1
|
Bouron A. Neuronal Store-Operated Calcium Channels. Mol Neurobiol 2023:10.1007/s12035-023-03352-5. [PMID: 37118324 DOI: 10.1007/s12035-023-03352-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/13/2023] [Indexed: 04/30/2023]
Abstract
The endoplasmic reticulum (ER) is the major intracellular calcium (Ca2+) storage compartment in eukaryotic cells. In most instances, the mobilization of Ca2+ from this store is followed by a delayed and sustained uptake of Ca2+ through Ca2+-permeable channels of the cell surface named store-operated Ca2+ channels (SOCCs). This gives rise to a store-operated Ca2+ entry (SOCE) that has been thoroughly investigated in electrically non-excitable cells where it is the principal regulated Ca2+ entry pathway. The existence of this Ca2+ route in neurons has long been a matter of debate. However, a growing body of experimental evidence indicates that the recruitment of Ca2+ from neuronal ER Ca2+ stores generates a SOCE. The present review summarizes the main studies supporting the presence of a depletion-dependent Ca2+ entry in neurons. It also addresses the question of the molecular composition of neuronal SOCCs, their expression, pharmacological properties, as well as their physiological relevance.
Collapse
Affiliation(s)
- Alexandre Bouron
- Université Grenoble Alpes, CNRS, CEA, Inserm UA13 BGE, 38000, Grenoble, France.
| |
Collapse
|
2
|
Jeon KH, Park SH, Bae WJ, Kim SW, Park HJ, Kim S, Kim TH, Jeon SH, Park I, Park HJ, Kwon Y. Cannabidiol, a Regulator of Intracellular Calcium and Calpain. Cannabis Cannabinoid Res 2023; 8:119-125. [PMID: 35196129 DOI: 10.1089/can.2021.0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cannabidiol (CBD) is one of the most abundant components of Cannabis and has long been used in Cannabis-based preparations. Recently, CBD has become a promising pharmacological agent because of its beneficial properties in the pathophysiology of several diseases. Although CBD is a kind of cannabinoid and acts on cannabinoid receptors (CB1 and CB2), molecular targets involved in diverse therapeutic properties of CBD have not been identified because CBD also interacts with other molecular targets. Considering that CBD alters the intracellular calcium level by which calpain activity is controlled, and both CBD and calpain are associated with various diseases related to calcium signaling, including neurological disorders, this review provides an overview of calpain and calcium signaling as possible molecular targets of CBD. As calpain is known to play an important role in the pathophysiology of neurological disease, a deeper understanding of its relationship with CBD will be meaningful. To understand the role of CBD as a calpain regulator, in silico structural analysis on the binding mode of CBD with calpain was performed.
Collapse
Affiliation(s)
- Kyung-Hwa Jeon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
- Drug Development Research Core Center, Ewha Womans University, Seoul, Republic of Korea
| | - Sang-Hyuck Park
- Institute of Cannabis Research, Colorado State University-Pueblo, Pueblo, Colorado, USA
| | - Woong Jin Bae
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sae Woong Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
- Green Medicine Co., Ltd., Busan, Republic of Korea
| | - Hyo Jung Park
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Soomin Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | | | - Seung Hwan Jeon
- Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ilbum Park
- Yuhan Care Co., Ltd., Yuhan Care R&D Center, Yongin, Republic of Korea
| | - Hyun-Je Park
- Yuhan Care Co., Ltd., Yuhan Natural Product R&D Center, Andong, Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
- Drug Development Research Core Center, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Santiago-Castañeda C, Huerta de la Cruz S, Martínez-Aguirre C, Orozco-Suárez SA, Rocha L. Cannabidiol Reduces Short- and Long-Term High Glutamate Release after Severe Traumatic Brain Injury and Improves Functional Recovery. Pharmaceutics 2022; 14:pharmaceutics14081609. [PMID: 36015236 PMCID: PMC9414526 DOI: 10.3390/pharmaceutics14081609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/16/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
This study aimed to determine if orally administered cannabidiol (CBD) lessens the cortical over-release of glutamate induced by a severe traumatic brain injury (TBI) and facilitates functional recovery. The short-term experiment focused on identifying the optimal oral pretreatment of CBD. Male Wistar rats were pretreated with oral administration of CBD (50, 100, or 200 mg/kg) daily for 7 days. Then, extracellular glutamate concentration was estimated by cortical microdialysis before and immediately after a severe TBI. The long-term experiment focused on evaluating the effect of the optimal treatment of CBD (pre- vs. pre- and post-TBI) 30 days after trauma. Sensorimotor function, body weight, and mortality rate were evaluated. In the short term, TBI induced a high release of glutamate (738% ± 173%; p < 0.001 vs. basal). Oral pretreatment with CBD at all doses tested reduced glutamate concentration but with higher potency at when animals received 100 mg/kg (222 ± 33%, p < 0.01 vs. TBI), an effect associated with a lower mortality rate (22%, p < 0.001 vs. TBI). In the long-term experiment, the TBI group showed a high glutamate concentration (149% p < 0.01 vs. SHAM). In contrast, animals receiving the optimal treatment of CBD (pre- and pre/post-TBI) showed glutamate concentrations like the SHAM group (p > 0.05). This effect was associated with high sensorimotor function improvement. CBD pretreatment, but not pre-/post-treatment, induced a higher body weight gain (39% ± 2.7%, p < 0.01 vs. TBI) and lower mortality rate (22%, p < 0.01 vs. TBI). These results support that orally administered CBD reduces short- and long-term TBI-induced excitotoxicity and facilitated functional recovery. Indeed, pretreatment with CBD was sufficient to lessen the adverse sequelae of TBI.
Collapse
Affiliation(s)
- Cindy Santiago-Castañeda
- Department of Pharmacobiology, Center for Research and Advanced Studies (CINVESTAV), Mexico City 14330, Mexico; (C.S.-C.); (S.H.d.l.C.); (C.M.-A.)
| | - Saúl Huerta de la Cruz
- Department of Pharmacobiology, Center for Research and Advanced Studies (CINVESTAV), Mexico City 14330, Mexico; (C.S.-C.); (S.H.d.l.C.); (C.M.-A.)
| | - Christopher Martínez-Aguirre
- Department of Pharmacobiology, Center for Research and Advanced Studies (CINVESTAV), Mexico City 14330, Mexico; (C.S.-C.); (S.H.d.l.C.); (C.M.-A.)
| | - Sandra Adela Orozco-Suárez
- Unit for Medical Research in Neurological Diseases, Specialties Hospital, National Medical Center SXXI (CMN-SXXI), Mexico City 06720, Mexico;
| | - Luisa Rocha
- Department of Pharmacobiology, Center for Research and Advanced Studies (CINVESTAV), Mexico City 14330, Mexico; (C.S.-C.); (S.H.d.l.C.); (C.M.-A.)
- Correspondence: ; Tel.: +52-55-5483-2800
| |
Collapse
|
4
|
Frandsen J, Narayanasamy P. Effect of Cannabidiol on the Neural Glyoxalase Pathway Function and Longevity of Several C. elegans Strains Including a C. elegans Alzheimer's Disease Model. ACS Chem Neurosci 2022; 13:1165-1177. [PMID: 35385645 DOI: 10.1021/acschemneuro.1c00667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cannabidiol is a nonpsychoactive phytocannabinoid produced by the Cannabis sativa plant and possesses a wide range of pharmacological activities, including anti-inflammatory, antioxidant, and neuroprotective activities. Cannabidiol functions in a neuroprotective manner, in part through the activation of cellular antioxidant pathways. The glyoxalase pathway detoxifies methylglyoxal, a highly reactive metabolic byproduct that can accumulate in the brain, and contributes to the severity of neurodegenerative diseases, including Alzheimer's disease. While cannabidiol's antioxidant properties have been investigated, it is currently unknown how it may modulate the glyoxalase pathway. In this research paper, we examine the effects of Cannabidiol on cerebellar neurons and in several Caenorhabditis elegans strains. We determined that a limited amount of Cannabidiol can prevent methylglyoxal-mediated cellular damage through enhancement of the neural glyoxalase pathway and extend the lifespan and survival of C. elegans, including a transgenic C. elegans strain modeling Alzheimer's disease.
Collapse
Affiliation(s)
- Joel Frandsen
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Prabagaran Narayanasamy
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
5
|
Yang F, Zhao YJ, Chen SJ, Li YR, Yang PY, Qi JY, Wang XS, Wang M, Li XB, Feng B, Wu YM, Liu SB, Zhang K. Disrupting Cannabinoid Receptor Interacting Protein 1 Rescues Cognitive Flexibility in Long-Term Estrogen-Deprived Female Mice. Brain Res Bull 2022; 181:77-86. [DOI: 10.1016/j.brainresbull.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/11/2022] [Accepted: 01/22/2022] [Indexed: 11/02/2022]
|
6
|
Kim J, Choi H, Kang EK, Ji GY, Kim Y, Choi IS. In Vitro Studies on Therapeutic Effects of Cannabidiol in Neural Cells: Neurons, Glia, and Neural Stem Cells. Molecules 2021; 26:molecules26196077. [PMID: 34641624 PMCID: PMC8512311 DOI: 10.3390/molecules26196077] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/25/2022] Open
Abstract
(‒)-Cannabidiol (CBD) is one of the major phytocannabinoids extracted from the Cannabis genus. Its non-psychoactiveness and therapeutic potential, partly along with some anecdotal—if not scientific or clinical—evidence on the prevention and treatment of neurological diseases, have led researchers to investigate the biochemical actions of CBD on neural cells. This review summarizes the previously reported mechanistic studies of the CBD actions on primary neural cells at the in vitro cell-culture level. The neural cells are classified into neurons, microglia, astrocytes, oligodendrocytes, and neural stem cells, and the CBD effects on each cell type are described. After brief introduction on CBD and in vitro studies of CBD actions on neural cells, the neuroprotective capability of CBD on primary neurons with the suggested operating actions is discussed, followed by the reported CBD actions on glia and the CBD-induced regeneration from neural stem cells. A summary section gives a general overview of the biochemical actions of CBD on neural cells, with a future perspective. This review will provide a basic and fundamental, but crucial, insight on the mechanistic understanding of CBD actions on neural cells in the brain, at the molecular level, and the therapeutic potential of CBD in the prevention and treatment of neurological diseases, although to date, there seem to have been relatively limited research activities and reports on the cell culture-level, in vitro studies of CBD effects on primary neural cells.
Collapse
Affiliation(s)
- Jungnam Kim
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (J.K.); (H.C.); (E.K.K.)
| | - Hyunwoo Choi
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (J.K.); (H.C.); (E.K.K.)
| | - Eunhye K. Kang
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (J.K.); (H.C.); (E.K.K.)
| | - Gil Yong Ji
- Cannabis Medical, Inc., Sandong-ro 433-31, Eumbong-myeon, Asan-si 31418, Korea; (G.Y.J.); (Y.K.)
| | - Youjeong Kim
- Cannabis Medical, Inc., Sandong-ro 433-31, Eumbong-myeon, Asan-si 31418, Korea; (G.Y.J.); (Y.K.)
| | - Insung S. Choi
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (J.K.); (H.C.); (E.K.K.)
- Correspondence:
| |
Collapse
|
7
|
Boczek T, Zylinska L. Receptor-Dependent and Independent Regulation of Voltage-Gated Ca 2+ Channels and Ca 2+-Permeable Channels by Endocannabinoids in the Brain. Int J Mol Sci 2021; 22:ijms22158168. [PMID: 34360934 PMCID: PMC8348342 DOI: 10.3390/ijms22158168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/27/2022] Open
Abstract
The activity of specific populations of neurons in different brain areas makes decisions regarding proper synaptic transmission, the ability to make adaptations in response to different external signals, as well as the triggering of specific regulatory pathways to sustain neural function. The endocannabinoid system (ECS) appears to be a very important, highly expressed, and active system of control in the central nervous system (CNS). Functionally, it allows the cells to respond quickly to processes that occur during synaptic transmission, but can also induce long-term changes. The endocannabinoids (eCBs) belong to a large family of bioactive lipid mediators that includes amides, esters, and ethers of long-chain polyunsaturated fatty acids. They are produced “on demand” from the precursors located in the membranes, exhibit a short half-life, and play a key role as retrograde messengers. eCBs act mainly through two receptors, CB1R and CB2R, which belong to the G-protein coupled receptor superfamily (GPCRs), but can also exert their action via multiple non-receptor pathways. The action of eCBs depends on Ca2+, but eCBs can also regulate downstream Ca2+ signaling. In this short review, we focus on the regulation of neuronal calcium channels by the most effective members of eCBs-2-arachidonoylglycerol (2-AG), anandamide (AEA) and originating from AEA-N-arachidonoylglycine (NAGly), to better understand the contribution of ECS to brain function under physiological conditions.
Collapse
|
8
|
Kwan Cheung KA, Mitchell MD, Heussler HS. Cannabidiol and Neurodevelopmental Disorders in Children. Front Psychiatry 2021; 12:643442. [PMID: 34093265 PMCID: PMC8175856 DOI: 10.3389/fpsyt.2021.643442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
Neurodevelopmental and neuropsychiatric disorders (such as autism spectrum disorder) have broad health implications for children, with no definitive cure for the vast majority of them. However, recently medicinal cannabis has been successfully trialled as a treatment to manage many of the patients' symptoms and improve quality of life. The cannabinoid cannabidiol, in particular, has been reported to be safe and well-tolerated with a plethora of anticonvulsant, anxiolytic and anti-inflammatory properties. Lately, the current consensus is that the endocannabinoid system is a crucial factor in neural development and health; research has found evidence that there are a multitude of signalling pathways involving neurotransmitters and the endocannabinoid system by which cannabinoids could potentially exert their therapeutic effects. A better understanding of the cannabinoids' mechanisms of action should lead to improved treatments for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Keith A Kwan Cheung
- Centre for Children's Health Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Murray D Mitchell
- Centre for Children's Health Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Helen S Heussler
- Centre for Clinical Trials in Rare Neurodevelopmental Disorders, Child Development Program, Children's Health Queensland, Brisbane, QLD, Australia.,Centre for Children's Health Research, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Peyravian N, Deo S, Daunert S, Jimenez JJ. Cannabidiol as a Novel Therapeutic for Immune Modulation. Immunotargets Ther 2020; 9:131-140. [PMID: 32903924 PMCID: PMC7445536 DOI: 10.2147/itt.s263690] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 07/21/2020] [Indexed: 12/18/2022] Open
Abstract
The immune-suppressive effects of cannabidiol (CBD) are attributed to the modulation of essential immunological signaling pathways and receptors. Mechanistic understanding of the pharmacological effects of CBD emphasizes the therapeutic potential of CBD as a novel immune modulator. Studies have observed that the antagonists of CB1 and CB2 receptors and transient receptor potential vanilloid 1 reverse the immunomodulatory effects of CBD. CBD also inhibits critical activators of the Janus kinase/signal transducer and activator of transcription signaling pathway, as well as the nucleotide-binding oligomerization domain-like receptor signaling pathway, in turn decreasing pro-inflammatory cytokine production. Furthermore, CBD protects against cellular damage incurred during immune responses by modulating adenosine signaling. Ultimately, the data overwhelmingly support the immunosuppressive effects of CBD and this timely review draws attention to the prospective development of CBD as an effective immune modulatory therapeutic.
Collapse
Affiliation(s)
- Nadia Peyravian
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA.,Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami, Miami, FL, USA
| | - Sapna Deo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA.,Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami, Miami, FL, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA.,Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami, Miami, FL, USA.,University of Miami Clinical and Translational Science Institute, Miami, FL, USA
| | - Joaquin J Jimenez
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA.,Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami, Miami, FL, USA.,Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
10
|
Transcriptomic Profiling of Ca2+ Transport Systems During the Formation of the Cerebral Cortex in Mice. Cells 2020; 9:cells9081800. [PMID: 32751129 PMCID: PMC7465657 DOI: 10.3390/cells9081800] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 01/05/2023] Open
Abstract
Cytosolic calcium (Ca2+) transients control key neural processes, including neurogenesis, migration, the polarization and growth of neurons, and the establishment and maintenance of synaptic connections. They are thus involved in the development and formation of the neural system. In this study, a publicly available whole transcriptome sequencing (RNA-Seq) dataset was used to examine the expression of genes coding for putative plasma membrane and organellar Ca2+-transporting proteins (channels, pumps, exchangers, and transporters) during the formation of the cerebral cortex in mice. Four ages were considered: embryonic days 11 (E11), 13 (E13), and 17 (E17), and post-natal day 1 (PN1). This transcriptomic profiling was also combined with live-cell Ca2+ imaging recordings to assess the presence of functional Ca2+ transport systems in E13 neurons. The most important Ca2+ routes of the cortical wall at the onset of corticogenesis (E11–E13) were TACAN, GluK5, nAChR β2, Cav3.1, Orai3, transient receptor potential cation channel subfamily M member 7 (TRPM7) non-mitochondrial Na+/Ca2+ exchanger 2 (NCX2), and the connexins CX43/CX45/CX37. Hence, transient receptor potential cation channel mucolipin subfamily member 1 (TRPML1), transmembrane protein 165 (TMEM165), and Ca2+ “leak” channels are prominent intracellular Ca2+ pathways. The Ca2+ pumps sarco/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) and plasma membrane Ca2+ ATPase 1 (PMCA1) control the resting basal Ca2+ levels. At the end of neurogenesis (E17 and onward), a more numerous and diverse population of Ca2+ uptake systems was observed. In addition to the actors listed above, prominent Ca2+-conducting systems of the cortical wall emerged, including acid-sensing ion channel 1 (ASIC1), Orai2, P2X2, and GluN1. Altogether, this study provides a detailed view of the pattern of expression of the main actors participating in the import, export, and release of Ca2+. This work can serve as a framework for further functional and mechanistic studies on Ca2+ signaling during cerebral cortex formation.
Collapse
|
11
|
Galaj E, Bi GH, Yang HJ, Xi ZX. Cannabidiol attenuates the rewarding effects of cocaine in rats by CB2, 5-HT 1A and TRPV1 receptor mechanisms. Neuropharmacology 2020; 167:107740. [PMID: 31437433 PMCID: PMC7493134 DOI: 10.1016/j.neuropharm.2019.107740] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/16/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
Cocaine abuse continues to be a serious health problem worldwide. Despite intense research there is currently no FDA-approved medication to treat cocaine use disorder. The recent search has been focused on agents targeting primarily the dopamine system, while limited success has been achieved at the clinical level. Cannabidiol (CBD) is a U.S. FDA-approved cannabinoid for the treatment of epilepsy and recently was reported to have therapeutic potential for other disorders. Here we systemically evaluated its potential utility for the treatment of cocaine use disorder and explored the underlying receptor mechanisms in experimental animals. Systemic administration (10-40 mg/kg) of CBD dose-dependently inhibited cocaine self-administration, shifted a cocaine dose-response curve downward, and lowered break-points for cocaine self-administration under a progressive-ratio schedule of reinforcement. CBD inhibited cocaine self-administration maintained by low, but not high, doses of cocaine. In addition, CBD (3-20 mg/kg) dose-dependently attenuated cocaine-enhanced brain-stimulation reward (BSR) in rats. Strikingly, this reduction in both cocaine self-administration and BSR was blocked by AM630 (a cannabinoid CB2 receptor antagonist), WAY100135 (a 5-HT1A receptor antagonist), or capsazepine (a TRPV1 channel blocker), but not by AM251 (a CB1 receptor antagonist), CID16020046 (a GPR55 antagonist), or naloxone (an opioid receptor antagonist), suggesting the involvement of CB2, 5-HT1A, and TRPV1 receptors in CBD action. In vivo microdialysis indicated that pretreatment with CBD (10-20 mg/kg) attenuated cocaine-induced increases in extracellular dopamine (DA) in the nucleus accumbens, while CBD alone failed to alter extracellular DA. These findings suggest that CBD may have certain therapeutic utility by blunting the acute rewarding effects of cocaine via a DA-dependent mechanism.
Collapse
Affiliation(s)
- Ewa Galaj
- Addiction Biology Unit, Molecular Targets and Medication Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Guo-Hua Bi
- Addiction Biology Unit, Molecular Targets and Medication Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Hong-Ju Yang
- Addiction Biology Unit, Molecular Targets and Medication Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Zheng-Xiong Xi
- Addiction Biology Unit, Molecular Targets and Medication Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA.
| |
Collapse
|
12
|
Inhibition of store-operated calcium channels by N-arachidonoyl glycine (NAGly): no evidence for the involvement of lipid-sensing G protein coupled receptors. Sci Rep 2020; 10:2649. [PMID: 32060392 PMCID: PMC7021695 DOI: 10.1038/s41598-020-59565-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 01/28/2020] [Indexed: 01/08/2023] Open
Abstract
N-arachidonoyl glycine (NAGly) is an endogenous lipid deriving from the endocannabinoid anandamide (AEA). Identified as a ligand of several G-protein coupled receptors (GPCRs), it can however exert biological responses independently of GPCRs. NAGly was recently shown to depress store-operated Ca2+ entry (SOCE) but its mechanism of action remains elusive. The major aim of this study was to gain a better knowledge on the NAGly-dependent impairment of SOCE in neurons of the central nervous system (CNS) from mice. First, we examined the expression of genes encoding for putative lipid sensing GPCRs using transcriptomic data publicly available. This analysis showed that the most abundant GPCRs transcripts present in the cerebral cortices of embryonic brains were coding for lysophosphatidic acid (LPA) and sphingosine-1 phosphate (S1P) receptors. Next, the presence of functional receptors was assessed with live-cell calcium imaging experiments. In primary cortical cells S1P and LPA mobilize Ca2+ from internal stores via a mechanism sensitive to the S1P and LPA receptor antagonists Ex26, H2L5186303, or Ki16425. However, none of these compounds prevented or attenuated the NAGly-dependent impairment of SOCE. We found no evidence for the requirement of lipid sensing GPCRs in this inhibitory process, indicating that NAGly is an endogenous modulator interfering with the core machinery of SOCE. Moreover, these data also raise the intriguing possibility that the depression of SOCE could play a role in the central effects of NAGly.
Collapse
|
13
|
Kwan Cheung KA, Peiris H, Wallace G, Holland OJ, Mitchell MD. The Interplay between the Endocannabinoid System, Epilepsy and Cannabinoids. Int J Mol Sci 2019; 20:E6079. [PMID: 31810321 PMCID: PMC6929011 DOI: 10.3390/ijms20236079] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/29/2019] [Accepted: 11/29/2019] [Indexed: 12/25/2022] Open
Abstract
Epilepsy is a neurological disorder that affects approximately 50 million people worldwide. There is currently no definitive epilepsy cure. However, in recent years, medicinal cannabis has been successfully trialed as an effective treatment for managing epileptic symptoms, but whose mechanisms of action are largely unknown. Lately, there has been a focus on neuroinflammation as an important factor in the pathology of many epileptic disorders. In this literature review, we consider the links that have been identified between epilepsy, neuroinflammation, the endocannabinoid system (ECS), and how cannabinoids may be potent alternatives to more conventional pharmacological therapies. We review the research that demonstrates how the ECS can contribute to neuroinflammation, and could therefore be modulated by cannabinoids to potentially reduce the incidence and severity of seizures. In particular, the cannabinoid cannabidiol has been reported to have anti-convulsant and anti-inflammatory properties, and it shows promise for epilepsy treatment. There are a multitude of signaling pathways that involve endocannabinoids, eicosanoids, and associated receptors by which cannabinoids could potentially exert their therapeutic effects. Further research is needed to better characterize these pathways, and consequently improve the application and regulation of medicinal cannabis.
Collapse
Affiliation(s)
- Keith A. Kwan Cheung
- Institute of Health and Biomedical Innovation (IHBI), Faculty of Health, Queensland University of Technology (QUT), Centre for Children’s Health Research (CCHR), 62 Graham Street, South Brisbane, Queensland 4101, Australia; (K.A.K.C.); (H.P.); (O.J.H.)
| | - Hassendrini Peiris
- Institute of Health and Biomedical Innovation (IHBI), Faculty of Health, Queensland University of Technology (QUT), Centre for Children’s Health Research (CCHR), 62 Graham Street, South Brisbane, Queensland 4101, Australia; (K.A.K.C.); (H.P.); (O.J.H.)
| | - Geoffrey Wallace
- Children’s Health Queensland (CHQ) and University of Queensland (UQ), Centre for Children’s Health Research, 62 Graham Street, South Brisbane, Queensland 4101, Australia;
| | - Olivia J. Holland
- Institute of Health and Biomedical Innovation (IHBI), Faculty of Health, Queensland University of Technology (QUT), Centre for Children’s Health Research (CCHR), 62 Graham Street, South Brisbane, Queensland 4101, Australia; (K.A.K.C.); (H.P.); (O.J.H.)
- School of Medical Science, Griffith University, 1 Parklands Dr, Southport, Queensland 4215, Australia
| | - Murray D. Mitchell
- Institute of Health and Biomedical Innovation (IHBI), Faculty of Health, Queensland University of Technology (QUT), Centre for Children’s Health Research (CCHR), 62 Graham Street, South Brisbane, Queensland 4101, Australia; (K.A.K.C.); (H.P.); (O.J.H.)
| |
Collapse
|
14
|
Franco V, Perucca E. Pharmacological and Therapeutic Properties of Cannabidiol for Epilepsy. Drugs 2019; 79:1435-1454. [DOI: 10.1007/s40265-019-01171-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|