174. [PMID: 29277246 DOI: 10.1016/j.tips.2017.11.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptors (GPCRs) are organised within the cell membrane into highly ordered macromolecular complexes along with other receptors and signalling proteins. Understanding how heterogeneity in these complexes affects the pharmacology and functional response of these receptors is crucial for developing new and more selective ligands. Fluorescence correlation spectroscopy (FCS) and related techniques such as photon counting histogram (PCH) analysis and image-based FCS can be used to interrogate the properties of GPCRs in these membrane microdomains, as well as their interaction with fluorescent ligands. FCS analyses fluorescence fluctuations within a small-defined excitation volume to yield information about their movement, concentration and molecular brightness (aggregation). These techniques can be used on live cells with single-molecule sensitivity and high spatial resolution. Once the preserve of specialist equipment, FCS techniques can now be applied using standard confocal microscopes. This review describes how FCS and related techniques have revealed novel insights into GPCR biology.
Collapse
Affiliation(s)
- Stephen J Briddon
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK; Centre for Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, UK
| | - Laura E Kilpatrick
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK; Centre for Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, UK
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK; Centre for Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, UK.
| |
Collapse
|
44
|
Soave M, Cseke G, Hutchings CJ, Brown AJH, Woolard J, Hill SJ. A monoclonal antibody raised against a thermo-stabilised β 1-adrenoceptor interacts with extracellular loop 2 and acts as a negative allosteric modulator of a sub-set of β 1-adrenoceptors expressed in stable cell lines. Biochem Pharmacol 2017; 147:38-54. [PMID: 29102678 PMCID: PMC5770334 DOI: 10.1016/j.bcp.2017.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 10/31/2017] [Indexed: 11/30/2022]
Abstract
Recent interest has focused on antibodies that can discriminate between different receptor conformations. Here we have characterised the effect of a monoclonal antibody (mAb3), raised against a purified thermo-stabilised turkey β1-adrenoceptor (β1AR-m23 StaR), on β1-ARs expressed in CHO-K1 or HEK 293 cells. Immunohistochemical and radioligand-binding studies demonstrated that mAb3 was able to bind to ECL2 of the tβ1-AR, but not its human homologue. Specific binding of mAb3 to tβ1-AR was inhibited by a peptide based on the turkey, but not the human, ECL2 sequence. Studies with [3H]-CGP 12177 demonstrated that mAb3 prevented the binding of orthosteric ligands to a subset (circa 40%) of turkey β1-receptors expressed in both CHO K1 and HEK 293 cells. MAb3 significantly reduced the maximum specific binding capacity of [3H]-CGP-12177 without influencing its binding affinity. Substitution of ECL2 of tβ1-AR with its human equivalent, or mutation of residues D186S, P187D, Q188E prevented the inhibition of [3H]-CGP 12177 binding by mAb3. MAb3 also elicited a negative allosteric effect on agonist-stimulated cAMP responses. The identity of the subset of turkey β1-adrenoceptors influenced by mAb3 remains to be established but mAb3 should become an important tool to investigate the nature of β1-AR conformational states and oligomeric complexes.
Collapse
Affiliation(s)
- Mark Soave
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Gabriella Cseke
- Heptares Therapeutics Ltd., Bio Park, Welwyn Garden City AL7 3AX, UK
| | | | | | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.
| |
Collapse
|