1
|
Bréhat J, Leick S, Musman J, Su JB, Eychenne N, Giton F, Rivard M, Barel LA, Tropeano C, Vitarelli F, Caccia C, Leoni V, Ghaleh B, Pons S, Morin D. Identification of a mechanism promoting mitochondrial sterol accumulation during myocardial ischemia-reperfusion: role of TSPO and STAR. Basic Res Cardiol 2024; 119:481-503. [PMID: 38517482 DOI: 10.1007/s00395-024-01043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/24/2024]
Abstract
Hypercholesterolemia is a major risk factor for coronary artery diseases and cardiac ischemic events. Cholesterol per se could also have negative effects on the myocardium, independently from hypercholesterolemia. Previously, we reported that myocardial ischemia-reperfusion induces a deleterious build-up of mitochondrial cholesterol and oxysterols, which is potentiated by hypercholesterolemia and prevented by translocator protein (TSPO) ligands. Here, we studied the mechanism by which sterols accumulate in cardiac mitochondria and promote mitochondrial dysfunction. We performed myocardial ischemia-reperfusion in rats to evaluate mitochondrial function, TSPO, and steroidogenic acute regulatory protein (STAR) levels and the related mitochondrial concentrations of sterols. Rats were treated with the cholesterol synthesis inhibitor pravastatin or the TSPO ligand 4'-chlorodiazepam. We used Tspo deleted rats, which were phenotypically characterized. Inhibition of cholesterol synthesis reduced mitochondrial sterol accumulation and protected mitochondria during myocardial ischemia-reperfusion. We found that cardiac mitochondrial sterol accumulation is the consequence of enhanced influx of cholesterol and not of the inhibition of its mitochondrial metabolism during ischemia-reperfusion. Mitochondrial cholesterol accumulation at reperfusion was related to an increase in mitochondrial STAR but not to changes in TSPO levels. 4'-Chlorodiazepam inhibited this mechanism and prevented mitochondrial sterol accumulation and mitochondrial ischemia-reperfusion injury, underlying the close cooperation between STAR and TSPO. Conversely, Tspo deletion, which did not alter cardiac phenotype, abolished the effects of 4'-chlorodiazepam. This study reveals a novel mitochondrial interaction between TSPO and STAR to promote cholesterol and deleterious sterol mitochondrial accumulation during myocardial ischemia-reperfusion. This interaction regulates mitochondrial homeostasis and plays a key role during mitochondrial injury.
Collapse
Affiliation(s)
- Juliette Bréhat
- INSERM U955-IMRB, Team Ghaleh, UPEC, Ecole Nationale Vétérinaire d'Alfort, Faculté de Santé, 8 rue du général Sarrail, 94000, Créteil, France
| | - Shirin Leick
- INSERM U955-IMRB, Team Ghaleh, UPEC, Ecole Nationale Vétérinaire d'Alfort, Faculté de Santé, 8 rue du général Sarrail, 94000, Créteil, France
| | - Julien Musman
- INSERM U955-IMRB, Team Ghaleh, UPEC, Ecole Nationale Vétérinaire d'Alfort, Faculté de Santé, 8 rue du général Sarrail, 94000, Créteil, France
| | - Jin Bo Su
- INSERM U955-IMRB, Team Ghaleh, UPEC, Ecole Nationale Vétérinaire d'Alfort, Faculté de Santé, 8 rue du général Sarrail, 94000, Créteil, France
| | | | - Frank Giton
- Pôle Biologie-Pathologie, IMRB U955, Hôpital Henri Mondor, Créteil, France
| | | | | | - Chiara Tropeano
- Laboratory of Clinical Chemistry, ASST-Brianza Department of Medicine and Surgery, Hospital Pio XI Desio, University of Milano Bicocca, Monza, Italy
| | - Frederica Vitarelli
- Laboratory of Clinical Chemistry, ASST-Brianza Department of Medicine and Surgery, Hospital Pio XI Desio, University of Milano Bicocca, Monza, Italy
| | - Claudio Caccia
- Unit of Medical Genetics and Neurogenetics, Istituto Neurologico Carlo Besta, Fondazione IRCCS, Milan, Italy
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, ASST-Brianza Department of Medicine and Surgery, Hospital Pio XI Desio, University of Milano Bicocca, Monza, Italy
| | - Bijan Ghaleh
- INSERM U955-IMRB, Team Ghaleh, UPEC, Ecole Nationale Vétérinaire d'Alfort, Faculté de Santé, 8 rue du général Sarrail, 94000, Créteil, France
| | - Sandrine Pons
- INSERM U955-IMRB, Team Ghaleh, UPEC, Ecole Nationale Vétérinaire d'Alfort, Faculté de Santé, 8 rue du général Sarrail, 94000, Créteil, France
| | - Didier Morin
- INSERM U955-IMRB, Team Ghaleh, UPEC, Ecole Nationale Vétérinaire d'Alfort, Faculté de Santé, 8 rue du général Sarrail, 94000, Créteil, France.
| |
Collapse
|
2
|
Yu M, Zhao S. Functional role of translocator protein and its ligands in ocular diseases (Review). Mol Med Rep 2024; 29:33. [PMID: 38186312 PMCID: PMC10804439 DOI: 10.3892/mmr.2024.13157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
The 18 kDa translocator protein (TSPO) is an essential outer mitochondrial membrane protein that is responsible for mitochondrial transport, maintenance of mitochondrial homeostasis and normal physiological cell function. The role of TSPO in the pathogenesis of ocular diseases is a growing area of interest. More notably, TSPO exerts positive effects in regulating various pathophysiological processes, such as the inflammatory response, oxidative stress, steroid synthesis and modulation of microglial function, in combination with a variety of specific ligands such as 1‑(2‑chlorophenyl‑N‑methylpropyl)‑3‑isoquinolinecarboxamide, 4'‑chlorodiazepam and XBD173. In the present review, the expression of TSPO in ocular tissues and the functional role of TSPO and its ligands in diverse ocular diseases was discussed.
Collapse
Affiliation(s)
- Mingyi Yu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 30384, P.R. China
| | - Shaozhen Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 30384, P.R. China
| |
Collapse
|
3
|
Baglini E, Poggetti V, Cavallini C, Petroni D, Forini F, Nicolini G, Barresi E, Salerno S, Costa B, Iozzo P, Neglia D, Menichetti L, Taliani S, Da Settimo F. Targeting the Translocator Protein (18 kDa) in Cardiac Diseases: State of the Art and Future Opportunities. J Med Chem 2024; 67:17-37. [PMID: 38113353 PMCID: PMC10911791 DOI: 10.1021/acs.jmedchem.3c01716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
Mitochondria dysfunctions are typical hallmarks of cardiac disorders (CDs). The multiple tasks of this energy-producing organelle are well documented, but its pathophysiologic involvement in several manifestations of heart diseases, such as altered electromechanical coupling, excitability, and arrhythmias, is still under investigation. The human 18 kDa translocator protein (TSPO) is a protein located on the outer mitochondrial membrane whose expression is altered in different pathological conditions, including CDs, making it an attractive therapeutic and diagnostic target. Currently, only a few TSPO ligands are employed in CDs and cardiac imaging. In this Perspective, we report an overview of the emerging role of TSPO at the heart level, focusing on the recent literature concerning the development of TSPO ligands used for fighting and imaging heart-related disease conditions. Accordingly, targeting TSPO might represent a successful strategy to achieve novel therapeutic and diagnostic strategies to unravel the fundamental mechanisms and to provide solutions to still unanswered questions in CDs.
Collapse
Affiliation(s)
- Emma Baglini
- Institute
of Clinical Physiology, National Research Council of Italy, CNR Research Area, Via G. Moruzzi 1, Pisa 56124, Italy
| | - Valeria Poggetti
- Department
of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Chiara Cavallini
- Institute
of Clinical Physiology, National Research Council of Italy, CNR Research Area, Via G. Moruzzi 1, Pisa 56124, Italy
| | - Debora Petroni
- Institute
of Clinical Physiology, National Research Council of Italy, CNR Research Area, Via G. Moruzzi 1, Pisa 56124, Italy
| | - Francesca Forini
- Institute
of Clinical Physiology, National Research Council of Italy, CNR Research Area, Via G. Moruzzi 1, Pisa 56124, Italy
| | - Giuseppina Nicolini
- Institute
of Clinical Physiology, National Research Council of Italy, CNR Research Area, Via G. Moruzzi 1, Pisa 56124, Italy
| | - Elisabetta Barresi
- Department
of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Silvia Salerno
- Department
of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Barbara Costa
- Department
of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Patricia Iozzo
- Institute
of Clinical Physiology, National Research Council of Italy, CNR Research Area, Via G. Moruzzi 1, Pisa 56124, Italy
| | - Danilo Neglia
- Fondazione
CNR/Regione Toscana Gabriele Monasterio, Cardiovascular and Imaging
Departments, CNR Research Area, Via G. Moruzzi 1, Pisa 56124, Italy
| | - Luca Menichetti
- Institute
of Clinical Physiology, National Research Council of Italy, CNR Research Area, Via G. Moruzzi 1, Pisa 56124, Italy
| | - Sabrina Taliani
- Department
of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Federico Da Settimo
- Department
of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| |
Collapse
|
4
|
Zhang S, Deng Z, Qiu Y, Lu G, Wu J, Huang H. FGIN-1-27 Mitigates Radiation-induced Mitochondrial Hyperfunction and Cellular Hyperactivation in Cultured Astrocytes. Neuroscience 2023; 535:23-35. [PMID: 37913861 DOI: 10.1016/j.neuroscience.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/04/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023]
Abstract
Radiation-induced brain injury (RBI) poses a significant challenge in the context of radiotherapy for intracranial tumors, necessitating a comprehensive understanding of the cellular and molecular mechanisms involved. While prior investigations have underscored the role of astrocyte activation and excessive vascular endothelial growth factor production in microvascular damage associated with RBI, there remains a scarcity of studies examining the impact of radiation on astrocytes, particularly regarding organelles such as mitochondria. Thus, our study aimed to elucidate alterations in astrocyte and mitochondrial functionality following radiation exposure, with a specific focus on evaluating the potential ameliorative effects of translocator protein 18 kDa(TSPO) ligands. In this study, cultured astrocytes were subjected to X-ray irradiation, and their cellular states and mitochondrial functions were examined and compared to control cells. Our findings revealed that radiation-induced astrocytic hyperactivation, transforming them into the neurotoxic A1-type, concomitant with reduced cell proliferation. Additionally, radiation triggered mitochondrial hyperfunction, heightened the mitochondrial membrane potential, and increased oxidative metabolite production. However, following treatment with FGIN-1-27, a TSPO ligand, we observed a restoration of mitochondrial function and a reduction in oxidative metabolite production. Moreover, this intervention mitigated astrocyte hyperactivity, decreased the number of A1-type astrocytes, and restored cell proliferative capacity. In conclusion, our study has unveiled additional manifestations of radiation-induced astrocyte dysfunction and validated that TSPO ligands may serve as a promising therapeutic strategy to mitigate this dysfunction. It has potential clinical implications for the treatment of RBI.
Collapse
Affiliation(s)
- Shifeng Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Zhezhi Deng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Yuemin Qiu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Gengxin Lu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Junyu Wu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Haiwei Huang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China.
| |
Collapse
|
5
|
Elifranji ZO, Al-Ajlouni JM, Al-Saber MG, Hammad YS, Baniatta BA, Alshoubaki SN, Jabaiti MS, Alkhatib AM, Abu awad AM, Altarazi AE, Abdin AN, Al-Ani A, Alshrouf MA. Effect of Preoperative Antianxiety Medications on Blood Pressure and Blood Loss in Total Knee Arthroplasty: A Case-Control Study. Adv Orthop 2023; 2023:6355849. [PMID: 37456533 PMCID: PMC10349676 DOI: 10.1155/2023/6355849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/14/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023] Open
Abstract
Background The increasing number of canceled operations in patients undergoing total knee arthroplasty (TKA) due to high blood pressure readings has put a considerable burden on surgeons. In this study, we aim to assess the effect of giving antianxiety drugs preoperatively on maintaining blood pressure (BP) and blood loss for patients undergoing TKA surgery. Methods This retrospective case-control study included patients who underwent total knee arthroplasty and divided them into two main groups: those who had taken a 3 mg bromazepam oral tablet at the night preoperatively and the control group. The blood pressure of patients was then measured preoperatively (baseline), in the morning of surgery, in the operating room before anesthesia, and during the surgery. The percentage of measured BP was calculated by dividing the measured BP by the baseline, then multiplying by 100. Results 301 patients were included in our study: 137 received bromazepam and 164 as a control group. The ratio of systolic BP (SBP) in the morning of surgery to the baseline (percentage of morning SBP) decreased significantly in the bromazepam group compared with the controls. The ratio of SBP, in the operating room before anesthesia (percentage of preanesthesia SBP) also decreased significantly in the bromazepam group. However, the percentage of SBP in the middle of surgery did not change significantly. In addition, there was a significant difference change from the baseline in diastolic BP and mean arterial BP between the two groups in the morning of surgery, inside the theatre, and in the middle of the operation. The bromazepam group also showed a significant decrease in blood loss. Conclusion Preoperative oral antianxiety drugs (bromazepam) helps in controlling hemodynamic changes associated with anxiety, including maintaining BP in well-controlled hypertensive and healthy patients undergoing TKA, and it plays a role in decreasing the total blood loss.
Collapse
Affiliation(s)
- Zuhdi O. Elifranji
- Department of Special Surgery, Division of Orthopaedics, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Jihad M. Al-Ajlouni
- Department of Special Surgery, Division of Orthopaedics, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Munther G. Al-Saber
- Department of Special Surgery, Division of Orthopaedics, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Yazan S. Hammad
- Department of Special Surgery, Division of Orthopaedics, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Basel A. Baniatta
- Department of Special Surgery, Division of Orthopaedics, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Sara N. Alshoubaki
- Medical Internship, Jordan University Hospital, The University of Jordan, Amman 11942, Jordan
| | - Mohammad S. Jabaiti
- Department of Special Surgery, Division of Orthopaedics, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Ahmad M. Alkhatib
- Department of Special Surgery, Division of Orthopaedics, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Abdelrahman M. Abu awad
- Department of Special Surgery, Division of Orthopaedics, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Abdelrahman E. Altarazi
- Department of Special Surgery, Division of Orthopaedics, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Aseel N. Abdin
- Medical Internship, Jordan University Hospital, The University of Jordan, Amman 11942, Jordan
| | - Abdallah Al-Ani
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman 11942, Jordan
| | - Mohammad Ali Alshrouf
- Medical Internship, Jordan University Hospital, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
6
|
Tian H, Zhao X, Zhang Y, Xia Z. Abnormalities of glucose and lipid metabolism in myocardial ischemia-reperfusion injury. Biomed Pharmacother 2023; 163:114827. [PMID: 37141734 DOI: 10.1016/j.biopha.2023.114827] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/23/2023] [Accepted: 04/30/2023] [Indexed: 05/06/2023] Open
Abstract
Myocardial ischemia-reperfusion injury is a common condition in cardiovascular diseases, and the mechanism of its occurrence involves multiple complex metabolic pathways and signaling pathways. Among these pathways, glucose metabolism and lipid metabolism play important roles in regulating myocardial energy metabolism. Therefore, this article focuses on the roles of glucose metabolism and lipid metabolism in myocardial ischemia-reperfusion injury, including glycolysis, glucose uptake and transport, glycogen metabolism and the pentose phosphate pathway; and triglyceride metabolism, fatty acid uptake and transport, phospholipid metabolism, lipoprotein metabolism, and cholesterol metabolism. Finally, due to the different alterations and development of glucose metabolism and lipid metabolism in myocardial ischemia-reperfusion, there are also complex interregulatory relationships between them. In the future, modulating the equilibrium between glucose metabolism and lipid metabolism in cardiomyocytes and ameliorating aberrations in myocardial energy metabolism represent highly promising novel strategies for addressing myocardial ischemia-reperfusion injury. Therefore, a comprehensive exploration of glycolipid metabolism can offer novel theoretical and clinical insights into the prevention and treatment of myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Hao Tian
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xiaoshuai Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yuxi Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
7
|
Seidlmayer LK, Hanson BJ, Thai PN, Schaefer S, Bers DM, Dedkova EN. PK11195 Protects From Cell Death Only When Applied During Reperfusion: Succinate-Mediated Mechanism of Action. Front Physiol 2021; 12:628508. [PMID: 34149440 PMCID: PMC8212865 DOI: 10.3389/fphys.2021.628508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Aim: Reperfusion after myocardial ischemia causes cellular injury, in part due to changes in mitochondrial Ca2+ handling, oxidative stress, and myocyte energetics. We have previously shown that the 18-kDa translocator protein of the outer mitochondrial membrane (TSPO) can modulate Ca2+ handling. Here, we aim to evaluate the role of the TSPO in ischemia/reperfusion (I/R) injury. Methods: Rabbit ventricular myocytes underwent simulated acute ischemia (20 min) and reperfusion (at 15 min, 1 h, and 3 h) in the absence and presence of 50 μM PK11195, a TSPO inhibitor. Cell death was measured by lactate dehydrogenase (LDH) assay, while changes in mitochondrial Ca2+, membrane potential (ΔΨm), and reactive oxygen species (ROS) generation were monitored using confocal microscopy in combination with fluorescent indicators. Substrate utilization was measured with Biolog mitochondrial plates. Results: Cell death was increased by ~200% following I/R compared to control untreated ventricular myocytes. Incubation with 50 μM PK11195 during both ischemia and reperfusion did not reduce cell death but increased mitochondrial Ca2+ uptake and ROS generation. However, application of 50 μM PK11195 only at the onset and during reperfusion effectively protected against cell death. The large-scale oscillations in ΔΨm observed after ~1 h of reperfusion were significantly delayed by 1 μM cyclosporin A and almost completely prevented by 50 μM PK11195 applied during 3 h of reperfusion. After an initial increase, mitochondrial Ca2+, measured with Myticam, rapidly declined during 3 h of reperfusion after the initial transient increase. This decline was prevented by application of PK11195 at the onset and during reperfusion. PK11195 prevented a significant increase in succinate utilization following I/R and succinate-induced forward-mode ROS generation. Treatment with PK11195 was also associated with a significant increase in glutamate and a decrease in leucine utilization. Conclusion: PK11195 administered specifically at the moment of reperfusion limited ROS-induced ROS release and cell death, likely in part, by a shift from succinate to glutamate utilization. These data demonstrate a unique mechanism to limit cardiac injury after I/R.
Collapse
Affiliation(s)
- Lea K Seidlmayer
- Department of Cardiology, University Hospital Olbenburg, Olbenburg, Germany
| | - Benjamin J Hanson
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Phung N Thai
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Saul Schaefer
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Donald M Bers
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Elena N Dedkova
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
8
|
Białek A, Białek M, Lepionka T, Pachniewicz P, Czauderna M. Oxysterols and lipidomic profile of myocardium of rats supplemented with pomegranate seed oil and/or bitter melon aqueous extract - Cardio-oncological animal model research. Chem Phys Lipids 2021; 235:105057. [PMID: 33515592 DOI: 10.1016/j.chemphyslip.2021.105057] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 12/15/2022]
Abstract
A close link between cardiovascular diseases and cancer results from sharing the same modifiable risk factors (e.g. nutritional) and cardiotoxicity of anti-cancerous therapies. It justifies cardio-oncological preliminary studies on dietary factors, especially on those of possible anti-carcinogenic or cardioprotective properties. The main purpose was to evaluate the effect of pomegranate seed oil (PSO) and/or bitter melon extract (BME) supplementation of the diet of female rats suffering from mammary tumors on lipidomic profile (expressed as fatty acids, conjugated fatty acids (CFA), malondialdehyde (MDA), cholesterol and oxysterols content) of cardiac tissue. Total lipidomic profile and intensity of lipid peroxidation in hearts of DMBA-treated Sprague-Dawley rats and their healthy equivalents, both obtaining diet supplementation, were evaluated with different chromatographic techniques coupled with appropriate detection systems (GC-MS, GC-TOFMS, Ag+-HPLC-DAD, UF-HPLC-DAD). Dietary modifications neither diminished breast cancer incidence nor exerted explicit cardio-protective influence, however, they diminished cholesterol content, i.a. because of inhibition of the endogenous conversion of squalene to cholesterol in cardiac tissue. CFA were incorporated into cardiac tissue to a lesser extent in the cancerous process. PSO and BME anti-oxidant properties in pathological condition were only slightly reflected in MDA levels but not in oxysterols formation. Obtained results indicate considerable changes in dietary supplements' biological activity in pathological conditions and the need for clear distinction of drugs and dietary supplements, which is of utmost importance, especially for cancer survivors.
Collapse
Affiliation(s)
- Agnieszka Białek
- Department of Bromatology, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland; Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of Polish Academy of Sciences, Postępu 36A Jastrzębiec, 05-552, Magdalenka, Poland.
| | - Małgorzata Białek
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| | - Tomasz Lepionka
- The Biological Threats Identification and Countermeasure Center of the General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Lubelska 4 St, 24-100, Puławy, Poland
| | - Paulina Pachniewicz
- Department of Bromatology, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland
| | - Marian Czauderna
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| |
Collapse
|
9
|
Cui Y, Pan M, Ma J, Song X, Cao W, Zhang P. Recent progress in the use of mitochondrial membrane permeability transition pore in mitochondrial dysfunction-related disease therapies. Mol Cell Biochem 2021; 476:493-506. [PMID: 33000352 DOI: 10.1007/s11010-020-03926-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria have various cellular functions, including ATP synthesis, calcium homeostasis, cell senescence, and death. Mitochondrial dysfunction has been identified in a variety of disorders correlated with human health. Among the many underlying mechanisms of mitochondrial dysfunction, the opening up of the mitochondrial permeability transition pore (mPTP) is one that has drawn increasing interest in recent years. It plays an important role in apoptosis and necrosis; however, the molecular structure and function of the mPTP have still not been fully elucidated. In recent years, the abnormal opening up of the mPTP has been implicated in the development and pathogenesis of diverse diseases including ischemia/reperfusion injury (IRI), neurodegenerative disorders, tumors, and chronic obstructive pulmonary disease (COPD). This review provides a systematic introduction to the possible molecular makeup of the mPTP and summarizes the mitochondrial dysfunction-correlated diseases and highlights possible underlying mechanisms. Since the mPTP is an important target in mitochondrial dysfunction, this review also summarizes potential treatments, which may be used to inhibit pore opening up via the molecules composing mPTP complexes, thus suppressing the progression of mitochondrial dysfunction-related diseases.
Collapse
Affiliation(s)
- Yuting Cui
- School of Life Science, Shandong University of Technology, Zibo, Shandong Province, China
| | - Mingyue Pan
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong Province, China
| | - Jing Ma
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong Province, China
| | - Xinhua Song
- School of Life Science, Shandong University of Technology, Zibo, Shandong Province, China
| | - Weiling Cao
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong Province, China.
| | - Peng Zhang
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong Province, China.
| |
Collapse
|
10
|
Gliozzi M, Musolino V, Bosco F, Scicchitano M, Scarano F, Nucera S, Zito MC, Ruga S, Carresi C, Macrì R, Guarnieri L, Maiuolo J, Tavernese A, Coppoletta AR, Nicita C, Mollace R, Palma E, Muscoli C, Belzung C, Mollace V. Cholesterol homeostasis: Researching a dialogue between the brain and peripheral tissues. Pharmacol Res 2020; 163:105215. [PMID: 33007421 DOI: 10.1016/j.phrs.2020.105215] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023]
Abstract
Cholesterol homeostasis is a highly regulated process in human body because of its several functions underlying the biology of cell membranes, the synthesis of all steroid hormones and bile acids and the need of trafficking lipids destined to cell metabolism. In particular, it has been recognized that peripheral and central nervous system cholesterol metabolism are separated by the blood brain barrier and are regulated independently; indeed, peripherally, it depends on the balance between dietary intake and hepatic synthesis on one hand and its degradation on the other, whereas in central nervous system it is synthetized de novo to ensure brain physiology. In view of this complex metabolism and its relevant functions in mammalian, impaired levels of cholesterol can induce severe cellular dysfunction leading to metabolic, cardiovascular and neurodegenerative diseases. The aim of this review is to clarify the role of cholesterol homeostasis in health and disease highlighting new intriguing aspects of the cross talk between its central and peripheral metabolism.
Collapse
Affiliation(s)
- Micaela Gliozzi
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Vincenzo Musolino
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Francesca Bosco
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Miriam Scicchitano
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Federica Scarano
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Saverio Nucera
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Maria Caterina Zito
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Stefano Ruga
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Cristina Carresi
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Roberta Macrì
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Lorenza Guarnieri
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Jessica Maiuolo
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Annamaria Tavernese
- Division of Cardiology, University Hospital Policlinico Tor Vergata, Rome, Italy.
| | - Anna Rita Coppoletta
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Caterina Nicita
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Rocco Mollace
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Ernesto Palma
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Carolina Muscoli
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy; IRCCS San Raffaele Pisana, Via di Valcannuta, Rome, Italy.
| | | | - Vincenzo Mollace
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy; IRCCS San Raffaele Pisana, Via di Valcannuta, Rome, Italy.
| |
Collapse
|
11
|
Tonon MC, Vaudry H, Chuquet J, Guillebaud F, Fan J, Masmoudi-Kouki O, Vaudry D, Lanfray D, Morin F, Prevot V, Papadopoulos V, Troadec JD, Leprince J. Endozepines and their receptors: Structure, functions and pathophysiological significance. Pharmacol Ther 2020; 208:107386. [DOI: 10.1016/j.pharmthera.2019.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
|
12
|
Betlazar C, Middleton RJ, Banati R, Liu GJ. The Translocator Protein (TSPO) in Mitochondrial Bioenergetics and Immune Processes. Cells 2020; 9:cells9020512. [PMID: 32102369 PMCID: PMC7072813 DOI: 10.3390/cells9020512] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022] Open
Abstract
The translocator protein (TSPO) is an outer mitochondrial membrane protein that is widely used as a biomarker of neuroinflammation, being markedly upregulated in activated microglia in a range of brain pathologies. Despite its extensive use as a target in molecular imaging studies, the exact cellular functions of this protein remain in question. The long-held view that TSPO plays a fundamental role in the translocation of cholesterol through the mitochondrial membranes, and thus, steroidogenesis, has been disputed by several groups with the advent of TSPO knockout mouse models. Instead, much evidence is emerging that TSPO plays a fundamental role in cellular bioenergetics and associated mitochondrial functions, also part of a greater role in the innate immune processes of microglia. In this review, we examine the more direct experimental literature surrounding the immunomodulatory effects of TSPO. We also review studies which highlight a more central role for TSPO in mitochondrial processes, from energy metabolism, to the propagation of inflammatory responses through reactive oxygen species (ROS) modulation. In this way, we highlight a paradigm shift in approaches to TSPO functioning.
Collapse
Affiliation(s)
- Calina Betlazar
- Human Health, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia; (R.J.M.); (R.B.)
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia
- Correspondence: (C.B.); (G-J.L.)
| | - Ryan J. Middleton
- Human Health, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia; (R.J.M.); (R.B.)
| | - Richard Banati
- Human Health, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia; (R.J.M.); (R.B.)
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia
| | - Guo-Jun Liu
- Human Health, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia; (R.J.M.); (R.B.)
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia
- Correspondence: (C.B.); (G-J.L.)
| |
Collapse
|
13
|
Dias IH, Borah K, Amin B, Griffiths HR, Sassi K, Lizard G, Iriondo A, Martinez-Lage P. Localisation of oxysterols at the sub-cellular level and in biological fluids. J Steroid Biochem Mol Biol 2019; 193:105426. [PMID: 31301352 DOI: 10.1016/j.jsbmb.2019.105426] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/25/2019] [Accepted: 07/09/2019] [Indexed: 12/16/2022]
Abstract
Oxysterols are oxidized derivatives of cholesterol that are formed enzymatically or via reactive oxygen species or both. Cholesterol or oxysterols ingested as food are absorbed and packed into lipoproteins that are taken up by hepatic cells. Within hepatic cells, excess cholesterol is metabolised to form bile acids. The endoplasmic reticulum acts as the main organelle in the bile acid synthesis pathway. Metabolised sterols originating from this pathway are distributed within other organelles and in the cell membrane. The alterations to membrane oxysterol:sterol ratio affects the integrity of the cell membrane. The presence of oxysterols changes membrane fluidity and receptor orientation. It is well documented that hydroxylase enzymes located in mitochondria facilitate oxysterol production via an acidic pathway. More recently, the presence of oxysterols was also reported in lysosomes. Peroxisomal deficiencies favour intracellular oxysterols accumulation. Despite the low abundance of oxysterols compared to cholesterol, the biological actions of oxysterols are numerous and important. Oxysterol levels are implicated in the pathogenesis of multiple diseases ranging from chronic inflammatory diseases (atherosclerosis, Alzheimer's disease and bowel disease), cancer and numerous neurodegenerative diseases. In this article, we review the distribution of oxysterols in sub-cellular organelles and in biological fluids.
Collapse
Affiliation(s)
- Irundika Hk Dias
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, B4 7ET, UK.
| | - Khushboo Borah
- Faculty of Health and Medical Sciences, University of Surrey, Stag Hill, Guildford, GU2 7XH, UK
| | - Berivan Amin
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, B4 7ET, UK
| | - Helen R Griffiths
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, B4 7ET, UK; Faculty of Health and Medical Sciences, University of Surrey, Stag Hill, Guildford, GU2 7XH, UK
| | - Khouloud Sassi
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270)/University Bourgogne Franche-Comté/Inserm, 21000 Dijon, France; Univ. Tunis El Manar, Laboratory of Onco-Hematology (LR05ES05), Faculty of Medicine, Tunis, Tunisia
| | - Gérard Lizard
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270)/University Bourgogne Franche-Comté/Inserm, 21000 Dijon, France
| | - Ane Iriondo
- Department of Neurology, Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, San Sebastian, Spain
| | - Pablo Martinez-Lage
- Department of Neurology, Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, San Sebastian, Spain
| |
Collapse
|
14
|
Arbo B, Ribeiro M, Garcia-Segura L. Development of new treatments for Alzheimer's disease based on the modulation of translocator protein (TSPO). Ageing Res Rev 2019; 54:100943. [PMID: 31430564 DOI: 10.1016/j.arr.2019.100943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/07/2019] [Accepted: 08/15/2019] [Indexed: 12/27/2022]
Abstract
The increase in life expectancy of the world population is associated with a higher prevalence of neurodegenerative diseases. Alzheimer's Disease (AD) is the most common neurodegenerative disease, affecting currently 43 million people over the world. To date, most of the pharmacological interventions in AD are intended for the alleviation of some of its symptoms, and there are no effective treatments to inhibit the progression of the disease. Translocator protein (TSPO) is present in contact points between the outer and the inner mitochondrial membranes and is involved in the control of steroidogenesis, inflammation and apoptosis. In the last decade, studies have shown that TSPO ligands present neuroprotective effects in different experimental models of AD, both in vitro and in vivo. The aim of this review is to analyze the data provided by these studies and to discuss if TSPO could be a viable therapeutic target for the development of new treatments for AD.
Collapse
|
15
|
Novel Molecular Targets Participating in Myocardial Ischemia-Reperfusion Injury and Cardioprotection. Cardiol Res Pract 2019; 2019:6935147. [PMID: 31275641 PMCID: PMC6558612 DOI: 10.1155/2019/6935147] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/28/2019] [Indexed: 12/11/2022] Open
Abstract
Worldwide morbidity and mortality from acute myocardial infarction (AMI) and related heart failure remain high. While effective early reperfusion of the criminal coronary artery after a confirmed AMI is the typical treatment at present, collateral myocardial ischemia-reperfusion injury (MIRI) and pertinent cardioprotection are still challenging to address and have inadequately understood mechanisms. Therefore, unveiling the related novel molecular targets and networks participating in triggering and resisting the pathobiology of MIRI is a promising and valuable frontier. The present study specifically focuses on the recent MIRI advances that are supported by sophisticated bio-methodology in order to bring the poorly understood interrelationship among pro- and anti-MIRI participant molecules up to date, as well as to identify findings that may facilitate the further investigation of novel targets.
Collapse
|
16
|
Ilkan Z, Akar FG. The Mitochondrial Translocator Protein and the Emerging Link Between Oxidative Stress and Arrhythmias in the Diabetic Heart. Front Physiol 2018; 9:1518. [PMID: 30416455 PMCID: PMC6212558 DOI: 10.3389/fphys.2018.01518] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial translocator protein (TSPO) is a key outer mitochondrial membrane protein that regulates the activity of energy-dissipating mitochondrial channels in response to oxidative stress. In this article, we provide an overview of the role of TSPO in the systematic amplification of reactive oxygen species (ROS) through an autocatalytic process known as ROS-induced ROS-release (RIRR). We describe how this TSPO-driven process destabilizes the mitochondrial membrane potential leading to electrical instability at the cellular and whole heart levels. Finally, we provide our perspective on the role of TSPO in the pathophysiology of diabetes, in general and diabetes-related arrhythmias, in particular.
Collapse
Affiliation(s)
- Zeki Ilkan
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Fadi G Akar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
17
|
Brahmi F, Vejux A, Sghaier R, Zarrouk A, Nury T, Meddeb W, Rezig L, Namsi A, Sassi K, Yammine A, Badreddine I, Vervandier-Fasseur D, Madani K, Boulekbache-Makhlouf L, Nasser B, Lizard G. Prevention of 7-ketocholesterol-induced side effects by natural compounds. Crit Rev Food Sci Nutr 2018; 59:3179-3198. [DOI: 10.1080/10408398.2018.1491828] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fatiha Brahmi
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- Lab. Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Anne Vejux
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
| | - Randa Sghaier
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- Lab-NAFS ‘Nutrition - Functional Food & Vascular Health’, LR12ES05, Université de Monastir, Monastir, Tunisia
- Faculty of Medicine, Lab. Biochemistry, Sousse, Tunisia
| | - Amira Zarrouk
- Lab-NAFS ‘Nutrition - Functional Food & Vascular Health’, LR12ES05, Université de Monastir, Monastir, Tunisia
- Faculty of Medicine, Lab. Biochemistry, Sousse, Tunisia
| | - Thomas Nury
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
| | - Wiem Meddeb
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- LMMA/IPEST, Faculty of Science, University of Carthage, Bizerte, Tunisia
| | - Leila Rezig
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- ESIAT, Lab. Conservation et Valorisation des Aliments, Tunis, Tunisia
| | - Amira Namsi
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- University Tunis El Manar, Faculty of Science of Tunis, Laboratory of Functional Neurophysiology and Pathology, Tunis, Tunisia
| | - Khouloud Sassi
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- Lab. Onco-Hematology, Faculty de Medicine of Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Aline Yammine
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- Bioactive Molecules Research Lab, Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Iham Badreddine
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- Lab. ‘Valorisation des Ressources Naturelles et Environnement’, Université Ibn Zohr, Taroudant, Morocco
| | | | - Khodir Madani
- Lab. Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Lila Boulekbache-Makhlouf
- Lab. Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Boubker Nasser
- Lab. Neuroscience and Biochemistry, Université Hassan 1er, Settat, Morocco
| | - Gérard Lizard
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
18
|
Nury T, Sghaier R, Zarrouk A, Ménétrier F, Uzun T, Leoni V, Caccia C, Meddeb W, Namsi A, Sassi K, Mihoubi W, Riedinger JM, Cherkaoui-Malki M, Moreau T, Vejux A, Lizard G. Induction of peroxisomal changes in oligodendrocytes treated with 7-ketocholesterol: Attenuation by α-tocopherol. Biochimie 2018; 153:181-202. [PMID: 30031877 DOI: 10.1016/j.biochi.2018.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/17/2018] [Indexed: 02/08/2023]
Abstract
The involvement of organelles in cell death is well established especially for endoplasmic reticulum, lysosomes and mitochondria. However, the role of the peroxisome is not well known, though peroxisomal dysfunction favors a rupture of redox equilibrium. To study the role of peroxisomes in cell death, 158 N murine oligodendrocytes were treated with 7-ketocholesterol (7 KC: 25-50 μM, 24 h). The highest concentration is known to induce oxiapoptophagy (OXIdative stress + APOPTOsis + autoPHAGY), whereas the lowest concentration does not induce cell death. In those conditions (with 7 KC: 50 μM) morphological, topographical and functional peroxisome alterations associated with modifications of the cytoplasmic distribution of mitochondria, with mitochondrial dysfunction (loss of transmembrane mitochondrial potential, decreased level of cardiolipins) and oxidative stress were observed: presence of peroxisomes with abnormal sizes and shapes similar to those observed in Zellweger fibroblasts, lower cellular level of ABCD3, used as a marker of peroxisomal mass, measured by flow cytometry, lower mRNA and protein levels (measured by RT-qPCR and western blotting) of ABCD1 and ABCD3 (two ATP-dependent peroxisomal transporters), and of ACOX1 and MFP2 enzymes, and lower mRNA level of DHAPAT, involved in peroxisomal β-oxidation and plasmalogen synthesis, respectively, and increased levels of very long chain fatty acids (VLCFA: C24:0, C24:1, C26:0 and C26:1, quantified by gas chromatography coupled with mass spectrometry) metabolized by peroxisomal β-oxidation. In the presence of 7 KC (25 μM), slight mitochondrial dysfunction and oxidative stress were found, and no induction of apoptosis was detected; however, modifications of the cytoplasmic distribution of mitochondria and clusters of mitochondria were detected. The peroxisomal alterations observed with 7 KC (25 μM) were similar to those with 7 KC (50 μM). In addition, data obtained by transmission electron microcopy and immunofluorescence microscopy by dual staining with antibodies raised against p62, involved in autophagy, and ABCD3, support that 7 KC (25-50 μM) induces pexophagy. 7 KC (25-50 μM)-induced side effects were attenuated by α-tocopherol but not by α-tocotrienol, whereas the anti-oxidant properties of these molecules determined with the FRAP assay were in the same range. These data provide evidences that 7 KC, at concentrations inducing or not cell death, triggers morphological, topographical and functional peroxisomal alterations associated with minor or major mitochondrial changes.
Collapse
Affiliation(s)
- Thomas Nury
- Univ. Bourgogne Franche-Comté, Lab. Bio-PeroxIL, 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) / Inserm, Dijon, France
| | - Randa Sghaier
- Univ. Bourgogne Franche-Comté, Lab. Bio-PeroxIL, 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) / Inserm, Dijon, France; Univ. Monastir, Lab. Biotechnology, Monastir, Tunisia
| | - Amira Zarrouk
- Univ. Monastir, Lab-NAFS 'Nutrition - Functional Food & Vascular Diseases' LR12-ES-05, Monastir, Tunisia; Faculty of Medicine, Sousse, Tunisia
| | | | - Tugba Uzun
- Univ. Bourgogne Franche-Comté, Lab. Bio-PeroxIL, 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) / Inserm, Dijon, France
| | - Valerio Leoni
- Lab. Clinical Chemistry, Hospital of Varese, ASST-Settelaghi, Varese, Italy
| | - Claudio Caccia
- Unit of Medical Genetics and Neurogenetics, IRCCS Carlo Besta, Milano, Italy
| | - Wiem Meddeb
- Univ. Carthage, LMMA, IPEST, Tunis, and Fac. of Science of Bizerte, Bizerte, Tunisia
| | - Amira Namsi
- Univ. Bourgogne Franche-Comté, Lab. Bio-PeroxIL, 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) / Inserm, Dijon, France; Univ. Tunis El Manar, Lab. Neurophysiologie Fonctionnelle et Pathologie-UR11ES/09, Tunis, Tunisia
| | - Khouloud Sassi
- Univ. Bourgogne Franche-Comté, Lab. Bio-PeroxIL, 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) / Inserm, Dijon, France; Univ. Tunis El Manar, Fac. of Medicine, Lab of Onco-Hematology, Tunis, Tunisia
| | - Wafa Mihoubi
- Centre de Biotechnologie de Sfax, Lab. Biotechnologie Moléculaire des Eucaryotes, Sfax, Tunisia
| | - Jean-Marc Riedinger
- Centre de Lutte Contre le Cancer GF Leclerc, Laboratoire de Biologie Médicale, Dijon, France
| | - Mustapha Cherkaoui-Malki
- Univ. Bourgogne Franche-Comté, Lab. Bio-PeroxIL, 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) / Inserm, Dijon, France
| | - Thibault Moreau
- Univ. Bourgogne Franche-Comté, Lab. Bio-PeroxIL, 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) / Inserm, Dijon, France; Dept. of Neurology, Univ. Hospital of Dijon, France
| | - Anne Vejux
- Univ. Bourgogne Franche-Comté, Lab. Bio-PeroxIL, 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) / Inserm, Dijon, France
| | - Gérard Lizard
- Univ. Bourgogne Franche-Comté, Lab. Bio-PeroxIL, 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) / Inserm, Dijon, France.
| |
Collapse
|
19
|
Colussi G, Catena C, Darsiè D, Sechi LA. Benzodiazepines: An Old Class of New Antihypertensive Drugs? Am J Hypertens 2018; 31:402-404. [PMID: 29186312 DOI: 10.1093/ajh/hpx205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- GianLuca Colussi
- Clinica Medica, Department of Medicine, University of Udine, Udine, Italy
| | - Cristiana Catena
- Clinica Medica, Department of Medicine, University of Udine, Udine, Italy
| | - Daniele Darsiè
- Clinica Medica, Department of Medicine, University of Udine, Udine, Italy
| | | |
Collapse
|